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Abstract

Let X1; X2; : : : ; Xn be a sample of arbitrary, possibly dependent, random variables, with possibly
di�erent marginal distributions, and denote by X1:n6X2:n6 · · ·6Xn:n the corresponding order
statistics. Using the notation �i = EXi and �2i = Var Xi, i = 1; 2; : : : ; n (assumed �nite), it is
proved that for any real constants �1; �2; : : : ; �n,

n∑
i=1

�i(EXi:n − ��)6

(
n∑
i=1

(ci − ��)2
)1=2( n∑

i=1

{(�i − ��)2 + �2i } − nVar �X
)1=2

;

where ��=n−1
∑n

i=1 �i,
��=n−1

∑n
i=1 �i, �X =n

−1∑n
i=1 Xi and (c1; c2; : : : ; cn)

′ is the l2-projection
of the vector (�1; �2; : : : ; �n)′ onto the convex cone of componentwise nondecreasing vectors in
Rn (in particular, ci= �i for all i if and only if �i is nondecreasing in i). A similar lower bound
is also given. The bound is sharp when the X ’s are exchangeable; moreover, it provides an
improvement over the known bounds given by (Arnold and Groeneveld, 1979 Ann. Statist. 7,
220–223, Aven, 1985 J. Appl. Probab. 22, 723–728 and Lef�evre, 1986 Stochastic Anal. Appl.
4, 351–356). c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let X1; X2; : : : ; Xn be an arbitrary set of random variables (possibly dependent and
with possibly di�erent marginals), with means �i=EXi and �nite variances �2i =Var Xi,
i=1; 2; : : : ; n, and denote their order statistics by X1:n6X2:n6 · · ·6Xn:n. A pioneer result
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of Arnold and Groeneveld (1979) states that for any real constants �1; �2; : : : ; �n,∣∣∣∣ n∑
i=1
�i(EXi:n − ��)

∣∣∣∣6
(

n∑
i=1
(�i − ��)2

)1=2( n∑
i=1

{(�i − ��)2 + �2i }
)1=2

; (1.1)

where �� = n−1
∑n

i=1 �i and ��= n
−1∑n

i=1 �i.
If the covariances �ij =Cov[Xi; Xj], i; j=1; 2; : : : ; n, of the initial sample are known,

some improvements of (1.1) were shown by Aven (1985) (who considers bounds on
expectations of the extreme observations) and Lef�evre (1986) (who treats the general
case), namely,∣∣∣∣ n∑

i=1
�i(EXi:n − ��)

∣∣∣∣6
(

n∑
i=1
(�i − ��)2

)1=2(
min
16j6n

S2j +
n∑
i=1
(�i − ��)2

)1=2
; (1.2)

where S2j =
∑n

i=1 Var[Xi−Xj], j=1; 2; : : : ; n. However, as pointed out by Lef�evre, (1.2)
is not always sharper than (1.1), e.g., for exchangeable X ’s with �j = �, �2j = �

2 and
�ij = c, (1.2) improves (1.1) if and only if 2(n− 1)c¿(n− 2)�2.
Several applications of the above results are given by these authors: Arnold and

Groeneveld derived sharp bounds for the expectations of the ith-order statistic, of the
trimmed mean, of the di�erence of two order statistics and of Downton’s (1966) unbi-
ased estimator of the normal standard deviation; Lef�evre obtained simple explicit upper
bounds for the mean completion time in Pert networks.
Moreover, Nagaraja (1981) and Arnold and Balakrishnan (1989, Theorem 3:18) pre-

sented a method for obtaining (1.1) by using deterministic bounds involving n real
numbers x1:n6x2:n6 · · ·6xn:n. More speci�cally, Nagaraja derived an improved ver-
sions of (1.1) by using a technique consisting of the following two steps: He �rst
considered the quantities �X = n−1

∑n
i=1 Xi, the sample mean, and S = (S

2)1=2, where
S2 =

∑n
i=1 [Xi − �X ]2, a scalar multiple of the sample standard deviation, showing that

