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Abstract

Consider a simple random sample X1; X2; : : : ; Xn, taken without replacement from a 'nite or-
dered population �= {x16 x26 · · ·6 xN} (n6N ), where each element of � has equal prob-
ability to be chosen in the sample. Let X1:n6X2:n6 · · ·6Xn:n be the ordered sample. In the
present paper, the best possible bounds for the expectations of the order statistics Xi:n (16 i6 n)
and the sample range Rn=Xn:n−X1:n are derived in terms of the population mean and variance.
Some results are also given for the covariance in the simplest case where n= 2. An interesting
feature of the bounds derived here is that they reduce to some well-known classical results (for
the i.i.d. case) as N → ∞. Thus, the bounds established in this paper provide an insight into
Hartley–David–Gumbel, Samuelson–Scott, Arnold–Groeneveld and some other bounds. c© 2002
Elsevier Science B.V. All rights reserved.

MSC: primary 62G30; secondary 60E15
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1. Introduction

In real applications we frequently observe ordered populations of the form � =
{x16 x26 · · ·6 xN}, and the applied statistician has to consider a without replacement
simple random sample X1; X2; : : : ; Xn from �. Of course n6N (usually, n is much
smaller than N ) and the case n= N leads to an exhaustive (trivial) sample from �.
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Let us consider the ordered sample X1:n6X2:n6 · · ·6Xn:n, obtained from the simple
random sample X1; X2; : : : ; Xn. In the present paper, we derive the best possible bounds
for E[Xi:n]; 16 i6 n and for E[Rn], where Rn = Xn:n − X1:n is the sample range, when
the population mean 
 and the population variance �2 are 'xed. We also discuss some
results for the covariance of X1:2 and X2:2 in the particular case where n= 2.
It should be noted that all the preceding results are available in the literature (and

are well-known) for the i.i.d. case. In particular, the bound for the expectation of the
maximum Xn:n is due to Hartley and David (1954) and Gumbel (1954), the bound for
the expectation of a single order statistic Xi:n (1¡i¡n) is due to Moriguti (1953).
Also, the bound for the expectation of the sample range was 'rstly obtained by Plackett
(1947). Moriguti (1951) also derived the upper bound for E[Xn:n] when the population
is symmetric (the extremal population in this case is the one that also maximizes the
expectation of the sample range). For a comprehensive review of the above results see
David (1981, Chapter 4).
The bound for Cov[X1:2; X2:2] was obtained by Papathanasiou (1990), and the equality

in this bound characterizes the rectangular (uniform over some interval) distributions.
Although Papathanasiou’s bound was motivated by Terrell’s (1983) result for the cor-
relation of an ordered pair from two i.i.d. r.v.’s, this result was already hidden in the
old Hartley–David–Gumbel bound for n = 2, as it was shown by Balakrishnan and
Balasubramanian (1993).
As it was already noted, all the above results are valid only when the ordered

sample X1:n6X2:n6 · · ·6Xn:n corresponds to n i.i.d. r.v.’s. Some general bounds
of this kind for arbitrary (neither independent nor identically distributed) r.v.’s was
obtained by Arnold and Groeneveld (1979); see also Arnold and Balakrishnan (1989)
for a complete review of related results. Some interesting generalizations can be found
in Olkin (1992) and Rychlik (1998). However, in the case of a simple random sample
from a 'nite population, few things are known with respect to moment bounds for
order statistics. In this case, the basic r.v.’s are identically distributed and dependent;
in fact, they are exchangeable.
Recently, the stochastic properties of order statistics from 'nite populations have

been studied by many authors. The general distribution theory can be found in Arnold
et al. (1992, Chapter 3); see also HKajek (1981). Boland et al. (1996), Kochar and
Korwar (1997) and Takahasi and Futatsuya (1998) obtained very interesting results on
the dependence structure of order statistics from a 'nite population. More speci'cally,
one of the main results in Takahasi and Futatsuya (1998) is given by the fact that the
joint distribution of Xi:n and Xj:n (for any 16 i¡ j6 n) is positively likelihood ratio
dependent, i.e., their joint probability mass function f satis'es

∣∣∣∣∣
f(x; y) f(x; y′)

f(x′; y) f(x′; y′)

∣∣∣∣∣¿ 0

for all x; y; x′; y′ ∈� with x¡x′ and y¡y′. This result was also shown by Boland
et al. (1996). Kochar and Korwar (1997) proved that, when no multiplicities occur in
�, then for any 16 i¡ j6 n, the r.v.’s Xi:n and Xj:n are likelihood ratio ordered, that
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is, their marginal probability mass functions fi:n and fj:n satisfy the condition

fi:n(x)=fj:n(x) is non-increasing in x:

In addition, they considered a diMerent scheme of sampling from a 'nite population
(Midzuno sampling) and proved that similar results do not hold, apart from some
particular cases.
So far, with one way or another, the above results imply that the i.i.d. dependence

structure of order statistics remains valid in 'nite populations where independence is
lost. Our approach is in a diMerent context but follows the same spirit: One of the main
features of the expectation bounds obtained in the present paper is the fact that, letting
N → ∞, we can reobtain all the known classical results for the i.i.d. case, and at the
same time, the distribution of the maximizing population for large N approximates the
optimal population for the i.i.d. case. Therefore, from one point of view, the bounds
provided here may be regarded as ‘pro'table’ for the general i.i.d. bounds.
It is worth pointing out that in contrast to the case of N → ∞, where the re-

sults approximate the classical ones of the i.i.d. theory, the case n = N gives the
optimal bounds for arbitrarily dependent identically distributed samples; cf. Arnold
(1985) for the sample maximum and range and Rychlik (1993) for other order
statistics.

