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a b s t r a c t

We provide a method that enables the simple calculation of the maximal correlation
coefficient of a bivariate distribution, under suitable conditions. In particular, the method
readily applies to known results on order statistics and records. As an application we
provide a new characterization of the exponential distribution: Under a splitting model
on independent identically distributed observations, it is the (unique, up to a location-scale
transformation) parent distribution thatmaximizes the correlation coefficient between the
records among two different branches of the splitting sequence.
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1. Introduction

As is well-known, the Pearson correlation coefficient of the random variables (r.v.’s) X and Y is defined as

ρ(X, Y ) =
Cov(X, Y )

√
Var(X)

√
Var(Y )

,

provided that 0 < Var(X) < ∞ and 0 < Var(Y ) < ∞. It assumes values in the interval [−1, 1] and it is a measure of linear
dependence of X and Y . Although ρ(X, Y ) = 0 for independent X and Y , the converse is not true. Gebelein [10] introduced
themaximal correlation coefficient,

R(X, Y ) = sup ρ

g1(X), g2(Y )


,

where the supremum is taken over all Borel functions g1 : R → R and g2 : R → R with 0 < Var g1(X) < ∞ and 0 <
Var g2(Y ) < ∞. In contrast to ρ(X, Y ), R(X, Y ) is defined whenever both X and Y are non-degenerate, assumes values
in the interval [0, 1] and vanishes if and only if X and Y are independent. The maximal correlation coefficient plays a
fundamental role in various areas of statistics; e.g., it is useful in obtaining optimal transformations for regression, Breiman
and Friedman [5], and it has applications in the convergence theory of Gibbs sampling algorithms, Liu et al. [15].
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However, despite its usefulness, it is often difficult to calculate the maximal correlation coefficient in an explicit form,
except in some rare cases. A well-known exception is the result of Gebelein [10] and Lancaster [13] who show that if (X, Y )
is bivariate normal then

R(X, Y ) = |ρ(X, Y )|. (1)
Another exception is provided by the surprising result of Dembo et al. [9], and its subsequent extensions given by Bryc
et al. [6] and Yu [20]. In its general form the result states that for any independent identically distributed (i.i.d.) non-
degenerate r.v.’s X1, . . . , Xn,

R(X1 + · · · + Xm, Xk+1 + · · · + Xn) =
m − k

√
m(n − k)

, 1 ≤ k + 1 ≤ m ≤ n.

Finally, we mention an important result of Székely and Móri [18], who showed, using Jacobi polynomials, that if (X, Y )
follows a bivariate density of the form

f (x, y) =
Γ (α + β + γ )

Γ (α)Γ (β)Γ (γ )
xα−1(y − x)β−1(1 − y)γ−1, 0 < x < y < 1, (2)

where the parameters α, β, γ are positive, then

R(X, Y ) = ρ(X, Y ) =


αγ

(β + α)(β + γ )
. (3)

Observe that for any integers 1 ≤ i < j ≤ n, the density of the pair of order statistics (Ui:n,Uj:n), based on n i.i.d. observations
from the standard uniform distribution, is of the form (2) with α = i, β = j − i, γ = n + 1 − j. Actually, (3) extends
Terrell’s [19] characterization of rectangular distributions through maximal correlation of an ordered pair.

In this article we provide a unified method for obtaining the maximal correlation coefficient when the bivariate
distribution has a particular diagonal structure—see next section. The method is very simple (e.g., it readily applies to verify
(1) and (3)) and it does not require knowledge of particular sets of orthogonal polynomials. Section 3 presents some notable
examples of known characterizations of specific distributions through maximal correlation of ordered data and records.
We consider a splitting model based on i.i.d. observations in Section 4. Applying our method it is shown that the records
among two different branches of the splitting sequence are maximally correlated if and only if the population distribution
is exponential (up to location-scale transformations)—this extends Nevzorov’s [17] characterization.