E2 S6E S26
∑n

i=1{(�i − ��)2 + �2i }: (1.3)

He then applied expectations in the deterministic inequality∣∣∣∣ n∑
i=1
�i(Xi:n − �X )

∣∣∣∣6
(

n∑
i=1
(�i − ��)2

)1=2
S; (1.4)

yielding∣∣∣∣ n∑
i=1
�i(E[Xi:n]− ��)

∣∣∣∣6
(

n∑
i=1
(�i − ��)2

)1=2
E S: (1.5)

More recently, Rychlik (1993a,b, 1994, 1995) obtained the sharp expectation bounds
for Linear Estimators, particularly applicable in the case where the X ’s are identi-
cally distributed (possibly dependent); in particular, he considered the l2–projection,
(c1; c2; : : : ; cn)′, of the vector (�1; �2; : : : ; �n)′, onto the convex cone of nondecreasing
functions x : {1; 2; : : : ; n} → R, yielding the correct sharp version of (1.1) in terms of
the coe�cients ci rather than �i. This projection method was extended by Gajek and
Rychlik (1996, 1998), in order to determine sharper expectation bounds when the X ’s
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arise from restricted families of distributions (for a comprehensive review of all the
above results (and more) see Rychlik (1998)).
In the present note we derive two improved versions of (1.1) in terms of the means,

variances and covariances of the X ’s (Theorems 2.1 and 2.2). Some applications of the
bounds are discussed in Section 3. It turns out that (2.8) and (2.9) improve (2.2), and
that (2.2) is strictly better than both (1.1) and (1.2). It should be noted, however, that
the result of Theorem 2.1 is, in fact, implied by Nagaraja’s results (1.5) and (1.3) (see
Remark 2.2, below). Nevertheless, it seems that expression (2.2) is very well hidden
into these results, in such a way that many subsequent papers do not use it, although
it provides better bounds. This fact can be clearly seen in the applications of Section
3 (see also the discussion after Eq. (22) in Nagaraja’s paper).

2. Expectation bounds for Linear Estimators in terms of the �rst two moments

We �rst prove the following Lemma.

Lemma 2.1. Let X= (X1; X2; : : : ; Xn)′; n¿2; be an exchangeable random vector with
EX1=�; Var X1=�2 (assumed �nite) and Cov[X1; X2]=c. Then; for any real constants
�1; �2; : : : ; �n;∣∣∣∣ n∑

i=1
�i(EXi:n − �)

∣∣∣∣6
(

n∑
i=1
(�i − ��)2

)1=2
((n− 1)(�2 − c))1=2; (2.1)

where ��=n−1
∑n

i=1 �i and X1:n6X2:n6 · · ·6Xn:n are the order statistics corresponding
to X. Moreover; bound (2:1) is best possible (for any given values of �; �2 and c);
provided that the �nite sequence �1; �2; : : : ; �n is monotone.

Proof. First note that −�2=(n − 1)6c6�2, so that the upper bound in (2.1) is well
de�ned. Next observe that E �X = �, and thus

n∑
i=1
E2[Xi:n − �] =

n∑
i=1
E2[Xi:n − �X ]

6
n∑
i=1
E[Xi:n − �X ]2

= E
n∑
i=1
[Xi − �X ]2

= (n− 1)(�2 − c):
Inequality (2.1) follows immediately from the above inequality and the following one
(see Arnold and Groeneveld, 1979)∣∣∣∣ n∑

i=1
�i(EXi:n − �)

∣∣∣∣ =
∣∣∣∣ n∑
i=1
(�i − ��)(EXi:n − �)

∣∣∣∣
6
(

n∑
i=1
(�i − ��)2

)1=2( n∑
i=1
E2[Xi:n − �]