2. Upper bound for the sample maximum and the sample range

Every 'nite quantitative population can be put in the form �={x16 x26 · · ·6 xN},
and in the most natural situation, each element of � has equal probability 1=N to be
chosen (in the sense that if there exist k ¿ 1 elements in � with the same value xj
then P[X = xj] = k=N , where X is the r.v. considered as a random element of �).
Let X1; X2; : : : ; Xn (n6N ) be a simple random sample without replacement from

�. Since this simple random sample consists of dependent and identically distributed
(in fact, exchangeable) r.v.’s, the corresponding order statistics X1:n6X2:n6 · · ·6Xn:n
form an ordered sample which does not arise from the i.i.d. case. Therefore, the exten-
sive literature for the expectation bounds, discussed in the introduction, does not apply
in this case.
Observe that the population mean 
=E[X ] and the population variance �2 =Var[X ]

are given by


 =
1
N

N∑
k=1

xk and �2 =
1
N

N∑
k=1

(xk − 
)2: (2.1)

For our purposes we shall use the following simple lemma.

Lemma 2.1. Assume that �0 = {1; 2; : : : ; N} and consider a simple random sample
U1; U2; : : : ; Un (n6N ); drawn from �0 without replacement. Then; the ordered sam-
ples X1:n6X2:n6 · · ·6Xn:n from � and U1:n6U2:n6 · · ·6Un:n from �0 are related
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through

(X1:n; X2:n; : : : ; Xn:n)
d=(g(U1:n); g(U2:n); : : : ; g(Un:n)); (2.2)

where g:�0 → � is given by g(k) = xk ; k = 1; 2; : : : ; N .

Proof. The result is obvious since g is non-decreasing and

(X1; X2; : : : ; Xn)
d=(g(U1); g(U2); : : : ; g(Un)):

Using this lemma, we can easily establish the following:

Theorem 2.1. Consider a without replacement sample X1; X2; : : : ; Xn (n6N ) from �
as above; and let X1:n6X2:n6 · · ·6Xn:n be the corresponding ordered sample. Set

SN (n) =
N∑
k=n

(
k − 1
n− 1

)2/(
N
n

)2
:

If the population has mean 
 and variance �2 then

E[Xn:n]6 
 + �
√
NSN (n)− 1 (2.3)

and the equality holds only for the population � = {x16 x26 · · ·6 xN} with

xk =




 − �(NSN (n)− 1)−1=2; k6 n− 1;


 + �
(
N
(
k − 1
n− 1

)/(
N
n

)
− 1

)
(NSN (n)− 1)−1=2; k¿ n:

(2.4)

Before providing a proof of Theorem 2.1, let us see two particular examples.

Example 2.1. Take n= 2. Then Theorem 2.1 yields

E[X2:2]6 
 +
�√
3

√
N + 1
N − 1

; (2.5)

with equality iM (if and only if)

xk = 
 +

√
3(N − 1)
N + 1

(
2(k − 1)
N − 1

− 1
)
�; k = 1; 2; : : : ; N:

Observe that for �¿ 0; the 'nite sequence xk ; k = 1; 2; : : : ; N ; presents an arithmetic
progress with mean 
 and variance �2; therefore; this optimal population corresponds
to the discrete uniform r.v. UN with probability mass function P[UN = xk ] = 1=N; k =
1; 2; : : : ; N: Letting N → ∞ we readily see that UN →w U (
− �

√
3; 
+ �

√
3) (where

U (a; b) denotes an r.v. uniformly distributed over the interval (a; b)) and (2.5) leads
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to the classical Hartley–David–Gumbel bound for the i.i.d. case for n = 2; namely
E[X2:2]6 
+ �=

√
3; in which the equality characterizes the U (
− �

√
3; 
+ �

√
3) r.v.

Example 2.2. Take n=N . Then; since XN :N=xN with probability 1; we have E[XN :N ]=
xN . Also; SN (N )=1 and thus; Theorem 2.1 yields the Samuelson–Scott (deterministic)
inequality (see Arnold and Balakrishnan; 1989; pp. 44–46) xN 6 
+ �

√
N − 1; where

the equality holds iM x1 = x2 = · · ·= xN−16 xN .

Proof of Theorem 2.1. If � = 0; the result is obvious (and; obviously; the equality is
always attained in this case since � consists of N identical members equal to 
).
Assuming that �¿ 0 (equivalently; x1¡xN ); it is enough to show the result only
when 
 = 0 and � = 1. Indeed; if the assertion is valid in this particular case; the
general one will follow immediately by the observation that Yn:n = (Xn:n − 
)=� is the
sample maximum from a without replacement simple random sample of size n drawn
from the population �′={y16y26 · · ·6yN}; where yk=(xk−
)=�; k=1; 2; : : : ; N ;
with mean 0 and variance 1. Assume then that 
=0 and �=1. By Lemma 2.1; since

P[Un:n = k] =
(
k − 1
n− 1

)/(
N
n

)
; k¿ n

(see Arnold et al.; 1992; p. 54); we have

E[Xn:n] = E[g(Un:n)] =
N∑
k=n

xk

(
k − 1
n− 1

)/(
N
n

)
=

N∑
k=1

xk(�k − 1=N );

where

�k =
(
k − 1
n− 1

)/(
N
n

)
; k = 1; 2; : : : ; N;

(with the convention ( ab)=0 for a¡b); and we used the fact that
∑N

k=1 xk=0 (because

= 0). Applying the Cauchy–Schwarz inequality and taking into account the fact that∑N

k=1 x
2
k = N (since � = 1); we get

E2[Xn:n]6N
N∑
k=1

(�k − 1=N )2 = NSN (n)− 1

and (2.3) is proved. Equality occurs iM xk=c(�k−1=N ) for some constant c and for all
k; and from the relation x1¡xN we conclude that c¿ 0 and; therefore; the condition
� = 1 implies that

xk =
N�k − 1√
NSN (n)− 1

; k = 1; 2; : : : ; N;

which completes the proof.