2. The maximal correlation coefficient of bivariate distributions having diagonal structure

Let (X, Y ) be an arbitrary random vector with distribution function F(x, y) and assume that both X and Y are non-
degenerate. We say that F , similarly the vector (X, Y ), has diagonal structure if the following three conditions are satisfied.
A1. We assume that both X and Y have all their moments finite:

E|X |
n < ∞ and E|Y |

n < ∞ for n = 1, 2, . . . . (4)

It is known that, under (4), there exists a (unique) orthonormal polynomial system (OPS) {φn(x) = pnxn+Poln−1(x), pn >
0, n = 0, 1, . . .}, corresponding to X , and a (unique) OPS {ψn(y) = qnyn + Poln−1(y), qn > 0, n = 0, 1, . . .}, corresponding
to Y . Here φ0(x) ≡ ψ0(y) ≡ 1 and Polk(t) denotes an arbitrary polynomial in t of degree less than or equal to k, which may
change from line to line. The orthonormality of the above OPS’s means, as usual, that

E[φn(X)φk(X)] = E[ψn(Y )ψk(Y )] = δkn, k, n = 0, 1, . . . ,
where δkn is Kronecker’s delta.

Remark 2.1. For a random variable X we denote by νX +1 the cardinality of its (minimal closed) support, S(X), unifying the
cases where νX < ∞ and νX = ∞. This convention is necessary because the OPS, corresponding to a non-degenerate r.v. X ,
reduces to the finite set {φn(x)}

νX
n=0 if (and only if) its support is concentrated on a finite subset ofR, with νX + 1 ≥ 2 points.

This singular case, however, appears in some interesting situations—e.g., see Section 3, regarding the finite population case.
In order to fix this problem (and give a unified presentation of the results) we shall proceed as follows. In any case where
the support of X is of form {x0, x1, . . . , xνX }, we shall enlarge the finite set of orthonormal polynomials to {φn}

∞

n=0, keeping
{φn}

νX
n=0 as above, and defining

φn(x) := xn−νX−1(x − x0)(x − x1) · · · (x − xνX ), n > νX .

Each φn in the enlarged set is of degree n and has principal coefficient pn > 0. However, since for n > νX , φn(X) = 0 w.p. 1,
the orthonormality assumption has now been relaxed to

E[φn(X)φk(X)] = δkn1{n≤νX }, k, n = 0, 1, . . . ,

where 1 stands for the indicator function. The same conventions will be applied to the OPS of Y , by setting ψn(y) :=

yn−νY −1(y − y0) · · · (y − yνY ), whenever n > νY and S(Y ) = {y0, . . . , yνY } is finite.
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A2. We assume that the OPS {φn(x)}∞n=0 is complete in L2(X), the Hilbert space of all Borel functions g : R → R with
Var g(X) < ∞. Clearly, the enlarged OPS of Remark 2.1 is complete if and only if the ordinary OPS is, noting that two
functions g1, g2 are considered as ‘‘equal’’ if P[g1(X) = g2(X)] = 1. Similarly, we assume that the system {ψn(y)}∞n=0 is
complete in L2(Y ).

A3. We assume that the random vector (X, Y ) has the polynomial regression property. That is,

E(Xn
|Y ) = AnY n

+ Poln−1(Y ), n = 1, 2, . . . ,
E(Y n

|X) = BnXn
+ Poln−1(X), n = 1, 2, . . . ,

where An, Bn ∈ R.

The assumptions A1 and A2 are not very restrictive. For example, they are satisfied whenever both X and Y have finite
moment generating functions in a neighborhood of 0; see, for example, [1,12]. However, this is not the case for assumption
A3, since it applies to very particular distributions, as the following lemma shows.

Lemma 2.1. Using the above notation and assuming A1–A3 we have that for all n, k ∈ {1, 2, . . .},

E[φn(X)ψk(Y )] = δnkρn, (5)

where δnk is Kronecker’s delta and ρn := E[φn(X)ψn(Y )] ∈ [−1, 1].

Proof. Set ν = min{νX , νY } ∈ {1, 2, . . .} ∪ {∞} (for the definition of νX , νY see Remark 2.1). If n ≤ ν then φn(X) andψn(Y )
are standardized r.v.’s, and we have ρn = ρ(φn(X), ψn(Y )). Therefore, ρn ∈ [−1, 1] in this case. If at least one of νX , νY is
finite then for every n > ν, φn(X)ψn(Y ) = 0 w.p. 1, so that ρn = 0 for n > ν. Thus, ρn ∈ [−1, 1] for all n. Now, if 1 ≤ k < n
then A3 yields

E[φn(X)ψk(Y )] = E{φn(X)E[ψk(Y )|X]} = E[φn(X)Polk(X)] = 0,

because φn is orthogonal to any polynomial of degree at most n− 1. Similar arguments apply to the case 1 ≤ n < k, and the
proof is complete. �

The bivariate distributions satisfying (5) are sometimes called Lancaster distributions and the correlations ρn form a
Lancaster sequence with respect to X and Y ; see [11,12,14]. Therefore, by Lemma 2.1 we see that assumption A3 forces
a distribution to be a Lancaster one. Under certain conditions, the density of a Lancaster distribution, if it exists, has the
formal representation (diagonal structure)

f (x, y) = fX (x)fY (y)


1 +

∞
n=1

ρnφn(x)ψn(y)


,

where fX and fY are the marginal densities of X and Y .
If the assumptions A1–A3 are satisfied thenwe can calculate eachρn, and this calculation does not require any knowledge

of the polynomial systems {φn(x)}∞n=0 and {ψn(y)}∞n=0. Indeed, we have the following

Lemma 2.2. Let ν = min{νX , νY } (see Remark 2.1). Using the above notation and assuming A1–A3 we have that for all n ∈

{1, 2, . . .},

AnBn1{n≤ν} ≥ 0, ρn = sign(An)

AnBn1{n≤ν} and |ρn| =


AnBn1{n≤ν}. (6)

Proof. Since φn(X) = pnXn
+ Poln−1(X) and ψn(Y ) = qnY n

+ Poln−1(Y )we have

ρn = E{ψn(Y )E(φn(X)|Y )} = E{ψn(Y )[pnE(Xn
|Y )+ Poln−1(Y )]}

= pnE[ψn(Y )E(Xn
|Y )] + 0 = pnE{ψn(Y )[AnY n

+ Poln−1(Y )]}
= pnAnE[ψn(Y )Y n

] + 0 = pnAnE{ψn(Y )q−1
n [ψn(Y )− Poln−1(Y )]}

=
pnAn

qn
E[ψ2

n (Y )] − 0 =
pnAn

qn
1{n≤νY }.

This shows that ρn and An1{n≤νY } have the same sign (in particular, ρn = 0 for n > νY ). Using the same arguments (condi-
tioning on X) it follows that ρn =

qnBn
pn

1{n≤νX }; thus, ρn = 0 for n > νX . Therefore, if ν is finite then ρn = 0 for all n > ν.
Finally, ρ2

n = AnBn1{n≤νX }1{n≤νY } = AnBn1{n≤ν}, and the proof is complete. �

We are now in a position to state and prove our main result.
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Theorem 2.1. If the assumptions A1–A3 are satisfied and ν = min{νX , νY } then

R(X, Y ) = sup
n≥1

|ρn| = sup
n≥1


AnBn1{n≤ν}. (7)

Moreover, if |ρn| < |ρn0 | for all n ≥ 1, n ≠ n0, then for any g1 ∈ L2(X) with Var g1(X) > 0 and for any g2 ∈ L2(Y ) with
Var g2(Y ) > 0 we have the inequality

ρ(g1(X), g2(Y )) ≤ |ρn0 | =

An0Bn0 ,

with equality if and only if g1(x) = a0 + a1φn0(x) and g2(y) = b0 + b1ψn0(y) for some constants a0, b0, a1, b1 ∈ R with
a1b1sign(An0) > 0.

Proof. Let g1 ∈ L2(X) and denote by FX the marginal distribution function of X . By the completeness of {φn}
∞

n=0 it follows
that g1 admits the representation

g1(x) =

∞
n=0

αnφn(x), where αn = E[g1(X)φn(X)] =


R

g1(x)φn(x)dFX (x).

Clearly, if νX is finite and n > νX then αn = 0, because P(φn(X) = 0) = 1; see Remark 2.1. The constants {αn}
∞

n=0 are the
Fourier coefficients of g1 with respect to the OPS {φn}

∞

n=0, and the series converges in the L2(X)-sense, i.e.,

lim
N
E


g1(X)−

N
n=0

αnφn(X)

2

= 0. (8)

In particular, α0 = E[g1(X)], and the above limit is usually written as Parseval’s identity,

Var g1(X) =

∞
n=1

α2
n

(equivalently, Var g1(X) =
νX

n=1 α
2
n if νX < ∞), since it is easily verified that

E


g1(X)−

N
n=0

αnφn(X)

2

= Var g1(X)−

N
n=1

α2
n .