)1=2
:
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We next study the case of equality. If the �’s are all equal, (2.1) takes the trivial form
0 = 0. If the �’s form a nondecreasing sequence with �1¡�n, then we consider an
arbitrary random variable Z with EZ = � and Var Z = (�2 + (n − 1)c)=n, and we set
Yj = Z + A(�j − ��), j = 1; 2; : : : ; n, where

A=

(
(n− 1)(�2 − c)∑n

i=1(�i − ��)2

)1=2
:

Then, it is easy to check that the random vector

(X1; X2; : : : ; Xn)′ = (Y�(1); Y�(2); : : : ; Y�(n))′;

where the vector (�(1); �(2); : : : ; �(n))′ is stochastically independent of Z and uniformly
distributed over the n! permutations of {1; 2; : : : ; n}, satis�es all the conditions of the
lemma and, moreover, attains the equality in (2.1). This shows that (2.1) is optimal.
The case where the �’s form a nonincreasing sequence can be treated similarly.

The general case for an arbitrary sample can be derived from this lemma as follows.

Theorem 2.1. For an arbitrary random vector X= (X1; X2; : : : ; Xn)′ with mean vector
(�1; �2; : : : ; �n)′ and variance–covariance matrix (�ij); and for arbitrary real constants
�1; �2; : : : ; �n; we have∣∣∣∣ n∑

i=1
�i(EXi:n − ��)

∣∣∣∣6
(

n∑
i=1
(�i − ��)2

)1=2( n∑
i=1

{(�i − ��)2 + �2i } − nVar �X
)1=2

;

(2.2)

where X1:n6X2:n6 · · ·6Xn:n are the order statistics corresponding to X; �2i = �ii,
i = 1; 2; : : : ; n, �� = n−1

∑n
i=1 �i, ��= n

−1∑n
i=1 �i and �X = n−1

∑n
i=1 Xi.

Proof. If n= 1 the result is obvious; for n¿2, set

(Y1; Y2; : : : ; Yn)′ = (X�(1); X�(2); : : : ; X�(n))′;

where (�(1); �(2); : : : ; �(n))′ is independent of X and distributed as in Lemma 2.1. It
is easy to check that the Y ’s are exchangeable with

EY1 = ��; Var Y1 =
1
n

n∑
i=1

{(�i − ��)2 + �2i };

and

Cov[Y1; Y2] =
1

n(n− 1)

(
2

∑
16i¡j6n

�ij −
n∑
i=1
(�i − ��)2

)

=
n

n− 1Var
�X − 1

n− 1Var Y1:
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Since the ordered sample of the Y ’s coincides with that of the X ’s and

(n− 1)(Var Y1 − Cov[Y1; Y2]) = nVar Y1 − nVar �X

=
n∑
i=1

{(�i − ��)2 + �2i } − nVar �X ;

the desired result follows from (2.1).

Remark 2.1. Clearly, (2.2) is sharper than (1.1), and the two bounds coincide only in
the trivial case where �X is a.s. constant. Moreover, (2.2) is always better than (1.2),
as can be seen from the relation (see (1.2))[

min
16j6n

S2j +
n∑
i=1
(�i − ��)2

]
−
[
n∑
i=1

{(�i − ��)2 + �2i } − nVar �X
]

=n min
16j6n

Var[ �X − Xj];

which shows that bounds (1.2) and (2.2) coincide only in the trivial case where �X −Xj
is a.s. constant for some j ∈ {1; 2; : : : ; n}.

Remark 2.2. Using Nagaraja’s (1981) results, one can give another proof of (2.2) as
follows: Writing S2 =

∑n
i=1 [Xi − �X ]2 as

S2 =
n∑
i=1
[Xi − ��]2 − n[ �X − ��]2

=
n∑
i=1
[Xi − �i]2 +

n∑
i=1
(�i − ��)2 + 2

n∑
i=1
(Xi − �i)(�i − ��)− n[ �X − ��]2;

and taking expectations to the last expression, we have

E S2 =
n∑
i=1

{(�i − ��)2 + �2i } − nVar �X ; (2.3)

which, combined with (1.5) and (1.3), yields (2.2).