The upper bound of Theorem 2.1 for E[Xn:n] can be easily transformed to a lower
bound for E[X1:n]. In fact we have the following:
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Corollary 2.1. Under the conditions of Theorem 2:1;

E[X1:n]¿ 
 − �
√
NSN (n)− 1

and the equality holds only for the population � = {x16 x26 · · ·6 xN} with

xk =




 − �

(
N
(
N − k
n− 1

)/(
N
n

)
− 1

)
(NSN (n)− 1)−1=2; k6N − n+ 1;


 + �(NSN (n)− 1)−1=2; k¿N − n+ 2:

Proof. Consider the population �′= {y16y26 · · ·6yN} with yk =−xN+1−k for all
k. It follows that the mean 
′ and the standard deviation �′ of �′ are simply 
′ =−

and �′ = �. Therefore; if Yn:n is the sample maximum from a simple random sample

of size n drawn from �′; then Yn:n
d= − X1:n; and the desired result is an immediate

consequence of Theorem 2.1 applied to �′.

In order to show a similar result for the sample range Rn = Xn:n − X1:n, we need the
following combinatorial lemma.

Lemma 2.2. For positive integers j6 r6N;

N−r+j∑
k=j

(
k − 1
j − 1

)(
N − k
r − j

)
=
(
N
r

)

and; in particular; if 2n− 16N then

N+1−n∑
k=n

(
k − 1
n− 1

)(
N − k
n− 1

)
=
(

N
2n− 1

)
:

Proof. Let � = {1; 2; : : : ; N} and consider the set A of subsets of � that include r
elements. Also; consider the set Ak ⊂ A of subsets of � that include the integer k; j−1
elements less than k and r − j elements greater than k; for k = j; j + 1; : : : ; j + N − r.
Then; {Aj;Aj+1; : : : ;Aj+N−r} is a partition of A. Therefore; |A|=∑N−r+j

k=j |Ak |; and
since

|A|=
(
N
r

)
and |Ak |=

(
k − 1
j − 1

)(
N − k
r − j

)
;

the required expression is deduced. Setting r=2n− 1 and j= n to the 'rst expression
we conclude the second one.

We can now prove the following result for the sample range.
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Theorem 2.2. Under the assumptions of Theorem 2:1;

E[Rn]6 �
√
2N

(
SN (n)−

(
N

2n− 1

)/(
N
n

)2)1=2

; (2.6)

where ( ab) should be treated as 0 whenever a¡b. The equality in (2.6) holds only
for the population � = {x16 x26 · · ·6 xN} with

xk = 
 + �

√
N
[(

k − 1
n− 1

)
−
(
N − k
n− 1

)]

√
2
(
N
n

)(
SN (n)−

(
N

2n− 1

)/(
N
n

)2)1=2 ; k = 1; 2; : : : ; N:

Proof. For � = 0 the result is trivial. If �¿ 0; we may assume that 
 = 0 and � = 1
without any loss of generality. Then; by Lemma 2.1;

E[Rn] = E[g(Un:n)]− E[g(U1:n)] =
(
N
n

)−1 N∑
k=1

�kxk ;

where

�k =
(
k − 1
n− 1

)
−
(
N − k
n− 1

)
; k = 1; 2; : : : ; N

(with the convention ( ab) = 0 for a¡b). Therefore; taking into account the fact that∑N
k=1 x

2
k = N (because 
 = 0 and � = 1); we get

E2[Rn] =
(
N
n

)−2
(

N∑
k=1

�kxk

)2

6N
(
N
n

)−2 N∑
k=1

�2k

by the Cauchy–Schwarz inequality. A simple calculation; using Lemma 2.2; shows that

N∑
k=1

�2k = 2
(
N
n

)2
SN (n)− 2

(
N

2n− 1

)
;

this proves (2.6). Equality holds iM xk=c�k for some constant c and for all k. Since �k
is non-decreasing in k;

∑N
k=1 �k=0 and �1¡ 0¡�N ; it follows that the only population

(with mean 0 and variance 1) that attains the equality in (2.6) is given by

xk = �k
√
N


 N∑

j=1

�2j




−1=2

; k = 1; 2; : : : ; N;

and the proof is completed.

Three particular cases are discussed in the following examples.
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Example 2.3. For n= 2 and N¿ 3 Theorem 2.1 yields

E[R2]6
2�√
3

√
N + 1
N − 1

→ 2�√
3

as N → ∞: (2.7)

Also; for n= 3 and N¿ 5 we get the inequality

E[R3]6 �
√
3

√
N + 1
N − 1

→ �
√
3 as N → ∞: (2.8)

Equality in both bounds is attained iM the 'nite sequence xk ; k = 1; 2; : : : ; N ; presents
an arithmetic progress with mean 
 and variance �2 as in Example 2.1; therefore; the
optimal population corresponds to the discrete uniform r.v. UN which; for large N;
approximates U (
 − �

√
3; 
 + �

√
3). Both (2.7) and (2.8) are the 'nite analogues of

the classical (Plackett; 1947; Moriguti; 1951) bounds for the expectation of the sample
range (for n= 2 and 3) in the i.i.d. case.