Therefore, the assumption Var g1(X) > 0 implies that αn ≠ 0 for at least one n ≥ 1. Similarly, for any g2 ∈ L2(Y )we have

Var g2(Y ) =

∞
n=1

β2
n , where βn = E[g2(Y )ψn(Y )] =


R

g2(y)ψn(y)dFY (y),

where FY is the marginal distribution of Y , {βn}
∞

n=0 are the Fourier coefficients of g2 with respect to the OPS {ψn}
∞

n=0 (βn =

0 if νY < ∞ and n > νY ) and, as for X ,

lim
N
E


g2(Y )−

N
n=0

βnψn(Y )

2

= Var g2(Y )− lim
N

N
n=1

β2
n = 0. (9)

Using the above we can show that

E[g1(X)ψn(Y )] = αnρn and E[g2(Y )φn(X)] = βnρn, n = 1, 2, . . . . (10)

Indeed, for any N ≥ nwe have

E[g1(X)ψn(Y )] = E


g1(X)−

N
k=0

αkφk(X)


ψn(Y )


+

N
k=0

αkE[φk(X)ψn(Y )].

Now N ≥ n, φ0(x) ≡ 1,E[ψn(Y )] = 0, E[ψ2
n (Y )] = 1{n≤νY } and E[φk(X)ψn(Y )] = δknρn for k ≥ 1. Thus, in view of (8) and

by the Cauchy–Schwarz inequality,

0 ≤


E[g1(X)ψn(Y )] − αnρn

2

=


E


g1(X)−

N
k=0

αkφk(X)


ψn(Y )

2

≤ E


g1(X)−

N
k=0

αkφk(X)

2

E[ψ2
n (Y )] → 0, as N → ∞.
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Therefore, since (E[g1(X)ψn(Y )] − αnρn)
2 does not depend on N , we conclude the first identity in (10). The remainder of

(10) follows similarly. From (10) we obtain

E


g1(X)−

N
n=0

αnφn(X)


g2(Y )−

N
n=0

βnψn(Y )


= Cov[g1(X), g2(Y )] −

N
n=1

ρnαnβn.

Thus, squaring the above identity and applying the Cauchy–Schwarz inequality to the resulting squared expectation we
conclude, in view of (8) and (9), that

Cov[g1(X), g2(Y )] =

∞
n=1

ρnαnβn =

ν
n=1

ρnαnβn. (11)

(Recall that ν = min{νX , νY }; for the definition of νX , νY see Remark 2.1.) Therefore, combining the above we obtain the
expression

ρ(g1(X), g2(Y )) =

∞
n=1

ρnαnβn
∞
n=1

α2
n


∞
n=1

β2
n

=

ν
n=1

ρnαnβn
νX
n=1

α2
n


νY
n=1

β2
n

. (12)

Observe that, in view of (11),
Cov[g1(X), g2(Y )]

2

=

 ∞
n=1

ρnαnβn


2

≤


∞
n=1

|ρn| |αn| |βn|

2

=


∞
n=1

(


|ρn||αn|)(


|ρn||βn|)

2

≤


∞
n=1

|ρn|α
2
n


∞
n=1

|ρn|β
2
n



≤


sup
n≥1

|ρn|
 ∞

n=1

α2
n


sup
n≥1

|ρn|


∞
n=1

β2
n



=

sup
n≥1

ρ2
n

 ∞
n=1

α2
n


∞
n=1

β2
n


.

The above inequality, combined with (12), shows that

R(X, Y ) ≤ sup
n≥1

|ρn| = R, say.

On the other hand, for any ϵ > 0 we can find an index n0 (with n0 ≤ ν if ν is finite) such that |ρn0 | > R − ϵ, and thus,
|ρ(φn0(X), ψn0(Y ))| = |ρn0 | > R − ϵ. Therefore,

R(X, Y ) = sup ρ(g1(X), g2(Y ))
≥ max{ρ(φn0(X), ψn0(Y )), ρ(−φn0(X), ψn0(Y ))}
= max{ρn0 ,−ρn0} = |ρn0 | > R − ϵ.