The bound (2.1) is attainable only when the �’s form a monotone �nite sequence.
Therefore, in order to obtain the sharp result for all sequences, we need the following
considerations due to Rychlik (see, for example, Rychlik, 1998):
For any real constants �j, j = 1; 2; : : : ; n, de�ne C(x), 06x61, to be the greatest

convex function such that C(0) = 0, and C(j=n)6
∑j

i=1 �i, and set cj = C(j=n) −
C((j−1)=n), j=1; 2; : : : ; n. Similarly, de�ne D(x), 06x61, to be the smallest concave
function satisfying D(0) = 0, and D(j=n)¿

∑j
i=1 �i, and set dj = D(j=n) − D((j −

1)=n); j=1; 2; : : : ; n. By construction, C(1)=D(1)=n ��, showing that (using an obvious
notation) �c = �d = ��. It can be shown that (c1; c2; : : : ; cn)′ is the l2-projection of the
vector (�1; �2; : : : ; �n)′ onto the convex cone of componentwise nondecreasing vectors
in Rn, while (d1; d2; : : : ; dn)′ is the corresponding projection onto the convex cone of
componentwise nonincreasing vectors. Thus, the c’s form a monotone nondecreasing
�nite sequence while the d’s form a nonincreasing one; both c’s and d’s are determined



22 N. Papadatos / Journal of Statistical Planning and Inference 93 (2001) 17–27

from the �’s and, �nally, the c’s (d’s) coincide with the �’s if and only if the �nite
sequence of �’s is nondecreasing (nonincreasing).
Using the above notation we can prove the following lemma.

Lemma 2.2. Under the conditions of Lemma 2:1;

n∑
i=1
�i(EXi:n − �)6

(
n∑
i=1
(ci − ��)2

)1=2
((n− 1)(�2 − c))1=2; (2.4)

and

n∑
i=1
�i(EXi:n − �)¿−

(
n∑
i=1
(di − ��)2

)1=2 (
(n− 1)(�2 − c))1=2 : (2.5)

Both bounds are best possible.

Proof. We prove only (2.4), since the other part is similar.
From Eq. (40) in Rychlik (1998), it follows that for any real numbers x1:n

6x2:n6 · · ·6xn:n,
n∑
i=1
�i(xi:n − �x)6

(
n∑
i=1
(ci − ��)2

)1=2
(s2)1=2; (2.6)

where �x = n−1
∑n

i=1 xi:n, s
2 =

∑n
i=1 [xi:n − �x]2 (this is the discrete version of a result

of Moriguti (1953); note also that a denominator of n1=q is missing in the RHS of
Eqs. (24) and (40) of Rychlik (1998)). Moreover, equality in (2.6) occurs if and only
if there exists some constant A¿0, such that

xi:n − �x = A(ci − ��); i = 1; 2; : : : ; n: (2.7)

Therefore, with S as in (1.3), we have

n∑
i=1
�i(Xi:n − �X )6

(
n∑
i=1
(ci − ��)2

)1=2
S:

Taking expectations in the last expression and using the �rst inequality in (1.3) and
the fact that E S2 = (n− 1)(�2 − c) (see (2.3)), we conclude (2.4).
Regarding the case of equality, this is trivial if all the �’s are equal. Also, this