Example 2.4. Take n= N . Then; since RN = xN − x1 with probability 1 and 2n− 1 =
2N − 1¿N for N¿ 2; Theorem 2.2 reduces to the old (deterministic) Nair–Thomson
inequality (see Arnold and Balakrishnan; 1989; p. 48)

xN − x16 �
√
2N: (2.9)

Since �N =1=−�1 and �k=0 for all other k; equality is attained in (2.9) iM x16 x2 =
· · ·= xN−16 xN and xN − xN−1 = x2 − x1.

3. Expectation bounds for a single order statistic: Moriguti’s method

Consider again a simple random sample of size n drawn from a 'nite population
�= {x16 x26 · · ·6 xN} with mean 
 and variance �2. Suppose that 36 n6N and
'x an integer i with 26 i6 n− 1. From Lemma 2.1 we have

E[Xi:n] = E[g(Ui:n)] =
(
N
n

)−1 N∑
k=1

(
k − 1
i − 1

)(
N − k
n− i

)
xk =

N∑
k=1

pkxk : (3.1)

Therefore, assuming that 
 = 0 and � = 1 and proceeding exactly as in Theorem 2.1,
one can easily establish the inequality

E2[Xi:n]6NSN (n; i)− 1; (3.2)

where

SN (n; i) =
N−n+i∑
k=i

(
k − 1
i − 1

)2(
N − k
n− i

)2/(
N
n

)2

(note that SN (n; n)=SN (n; 1)=SN (n), where SN (n) is de'ned in Theorem 2.1). However,
for 1¡i¡n, there does not exist 'nite populations with mean 0 and variance 1
attaining the equality in (3.2); this is so because the 'nite sequence pk , k=1; 2; : : : ; N ,
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in (3.1), fails to be monotonic and, thus, the Cauchy–Schwarz inequality in (3.2) yields
a greater upper bound than it is really needed. Based on convexity arguments, Moriguti
(1953) proved an ingenious ‘Cauchy–Schwarz inequality for increasing functions’, in
order to determine a sharp upper bound for E[Xi:n] in the i.i.d. case. The purpose of
the present section is in 'nding the corresponding sharp bounds for the case of a 'nite
population. The following lemma will be used in the sequel.

Lemma 3.1. Let

pk =
(
N
n

)−1(
k − 1
i − 1

)(
N − k
n− i

)
; k = 1; 2; : : : ; N

be as in (3:1) and set Pk =
∑k

j=1 pj for k = 1; 2; : : : ; N (thus; P1 = 0; PN = 1). Then;
(i) There exists a unique integer k0 (depending on i; n and N) such that

(N − k0)pk0 6 1− Pk0 ¡ (N − k0)pk0+1: (3.3)

Moreover, i − 16 k0¡ (i − 1)N=(n− 1).
(ii) Let

�k =



pk; k = 1; 2; : : : ; k0;

1− Pk0
N − k0

; k = k0 + 1; : : : ; N;

and set  k =
∑k

j=1 �j for k = 1; 2; : : : ; N (thus,  1 = 0). Then,
(a) 06 �16 �26 · · ·6 �N ,
(b)  N = 1,
(c)  k6Pk for all k, and
(d)

∑N
k=1 pk�k =

∑N
k=1 �

2
k .

We omit the proof of Lemma 3.1, because the assertion of existence and uniqueness
of real numbers �1; �2; : : : ; �N satisfying (a), (b), (c) and (d) of the lemma is a standard
fact in functional analysis; in fact, the vector (�1; �2; : : : ; �N ) is the l2-projection of the
vector (p1; p2; : : : ; pN ) onto the convex cone of componentwise non-decreasing vectors
of RN (see Balakrishnan, 1981, Section 1:4). The other details of (i) and (ii) of Lemma
3.1 can be veri'ed directly.

Remark 3.1. The unique integer k0 of Lemma 3.1 plays exactly the same role as "1;
the unique solution of the equation 1− G(x) = (1− x)g(x); 0¡x¡ 1; where

g(x) =
1

B(i; n+ 1− i)
xi−1(1− x)n−i ; G(x) =

∫ x

0
g(t) dt = Ix(i; n+ 1− i)

and (3.3) is the discrete analogue of the above (continuous) equation. This root "1 has
been shown to play a vital role in the determination of sharp bounds for moments of
order statistics; see Moriguti (1953); Balakrishnan (1993) and Papadatos (1997).
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Corollary 3.1. For any set of real numbers x16 x26 · · ·6 xN ;

N∑
k=1

pkxk6
N∑
k=1

�kxk ; (3.4)

where pk; �k ; k = 1; 2; : : : ; N ; are as in Lemma 3:1. A su?cient condition for the
equality to hold in (3:4) is given by

xk0+1 = xk0+2 = · · ·= xN ; (3.5)

where k0 is de@ned in Lemma 3:1.