Since the inequality R(X, Y ) > R − ϵ holds for all ϵ > 0 it follows that R(X, Y ) ≥ R, and thus, R(X, Y ) = R. It is clear that
if the sequence {|ρn|}

∞

n=1 has a unique maximum, say |ρn0 | > 0, then it is necessary that n0 ≤ ν if ν is finite. Working as
above, it is easily shown that

Cov[g1(X), g2(Y )]

2

≤ ρ2
n0


∞
n=1

α2
n


∞
n=1

β2
n


= ρ2

n0Var g1(X)Var g2(Y ),

with equality if and only if αn = βn = 0 for all n ≥ 1, n ≠ n0. Combining this with the fact that ρn0 (=ρ(φn0(X), ψn0(Y )))
has the sign of An0 , completes the proof. �
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3. Examples providing known characterizations via maximal correlation

The following known results are immediate applications of Theorem 2.1.

The bivariate normal case. Assumptions A1–A3 are easily checked for a bivariate normal. Indeed, if (X, Y ) is bivariate normal
with E(X) = µ1,E(Y ) = µ2,Var(X) = σ 2

1 > 0,Var(Y ) = σ 2
2 > 0 and ρ(X, Y ) = ρ ∈ [−1, 1] then it is well-known that

(X |Y = y) ∼ N (µ1 + ρ
σ1
σ2
(y − µ2), (1 − ρ2)σ 2

1 ). It follows that

(X |Y = y) d
= µ1 + ρ

σ1

σ2
(y − µ2)+ σ1


1 − ρ2Z,

where Z ∼ N (0, 1) and d
= denotes equality in distribution. Therefore,

E[Xn
|Y = y] = E


µ1 + ρ

σ1

σ2
(y − µ2)+ σ1


1 − ρ2Z

n

= ρn σ
n
1

σ n
2
yn + Poln−1(y).

That is,

E(Xn
|Y ) = AnY n

+ Poln−1(Y ), where An = ρn σ
n
1

σ n
2
, n = 1, 2, . . . .

Similarly, E(Y n
|X) = BnXn

+ Poln−1(X), where Bn = ρn σ
n
2
σ n
1
for all n ≥ 1. Thus, A3 is satisfied, while A1 and A2 are well-

known for the normal law (themoment generating function is finite). Since ν = ∞, it follows from (6) that |ρn| =
√
AnBn =

|ρ|
n, ρn = sign(ρn)|ρ|

n
= ρn, and, by (7), R(X, Y ) = supn≥1 |ρn| = maxn≥1 |ρ|

n
= |ρ|. Moreover, in the particular case

where 0 < |ρ| < 1, the equality in

|ρ(g1(X), g2(Y ))| ≤ |ρ|

is attained if and only if both g1, g2 are linear. It is worth noting that (11) takes the simple form (holding for any ρ ∈ [−1, 1])

Cov[g1(X), g2(Y )] =

∞
n=1

ρnσ n
1 σ

n
2

n!
E[g(n)1 (X)]E[g(n)2 (Y )], (13)

provided that g1, g2 ∈ C∞, g1(X) ∈ L2(X), g2(Y ) ∈ L2(Y ), and thatE|g(n)1 (X)| < ∞ andE|g(n)2 (Y )| < ∞ for all n, where g(n)i
denotes the n-th derivative of gi, i = 1, 2. Of course, one can apply (13) to the case X = Y . Then, µ1 = µ2 = µ, say, ρ = 1,
and σ1 = σ2 = σ , say, and (13) yields the generalized Stein identity for the N (µ, σ 2) distribution (see [1]):

Cov[g1(X), g2(X)] =

∞
n=1

(σ 2)n

n!
E[g(n)1 (X)]E[g(n)2 (X)].

Characterization of rectangular distributions viamaximal correlation of order statistics. Terrell [19], using Legendre polynomials,
proved that if X1:2 ≤ X2:2 are the order statistics of two i.i.d. observations from a distribution with finite variance then

ρ(X1:2, X2:2) ≤
1
2
,

and the equality characterizes the rectangular (uniform over some non-degenerate interval) distributions. However,
Theorem 2.1 applies immediately here. Indeed, ifU(a, b) denotes the uniform distribution over (a, b) and U1,U2 ∼ U(0, 1)
then it is obvious that the order statistics of U1,U2,U1:2 ≤ U2:2, satisfy the following:

U1:2|U2:2 ∼ U(0,U2:2) ⇒ E

Un
1:2|U2:2


=

 U2:2

0
tn

1
U2:2

dt =
1

n + 1
Un
2:2,

U2:2|U1:2 ∼ U(U1:2, 1) ⇒ E

Un
2:2|U1:2


=

 1

U1:2

tn
1

1 − U1:2
dt

=
1

n + 1
(1 + U1:2 + · · · + Un

1:2).