is trivial if �2 = c (which implies that the X ’s are all equal a.s.). Observe that if
�1¿�2¿ · · ·¿�n, �1¿�n and �2¿c, then c1 = c2 = · · · = cn = ��, and the equal-
ity never holds in (2.4). However, when this is the case, the best possible upper
bound for the LHS of (2.4) is 0; this can be easily seen from the following construc-
tion: Let �¿ 0 be su�ciently small so that p = n(n + 1)�2=(12(�2 − c))¡ 1, and set
A = 12(�2 − c)=(�n(n + 1))¿ 0. De�ne Yj = Z + A(j − (n + 1)=2)W , j = 1; 2; : : : ; n,
where Z is a random variable as in Lemma 2.1, and W is a Bernoulli 0–1 random
variable with success probability p, independent of Z . De�ne X1; X2; : : : ; Xn to be a
random permutation of Y1; Y2; : : : ; Yn, and observe that the X ’s are exchangeable and
satisfy EX1=�, Var X1=�2, Cov[X1; X2]=c, and Xi:n− �X =A(i−(n+1)=2)W for all i;
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thus, EXi:n − � = A(i − (n+ 1)=2)p= (i − (n+ 1)=2)�, which implies that∣∣∣∣ n∑
i=1
�i(EXi:n − �)

∣∣∣∣= �
∣∣∣∣ n∑
i=1
�i

(
i − n+ 1

2

)∣∣∣∣= �M;
where M is a positive constant depending only on the �’s. Since � is arbitrary, the
LHS of (2.4) can be arbitrarily close to 0, and hence, (2.4) is optimal. In any other
case we can proceed as in Lemma 2.1, taking Yj =Z +A(cj − ��), j=1; 2; : : : ; n, where
Z is as above, and

A=

(
(n− 1)(�2 − c)∑n

i=1(ci − ��)2

)1=2
:

Choosing the X ’s to be a random permutation of the Y ’s, it is easy to check
that EX1 = �, Var X1 = �2, Cov[X1; X2] = c, Xi:n − �X = A(ci − ��) (nonrandom), and
S2 = (n− 1)(�2 − c) (nonrandom), and thus, (2.4) becomes an equality.

Remark 2.3. Since for the �nite sequence xi:n=ci− �� the equality occurs in (2.6) (see
(2.7)), an application of the ordinary Cauchy–Schwarz inequality yields

n∑
i=1
(ci − ��)2 =

n∑
i=1
�i(ci − ��)

=
n∑
i=1
(�i − ��) (ci − ��)

6
(

n∑
i=1
(�i − ��)2

)1=2( n∑
i=1
(ci − ��)2

)1=2
;

showing that
∑n

i=1(ci − ��)26
∑n

i=1(�i − ��)2, and the inequality is strict unless
�16�26 · · ·6�n. It follows that (2.4) is uniformly better than the upper bound of
(2.1). Similarly, (2.5) is uniformly better than the lower bound (with the − sign) of
(2.1).

Our most general result is stated in the following theorem. The proof follows the
same arguments as in Theorem 2.1, the only di�erence being that one has to use
Lemma 2.2 rather than Lemma 2.1; the details are left to the reader.

Theorem 2.2. Under the assumptions of Theorem 2:1 and the notation of Lemma
2:2;

n∑
i=1
�i(EXi:n − ��)6

(
n∑
i=1
(ci − ��)2

)1=2( n∑
i=1

{
(�i − ��)2 + �2i

}− nVar �X)1=2 ;
(2.8)

and
n∑
i=1
�i(EXi:n − ��)¿−

(
n∑
i=1
(di − ��)2

)1=2( n∑
i=1

{
(�i − ��)2 + �2i

}− nVar �X)1=2 :
(2.9)
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It should be also noted that the above result improves the re�nement of Lef�evre’s
inequality, described in Rychlik (1998, p. 114).

3. Applications

For the purposes of the present section, we consider an arbitrary random vector
X = (X1; X2; : : : ; Xn)′, with means, variances and covariances as in Theorem 2.1, and
we set

�= �(�i; �ij; i; j = 1; 2; : : : ; n) =
(

n∑
i=1

{
(�i − ��)2 + �2i

}− nVar �X)1=2 ;
which, under the homogeneity assumptions �i=�, �ii=�2, �ij=c (i 6= j); i; j=1; 2; : : : ; n,
simpli�es to

�0 = �0(�2; c) =
√
(n− 1)(�2 − c)6�√n:

It is useful to note that the inequality �6�
√
n remains valid in the quasi-homogeneous

case, in which we merely assume that �i=�, �2i =�
2 (i.e., �ij is allowed to vary with

i; j).
(a) Bounds for a single-order statistic and for the di�erence between two-order

statistics. In this case, Theorem 2.2 yields the bounds

�� − �
√
n− i
ni

6EXi:n6 �� + �

√
i − 1

n(n− i + 1)
(which improves Eq. (9) in Gascuel and Caraux (1992)), and for i¡ j,

06E[Xj:n − Xi:n]6�
√
n+ 1− (j − i)
i(n+ 1− j) ;

which improves Eq. (6) in Arnold and Groeneveld (1979).
(b) Gupta’s simple least-squares estimator for the location parameter of the uni-

form location-scale family. If a random sample of size n follows the uniform U (� −
�
√
3; �+ �

√
3) model, where � and �¿ 0 are unknown, then the simple least-squares

estimator of Gupta’s (1952) for � takes the form (see Eq. (6:2:14) in David (1981)):

�̂n =
2
√
3

n(n− 1)
n∑
i=1

(
i− n+ 1

2

)
Xi:n;

the quantity �̂n is a scalar multiple of Gini’s mean di�erence and of Downton’s
(1966) unbiased estimator of the normal standard deviation (see Arnold and Groen-
eveld (1979)). It is easy to see that, under the homogeneity assumptions, Theorem 2.1
yields the bound

E �̂n6

√
n+ 1
n(n− 1)�0 =

√(
1 +

1
n

)
(�2 − c)6�

√
n+ 1
n− 1 :

This shows that �̂n does not overestimate � by a large amount, even if the X ’s are
not independent, not identically distributed and not even uniformly distributed. The
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only assumption required is �i = �, �2i = �
2 and �ij = c. Furthermore, even in the

quasi-homogeneous case (in which �ij is allowed to vary with i; j), Theorem 2.1 (in
fact, (1.1)) yields the estimate E �̂n6�((n + 1)=(n − 1))1=2, as in the corresponding
example (c) of Arnold and Groeneveld (1979).
(c) Lef�evre’s bounds for the mean completion time in Pert networks. Lef�evre (1986)

applied (1.2) to obtain bounds on mean completion time for Pert networks. If the
completion times of the arcs (activities) are the independent random variables Yk;l, this
is equivalent to �nd an expectation bound for the stochastic completion time T = Xn:n
of the network, when the random lengths are de�ned by

Xi =
∑

(k;l)∈pi
Yk; l; i = 1; 2; : : : ; n;

where pi, 16i6n, are the n network paths leading from the source to the sink (see
Lef�evre for more details). Therefore, the means, variances and covariances of X ’s can
be calculated from the means mk;l and the variances s2k; l of Y ’s (assumed known),
and thus, one may easily apply the results of the present work. As an example, we
consider the network with the three paths p1 = {(1; 2); (2; 4)}, p2 = {(1; 3); (3; 4)},
p3 = {(1; 2); (2; 3); (3; 4)} and the �ve arcs (1; 2), (1; 3), (2; 3), (2; 4) and (3; 4), where
1 is the source and 4 is the sink node of the network, given in Table 1 of Lef�evre (in
fact, two networks A and B were given, with identical sets of means and di�erent sets
of variances). With the given sets of values (see Lef�evre, 1986, p. 355), one �nds that

�A = �B =


 52
5


; �A =


 2:21 0 1

0 0:72 0:36
1 0:36 2


; �B =


 1:28 0 0:64

0 0:72 0:36
0:64 0:36 1:36


:

If TA and TB denote the respective completion times of the systems, Lef�evre showed
(with the help of (1.1), (1.2) and a slight variation of (1.2)) that ETA66:609 and
ETB66:347; however, one can see that (2.2) yields the bounds ETA66:364 and
ETB66:093.
(d) Papathanasiou’s bound on the covariance of an ordered pair. Papathanasiou