Proof. Since x16 x26 · · ·6 xN ; we may write xk=y1+· · ·+yk ; k=1; 2; : : : ; N ; where
yj¿ 0 for j¿ 2. Then; by Lemma 3.1;

N∑
k=1

pkxk =
N∑
k=1

pk


 k∑

j=1

yj


=

N∑
j=1

yj


 N∑

k=j

pk


= y1 +

N∑
j=2

yj(1− Pj−1)

6 y1 +
N∑
j=2

yj(1−  j−1) =
N∑
j=1

yj


 N∑

k=j

�k




=
N∑
k=1

�k


 k∑

j=1

yj


=

N∑
k=1

�kxk ;

which proves (3.4). Since (3.5) implies that yk0+2 = · · ·= yN = 0; we have

y1 +
N∑
j=2

yj(1− Pj−1) = y1 +
k0+1∑
j=2

yj(1− Pj−1)

= y1 +
k0+1∑
j=2

yj(1−  j−1) = y1 +
N∑
j=2

yj(1−  j−1)

(because Pk =  k for k6 k0); which shows that the equality holds in (3.4).

We can now prove the main result of this section, stated in the following:

Theorem 3.1. Under the conditions of Theorem 2:1; for any @xed i; 26 i6 n − 1;
we have the inequality

E[Xi:n]6 
 + �

√√√√N
N∑
k=1

�2k − 1;
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with equality iA

xk = 
 + �
N�k − 1√

N
∑N

j=1 �
2
j − 1

; k = 1; 2; : : : ; N;

where �k is given by Lemma 3:1.

Proof. Without any loss of generality; assume that 
 = 0 and � = 1. Then; since∑N
k=1 xk = 0; it follows from Corollary 3:1 that

E[Xi:n] =
N∑
k=1

pkxk6
N∑
k=1

�kxk =
N∑
k=1

(�k − 1=N )xk :

By using the relation
∑N

k=1 x
2
k = N; an application of the Cauchy–Schwarz inequality

to the last sum yields
∑N

k=1 (�k − 1=N )xk6
√
N
∑N

k=1 (�k − 1=N )2; and the desired

inequality follows from the fact that
∑N

k=1 (�k − 1=N )2 =
∑N

k=1 �
2
k − 1=N . The last

inequality becomes equality iM there exists a constant c such that xk = c(�k − 1=N )
for all k. Therefore; since 
 = 0; � = 1; and the 'nite sequence xk ; k = 1; 2; : : : ; N ; is
non-decreasing with x1¡xN ; it follows that the last inequality becomes equality iM

xk =
N�k − 1√

N
∑N

j=1 �
2
j − 1

; k = 1; 2; : : : ; N:

On the other hand; since �k0+1 = · · · = �N ; we conclude that the xk above satisfy
xk0+1 = · · · = xN ; and by Corollary 3.1; the 'rst inequality also becomes equality.
Therefore; this is the unique population attaining equality in the upper bound (when

 = 0 and � = 1); and the proof is complete.

Regarding the lower bounds, one can easily show the following result.

Corollary 3.2. Under the conditions of Theorem 2:1; for any @xed i; 26 i6 n − 1;
we have the inequality

E[Xn+1−i:n]¿ 
 − �

√√√√N
N∑
k=1

�2k − 1;

with equality iA

xk = 
 − �
N�N+1−k − 1√
N
∑N

j=1 �
2
j − 1

; k = 1; 2; : : : ; N;

where �k is given by Lemma 3:1.

We omit the simple proof; this can be done by using exactly the same argu-
ments as in the proof of Corollary 2.1. We only consider some numerical
examples.
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Example 3.1. Let i = 2 and n = 3. Then; if N ∈{3; 4; 5; 6}; we have that k0 = 1; and
Theorem 3.1 yields the inequality E[X2:3]6 
+ �=

√
N − 1; with equality iM x16 x2 =

· · ·=xN . For N=7; however; Theorem 3.1 leads to the inequality E[X2:3]6 
+�
√
6=35;

with equality iM � = {
 − �
√
35=6; 
; 
 + �

√
7=30; : : : ; 
 + �

√
7=30}.

Example 3.2. Take n = N and 1¡i¡N . Then; Xi:N = xi with probability 1. Since
pk �=0 only when k= i; it follows that k0 = i− 1 is the unique integer satisfying (3.3);
thus �k = 0 for k ¡ i; and �k = (N − i + 1)−1 for k¿ i; yielding

N
N∑
k=1

�2k − 1 =
i − 1

N − i + 1
:

Applying Theorem 3.1 and Corollary 3.2; we get the bounds


 − �

√
N − i
i

6 xi6 
 + �

√
i − 1

N − i + 1
:

Furthermore; equality occurs in the lower bound iM x1 = · · · = xi6 xi+1 = · · · = xN ;
and in the upper bound iM x1 = · · · = xi−16 xi = · · · = xN . This inequality has been
shown by several authors using diMerent methods; see Arnold and Balakrishnan (1989;
p. 48; Theorem 3:8); Scott (1936); Mallows and Richter (1969); Hawkins (1971); Boyd
(1971); Arnold and Groeneveld (1979); and Wolkowicz and Styan (1979).

4. Covariance bounds and related results

In the two previous sections, the best possible upper and lower bounds for the expec-
tations of the order statistics Xi:n, 16 i6 n, from a 'nite population, were obtained in
terms of the population mean and variance; the only exceptions being the lower bound
for the sample maximum (similarly, the upper bound for the sample minimum) and
the lower bound for the sample range. In this section, we solve the exceptional cases,
expanding the relation between these bounds and the corresponding covariance bound
for n= 2. First of all, we state two lemmas.

Lemma 4.1. In any @nite population � of size N¿ 2 with mean 
 and variance �2;

Cov[X1:2; X2:2] = (E[X2:2]− 
)2 − �2=(N − 1); (4.1)

where X1:26X2:2 is an ordered sample of size 2 drawn from � without replacement.