Thus, An = Bn =
1

n+1 and |ρn| =
1

n+1 . Therefore, maxn≥1 |ρn| = |ρ1| =
1
2 . It follows from Theorem 2.1 that ρ(g(U1:2),

g(U2:2)) ≤
1
2 , with equality if and only if g is linear. Since for order statistics X1:2 ≤ X2:2 from an arbitrary distribution F

(X1:2, X2:2)
d
= (g(U1:2), g(U2:2)), where g(u) = inf{x : F(x) ≥ u}, 0 < u < 1,
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(the above g is usually denoted as F−1), Terrell’s result follows. The above argument can easily be extended to provide the
characterization of Székely and Móri [18], concerning the order statistics X1:n ≤ · · · ≤ Xn:n of a random sample X1, . . . , Xn.
They show, using Jacobi polynomials, that for any integers 1 ≤ i < j ≤ n,

ρ(Xi:n, Xj:n) ≤


i(n + 1 − j)
j(n + 1 − i)

,

with equality if and only if the random sample arises from a rectangular distribution. Indeed, set g(u) = F−1(u) = inf{x :

F(x) ≥ u}, 0 < u < 1, where F is the common distribution function of the i.i.d. r.v.’s X1, . . . , Xn, and consider the order
statistics U1:n ≤ · · · ≤ Un:n of a random sample U1, . . . ,Un from U(0, 1). Then, (Xi:n, Xj:n)

d
= (g(Ui:n), g(Uj:n)). Thus,

ρ(Xi:n, Xj:n) = ρ(g(Ui:n), g(Uj:n)), which is well defined whenever 0 < Var Xi:n + Var Xj:n < ∞. Since for any s ∈ (0, 1),

(Ui:n|Uj:n = s) d
= Ui:j−1, whereUi:m is the i-th order statistic of a sample with sizem from U(0, s), we have

Ui:j−1
d
= sUi:j−1 ⇒ E[Uk

i:n|Uj:n = s] = E[(sUi:j−1)
k
] = skE(Uk

i:j−1).

Now,

E

Uk
i:j−1


=

 1

0
uk 1

B(i, j − i)
ui−1(1 − u)j−i−1du

=
B(k + i, j − i)
B(i, j − i)

=
(k + i − 1)!(j − 1)!
(k + j − 1)!(i − 1)!

.

In addition, for any t ∈ (0, 1)we have (Uj:n|Ui:n = t) d
= Uj−i:n−i, whereUj−i:n−i is the (j− i)-th order statistic of a samplewith

sizen−i fromU(t, 1). Clearly, ifU ∼ U(t, 1) thenU d
= t+(1−t)U whereU ∼ U(0, 1). So, (Uj:n|Ui:n = t) d

= t+(1−t)Uj−i:n−i

and since Uj−i:n−i
d
= 1 − Un+1−j:n−i, we get (Uj:n|Ui:n = t) d

= 1 − Un+1−j:n−i + tUn+1−j:n−i. Therefore,

E

Uk
j:n|Ui:n = t


= E


1 − Un+1−j:n−i + tUn+1−j:n−i

k
= tkE


Uk
n+1−j:n−i


+ Polk−1(t)

=
(n + k − j)!(n − i)!
(n + k − i)!(n − j)!

tk + Polk−1(t).

Thus, A3 is satisfied with Ak = [i]k/[j]k (where [α]k := α(α+ 1) · · · (α+ k− 1)), and Bk = [n+ 1− j]k/[n+ 1− i]k. Clearly,
ν = ∞, and hence,

ρ2
k = AkBk =

[i]k[n + 1 − j]k
[j]k[n + 1 − i]k

.