(1990) obtained an upper bound for the covariance of X1:2 and X2:2, when X1 and X2 are
independent identically distributed with (common) variance �2, namely Cov[X1:2; X2:2]
6�2=3. Balakrishnan and Balasubramanian (1993) obtained a generalization of this
bound, namely

Cov[X1:2; X2:2] = (EX2:2 − �)2 + c (3.1)

6�2 + c; (3.2)

provided that X1 and X2 are identically distributed (possibly dependent) with EX1 = �,
Var X1 = �2 and Cov[X1; X2] = c. Since (3.1) holds in the most general homogeneous
case, Theorem 2.2 yields

c6Cov[X1:2; X2:2]6(�2 + c)=2; (3.3)

and the upper bound in (3.3) is the one half of that in (3.2). Moreover, we observe that
in the uncorrelated case (c = 0), �2=3 is simply replaced by �2=2 in Papathanasiou’s
bound, if neither independent nor identical distributions can be assumed for X1 and X2.
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(e) A criterion for in�nite nonexchangeability. Consider a set of n¿2 exchangeable
random variables X1; X2; : : : ; Xn, with EX1 = �; Var X1 = �2 and Cov[X1; X2] = c. It is
well known that if c¡ 0, then the X ’s cannot be extended to an in�nite sequence of
exchangeable random variables (this happens because Var �X = (�2 + (n − 1)c)=n has
to be nonnegative for all n). If c¿0, however, the problem of extendibility (or not)
becomes nontrivial. Our results can give a negative answer in some particular cases
where c¿0. Indeed, from Lemma 2.1 we have the inequality

EXn:n6� +
n− 1√
n

√
�2 − c: (3.4)

On the other hand, if we assume that the X ’s can be extended to an in�nite exchange-
able sequence, then de Finetti theorem (see, for example, Galambos, 1978, Theorem
3:6:1, or Arnold et al., 1992, Eq. (9:7:1)) asserts that there exists a random variable V
such that for all x1; x2; : : : ; xn,

P[X16x1; X26x2; : : : ; Xn6xn |V ] =
n∏
i=1
P[Xi6xi |V ] a:s:; (3.5)

that is, given V , the X ’s are independent and identically distributed. Therefore, the
classical Hartley–David–Gumbel bound (see, for example, David, 1981, Chapter 4)
yields

E[Xn:n |V ]6E[X1 |V ] + n− 1√
2n− 1

√
Var [X1 |V ] a:s:

Taking expectations in the last expression with respect to V , and using the concavity
of the square root and the fact that EVar[X1 |V ] = �2 − Var E[X1 |V ] = �2 − c, we
obtain

EXn:n6� +
n− 1√
2n− 1

√
�2 − c: (3.6)

The upper bound in (3.4) is strictly larger than that of (3.6), because for the latter
we assumed in�nite exchangeability; therefore, all the constructions attaining equalities
in Lemmas 2.1 and 2.2 lead to exchangeable random vectors that are not in�nitely
exchangeable. In other words, if EXn:n is greater than the upper bound in (3.6), then
the X ’s cannot be in�nitely exchangeable; this provides a very simple criterion. As an
example, consider the random variables X; Y and Z supported in {0; 1}3 with probability
function

P[X = x; Y = y; Z = z] =
{
1=4 if x + y + z is odd;

0 if x + y + z is even;
x; y; z ∈ {0; 1}:

It is easy to see that X; Y and Z are exchangeable and, moreover, X and Y are indepen-
dent Bernoulli with p= 1

2 . Thus, �=
1
2 , �

2= 1
4 and c=0. The bound (3.4) is

1
2 +1=

√
3,

while (3.6) is 1
2 + 1=

√
5. Since Emax{X; Y; Z}= 1 and 1

2 + 1=
√
5¡ 1¡ 1

2 + 1=
√
3, it

follows that the X; Y and Z are not in�nitely exchangeable.
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