Proof. If �= 0 the result is obvious; otherwise we may assume that 
= 0 and �= 1.
Then; from Lemma 2.1 and the fact that g(U1)g(U2) = g(U1:2)g(U2:2) with probability
1; it follows that

E[X1:2X2:2] = E[g(U1:2)g(U2:2)] = E[g(U1)g(U2)]
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=
1

N (N − 1)

N∑
k=1

xk


∑

s �=k
xs


=

1
N (N − 1)

N∑
k=1

xk

(
−xk +

N∑
s=1

xs

)

=− 1
N − 1

:

On the other hand; since E[X2:2] =−E[X1:2]; we have

Cov[X1:2; X2:2] =− 1
N − 1

− (−E[X2:2])E[X2:2] = E2[X2:2]− 1
N − 1

;

which is (4.1).

Lemma 4.2. The sample maxima from a @nite population of size N¿ 2 are stochas-
tically ordered according to their sample size; that is;

P[Xn:n6 x]¿P[Xn+1:n+16 x]; −∞¡x¡∞;

for any n= 1; 2; : : : ; N − 1.

Proof. By Lemma 2.1; Xn:n
d=g(Un:n); and since g is non-decreasing; it suOces to prove

the lemma for the population �0. However; in this case; the result is evident because

P[Un:n6 x] =
(
min{[x]; N}

n

)/(
N
n

)
; 06 x¡∞:

In particular, it follows from Lemma 4.2 that


 = E[X1:1]6 E[X2:2]6 · · ·6 E[XN :N ] = xN : (4.2)

Using the above lemmas and a result of Takahasi and Futatsuya (1998), one can
easily obtain the following:

Theorem 4.1. Let Xn:n (resp. X1:n) be the sample maximum (resp. minimum) from a
random sample of size n¿ 2 drawn without replacement from a @nite population �
of size N¿ n with mean 
 and variance �2. Then;

E[Xn:n]¿ 
 + �=
√
N − 1 (4.3)

and similarly;

E[X1:n]6 
 − �=
√
N − 1: (4.4)

Equality in (4:3) holds iA any one of the following conditions is satis@ed: either (a)
� = {x16 x2 = · · · = xN}; or (b) n = 2 and � = {x1 = · · · = xN−1¡xN}. Similarly;
the equality in (4:4) occurs iA any one of the following conditions holds: either (a′)
� = {x1 = · · ·= xN−16 xN}; or (b′) n= 2 and � = {x1¡x2 = · · ·= xN}.

Proof. From (4.2); E[Xn:n]¿ E[X2:2]¿ 
: On the other hand; Takahasi and Futatsuya
(1998) showed that Cov[X1:2; X2:2]¿ 0; with equality iM either �={x16 x2= · · ·=xN}
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or � = {x1 = · · ·= xN−1¡xN}. Therefore; from (4.1) and (4.2) we have

E[Xn:n]¿ E[X2:2] = 
 +
√

Cov[X1:2; X2:2] + �2=(N − 1)¿ 
 + �=
√
N − 1;

which is (4.3). For n= 2; equality holds in (4.3) iM Cov[X1:2; X2:2] = 0; that is; iM (a)
or (b) holds. For n¿ 3; however; the equality is attained iM Cov[X1:2; X2:2] = 0 and
E[Xn:n] = E[X2:2]; therefore; the populations of the form � = {x1 = · · · = xN−1¡xN}
do not yield equality in (4.3) (since E[Xn:n]¿ E[X3:3]; and it is easy to check that
E[X3:3]¿ E[X2:2] in this case); and thus; the only case of equality; when n¿ 3; is
given by (a). The case for E[X1:n] can be treated similarly.

For n=N , Theorem 4.1 yields the Hawkins (deterministic) bounds (see Arnold and
Balakrishnan, 1989, p. 49; Hawkins, 1971; Boyd, 1971), namely

xN ¿ 
 + �=
√
N − 1; x16 
 − �=

√
N − 1;

where the equality holds in the former (latter) bound iM the N − 1 greatest (lowest)
elements of � are equal.

Corollary 4.1. Under the notation of Lemma 4:1; for the sample range R2=X2:2−X1:2

we have the inequality E[R2]¿ 2�=
√
N − 1; with equality iA either � = {x16 x2 =

· · ·= xN} or � = {x1 = · · ·= xN−1¡xN}.

Proof. It is evident because E[R2] = 2(E[X2:2]− 
).

Finally, for the covariance of an ordered sample of size 2, we have the following:

Corollary 4.2. Under the notation of Corollary 4:1;

Cov[X1:2; X2:2]6
N − 2
N − 1

(
1
3
�2
)
; (4.5)

with equality iA � is as in Example 2:1.

Proof. It is evident from Lemma 4:1 and Theorem 2:1.

The bound (4.5) is the discrete analogue of the result given by Papathanasiou (1990)
for the i.i.d. case, namely Cov[X1:2; X2:2]6 �2=3; where the equality characterizes the
U (
 − �

√
3; 
 + �

√
3) r.v. Note that the bound (4.5) approximates Papathanasiou’s

bound for large N (and the optimal population approximates the corresponding uniform
r.v.). In fact, Balakrishnan and Balasubramanian (1993) have shown that Papathana-
siou’s bound and the associated uniform characterization are equivalent to those based
on Hartley–David–Gumbel bound (see Section 2).
It should be noted that we have not been able to 'nd a general sharp lower bound

for E[Rn], and the sharp (upper and lower) bounds for Cov[X1:n; Xn:n], when n¿ 3. It
seems, however, that the techniques needed for derivation of this kind of bounds are
completely diMerent than those used here (see, for example, Papadatos, 1999, for the



N. Balakrishnan et al. / Journal of Statistical Planning and Inference 113 (2003) 569–588 583

upper bound of Cov[X1:3; X3:3] in the i.i.d. case, where it is proved that the maximum
is attained by the hyperbolic sine density); note also that the best lower bound for
E[RN ] = xN − x1, when N¿ 2, is given by (see Arnold and Balakrishnan, 1989, p. 50;
Fahmy and Proschan, 1981; Thomson, 1955)

xN − x1¿




2� if N is even;

2N√
N 2 − 1

� if N is odd;

where the equality is attained iM there exist some constants a, b, such that N=2 elements
of � are equal to a, and the remaining N=2 elements are equal to b, when N is even,
or (N − 1)=2 elements are equal to a, and the remaining (N +1)=2 elements are equal
to b, when N is odd).

5. Limiting behavior of the bounds for large populations

In this section, we shall show that the results discussed in Section 2 approximate
the well known classical ones for the i.i.d. case, as N → ∞. For this reason, we will
make use of the following lemma.

Lemma 5.1. Let SN (n) be as in Theorems 2:1 and 2:2. Then;

lim
N→∞

NSN (n) =
n2

2n− 1
: (5.1)

Proof. We have

NSN (n) = N
N∑
k=n

(
[(k − 1)!]2

[(n− 1)!]2 [(k − n)!]2

)(
(n!)2 [(N − n)!]2

(N !)2

)

=
1
N

N∑
k=n

n2
{

(k − 1)(k − 2) · · · (k − n+ 1)
(N − 1)(N − 2) · · · (N − n+ 1)

}2

→
∫ 1

0
n2(un−1)2 du (as N → ∞);

by the Riemann integral; which completes the proof.

We can now prove the main result of this section, stated in the following:

Theorem 5.1. For @xed n; the upper bound of Theorem 2:1 approximates the Hartley–
David–Gumbel bound for the i.i.d. case; as N → ∞; that is

lim
N→∞

(
 + �
√
NSN (n)− 1) = 
 +

n− 1√
2n− 1

�: (5.2)
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Moreover; if XN is the r.v. corresponding to the optimal population � given by (2:4)
and �¿ 0; then

XN →w X as N → ∞;

where X is the r.v. with d.f.

FX (x) =
(
1
n
+

(n− 1)(x − 
)
�n

√
2n− 1

)1=(n−1)

; 
 − �

√
2n− 1
n− 1

6 x6 
 + �
√
2n− 1:

Proof. From (5.1); it follows immediately that limN→∞ (NSN (n) − 1)1=2 = (n − 1)
× (2n− 1)−1=2; which proves (5.2). Fix now a number u∈ (0; 1); and de'ne F−1

N (u)=
inf{x: P[XN 6 x]¿ u}; and

F−1
X (u) = inf{x: FX (x)¿ u}= 
 + �

√
2n− 1(nun−1 − 1)=(n− 1)

(note that; by de'nition; the maximizing population � = �N varies with N; in such
a way that both E[XN ] = 
 and Var[XN ] = �2 remain constant for all N¿ n). For
N ¿max{n=u; 2=(1− u)}; let kN (u) be the unique integer in {n; : : : ; N − 2} satisfying
kN (u)=N ¡u6 (kN (u) + 1)=N . Since kN (u)¿ n; it follows from (2.4) that

F−1
N (u) = F−1

N ((kN (u) + 1)=N )

= 
 + �
(
N
(
kN (u)
n− 1

)/(
N
n

)
− 1

)
(NSN (n)− 1)−1=2:

Obviously; limN→∞ (kN (u)−j)=N=u; for any 'xed j (because [Nu]−16 kN (u)6 [Nu]+
1); and therefore;

N
(
kN (u)
n− 1

)/(
N
n

)
= n

(kN (u)=N (kN (u)=N − 1=N )) · · · (kN (u)=N − (n− 2)=N )
(1− 1=N )(1− 2=N ) · · · (1− (n− 1)=N )

→ nun−1

as N → ∞. Thus; limN→∞ F−1
N (u)=F−1

X (u) for all u∈ (0; 1); and the proof is complete.

Using exactly the same arguments, one can easily establish a similar result for the
sample range. We give without proof the following:

Theorem 5.2. For @xed n¿ 2; the upper bound of Theorem 2:2 approximates the
Plackett–Moriguti bound for the i.i.d. case; as N → ∞; that is

lim
N→∞

�
√
2N

(
SN (n)−

(
N

2n− 1

)/(
N
n

)2)1=2

=
n
√
2√

2n− 1

(
1−

(
2n− 2
n− 1

)−1
)1=2

�:

Moreover; if XN is the r.v. corresponding to the optimal population � given by
Theorem 2:2 and �¿ 0; then XN →w X ; as N → ∞; where X is the r.v. with inverse
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d.f. given by F−1
X (u) = 
 + an�(un−1 − (1− u)n−1); 0¡u¡ 1; with

an =

√
2n− 1√

2

(
1−

(
2n− 2
n− 1

)−1
)−1=2

:

It should be noted that similar results could also be valid for the case of a single order
statistic Xi:n, 1¡i¡n, and the upper bound of Theorem 3.1, for large N , presumably
approximates the corresponding Moriguti’s bound; we do not treat this case, however,
because these bounds are not available in a closed form.

6. Concluding remarks

Since in most real applications, the applied statistician usually considers 'nite popu-
lations, the results of this paper can be viewed as ‘direct’, in contrast to the i.i.d. case
where the bounds are, from this point of view, ‘limiting cases’. It has been shown
in Section 5 that, almost all bounds discussed in this article, approximate (when the
population is large) the limiting ones. This fact is fairly expected, however, in view of
the following lemma, which may be of some independent interest. (We note that the
assertion of this lemma is probably known; since, however, we have not been able to
trace a proof, we provide one for the completeness of the presentation.)

Lemma 6.1. Let X1; X2; : : : ; Xn be an i.i.d. sample from a d.f. F with mean 
 and
@nite variance �2. Then; there exist a sequence of @nite populations �N of size N
with mean 
 and variance �2 such that

(X1;N ; X2;N ; : : : ; Xn;N ) →w (X1; X2; : : : ; Xn); as N → ∞;

where X1;N ; X2;N ; : : : ; Xn;N is a sample taken without replacement from �N .

Proof. Since the case �2 = 0 is trivial; assume that �2¿ 0. Let U1; U2; : : : ; Un be an
i.i.d. sample from U (0; 1) and denote by U1;N ; U2;N ; : : : ; Un;N the without replacement
sample from �N

0 = {1=(N + 1); 2=(N + 1); : : : ; N=(N + 1)}; with N¿ n. Let h :R→ R
be a continuous bounded function and consider n real constants c1; c2; : : : ; cn. It follows
that

E


h

 n∑

j=1

cjUj;N




 =

1
(N )n

∑
(k1 ; k2 ;:::; kn)

h


 n∑

j=1

cjkj=(N + 1)




→
∫ 1

0

∫ 1

0
· · ·
∫ 1

0
h


 n∑

j=1

cjuj


 dun dun−1 · · · du1

(as N → ∞)

= E


h

 n∑

j=1

cjUj




 ;
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where the sum extends over the (N )n n-permutations (k1; k2; : : : ; kn) of {1; 2; : : : ; N} and
the limit is easily veri'ed by the Riemann integral. This implies that

∑n
j=1 cjUj;N →w∑n

j=1 cjUj; which in turn yields

(U1;N ; U2;N ; : : : ; Un;N ) →w (U1; U2; : : : ; Un) (6.1)

by the CramKer–Wold device. For u∈ (0; 1); let F−1(u) = inf{x: F(x)¿ u} be the
left-continuous inverse of F . Since F−1(Uj) is distributed like Xj; it follows that F−1

belongs to L2(0; 1) and the Lebesgue integrals are


 =
∫ 1

0
F−1(u) du and 
2 + �2 =

∫ 1

0
(F−1(u))2 du:

On the other hand; both F−1 and (F−1)2 are almost everywhere continuous in (0; 1);
and therefore; Riemann integrable; thus; as N → ∞;


N :=E[F−1(Uj;N )] =
1
N

N∑
k=1

F−1(k=(N + 1)) → 
; and

�2N + 
2N :=E[(F−1(Uj;N ))2] =
1
N

N∑
k=1

(F−1(k=(N + 1))2 → 
2 + �2:

By Skorohod’s Theorem in Rn (see; for example; Billingsley; 1986; Theorem 29:6) and
(6.1) it follows that

(X1;N ; X2;N ; : : : ; Xn;N ) →w (F−1(U1); F−1(U2); : : : ; F−1(Un))
d=(X1; X2; : : : ; Xn);

where Xj;N :=(�=�N )F−1(Uj;N )+(�=�N )(
−
N )+
(1−�=�N ); j=1; 2; : : : ; n. Obviously;
E[Xj;N ] = 
 and Var[Xj;N ] = �2. Moreover; it is easily veri'ed that the random vector
(Xj;N ; j=1; 2; : : : ; n) has the same distribution as a without replacement sample of size
n from �N = {
+ �(F−1(k=(N +1))− 
N )=�N ; k =1; 2; : : : ; N}; completing the proof.

From another point of view, Arnold and Groeneveld (1979) obtained expectation
bounds for the order statistics in the completely general case, where the n-variate
d.f. of the random vector (X1; X2; : : : ; Xn), is allowed to be completely arbitrary. They
proved, for example, that, under the assumptions E[Xj] = 
 and Var[Xj] = �2 for all
j∈{1; 2; : : : ; n},∣∣∣∣∣∣

n∑
j=1

,j
(
E[Xj:n]− 


)∣∣∣∣∣∣6 �
√
n


 n∑

j=1

(
,j − ,

)2
1=2

;

where ,1; ,2; : : : ; ,n are arbitrary scalars and , = n−1∑n
j=1 ,j. In particular, using the

obvious inequalities (X1:n+ · · ·+Xi:n)=i6Xi:n6 (Xi:n+ · · ·+Xn:n)=(n− i+1) it follows
that (compare with Example 3.2)


 − �

√
n− i
i
6 E[Xi:n]6 
 + �

√
i − 1

n− i + 1
; 16 i6 n:
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Because of its generality, Arnold and Groeneveld’s bound has many important ap-
plications in robustness (for example, the application to Downton–Gini estimator of the
normal standard deviation, given by the above authors). Despite its generality, however,
this result is derived by taking expectations to a corresponding deterministic inequal-
ity (as in Example 3.2), and therefore, the case of equality corresponds to a trivial
(exhaustive) sample from a 'nite population. For the bounds discussed here, however,
this is not true in general; the optimal random samples (that attain the equalities in the
bounds) correspond to order statistics with non-zero variances, except in some very
particular cases (for example, when n= N ).
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