This is a strictly decreasing sequence in k, and Theorem 2.1 yields the inequality

ρ(Xi:n, Xj:n) ≤


ρ2
1 =


i(n + 1 − j)
j(n + 1 − i)

,

with equality if and only if g(u) (=F−1(u)) = αu + β for some α > 0 and β ∈ R, i.e., X ∼ U(β, β + α), α > 0.
The same arguments apply to the case where (X, Y ) has a density as in (2). Then, it is easily shown that for any fixed x

and y in (0, 1),

(X |Y = y) d
= yBα,β and (Y |X = x) d

= x + (1 − x)Bβ,γ
d
= 1 − Bγ ,β + xBγ ,β ,

where Br,s denotes a Beta r.v. with parameters r > 0 and s > 0. It follows that

E(Xn
|Y ) = AnY n and E(Y n

|X) = BnXn
+ Poln−1(X)

with

An = E

Bn
α,β


=

[α]n

[α + β]n
and Bn = E


Bn
γ ,β


=

[γ ]n

[β + γ ]n
.

Since ρ2
n = AnBn =

[α]n[γ ]n
[α+β]n[β+γ ]n

is strictly decreasing in n, Theorem 2.1 shows that R(X, Y ) = |ρ1| = ρ1 = ρ(X, Y ), which
is identical to (3).
Nevzorov’s characterization of exponential distribution. Nevzorov [17] proved that for any n,m ∈ {1, 2, . . .},

ρ(Rn, Rn+m) ≤


n

n + m
,
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where Ri is the i-th (upper) record from a continuous distribution F with finite variance. Here R1 = X1 is the first observed
random variable in the i.i.d. sequence {Xi}

∞

i=1. Moreover, equality characterizes the location-scale family of the standard
exponential distribution.

Theorem 2.1 obtains Nevzorov’s result immediately. Indeed, if Wi denotes the i-th record from Exp(1) (with density
f (x) = e−x, x > 0) then

(Wn,Wn+m)
d
= (E1 + · · · + En, E1 + · · · + En+m), n,m ∈ {1, 2, . . .},

where {Ei}∞i=1 is an i.i.d. sequence from Exp(1)—see, e.g., [2]. Setting X = E1 + · · · + En and Y = E1 + · · · + En+m, the joint
density of (X, Y ) is

fX,Y (x, y) =
1

Γ (n)Γ (m)
xn−1(y − x)m−1e−y, 0 < x < y < ∞,

and the conditional densities are

fX |Y (x|y) =
Γ (n + m)
Γ (n)Γ (m)

xn−1(y − x)m−1y−(n+m−1), x ∈ (0, y),

and

fY |X (y|x) =
1

Γ (m)
(y − x)m−1e−(y−x), y ∈ (x,∞).

It follows that

E(Xk
|Y = y) =

(k + n − 1)!(n + m − 1)!
(k + n + m − 1)!(n − 1)!

yk

and

E(Y k
|X = x) = xk +

1
Γ (m)

k
i=1


k
i


Γ (i + m)xk−i.

Thus, A3 is satisfied with Ak =
(k+n−1)!(n+m−1)!
(k+n+m−1)!(n−1)! and Bk = 1, so that

ρ2
k = AkBk =

(k + n − 1)!(n + m − 1)!
(k + n + m − 1)!(n − 1)!

=
[n]k

[n + m]k
.

Since this is a strictly decreasing sequence in k, Theorem 2.1 yields the inequality

ρ(Rn, Rn+m) = ρ(g(Wn), g(Wn+m)) ≤


ρ2
1 =


n

n + m
,

where g(u) = F−1(1 − e−u), u > 0. The equality holds if and only if g is increasing and linear. That is, if and only if F is the
distribution function of αE + β where α > 0, β ∈ R and E ∼ Exp(1).

López-Blázquez and Castaño-Martínez’ result on maximal correlation of order statistics from a finite population. Let U (N)1:n <

U (N)2:n < · · · < U (N)n:n be the order statistics corresponding to a simple random sample, U (N)1 , . . . ,U (N)n , taken without replace-

ment from the finite ordered populationΠN = {1, 2, . . . ,N}, where 2 ≤ n < N . SinceP(U (N)i:n = k) =


k−1
i−1

 
N−k
n−i

 
N
n

−1

for k ∈ {i, i + 1, . . . ,N − (n − i)} (and 0 otherwise), and this defines a probability mass function with support A(N)i:n :=

{i, i + 1, . . . ,N − (n − i)}, we conclude the identity

N−(n−i)
k=i


k − 1
i − 1


N − k
n − i


=


N
n


, 1 ≤ i ≤ n ≤ N. (14)

Setting [α]m = α(α + 1) · · · (α + m − 1) (with [α]0 = 1 for all α ∈ R) we can derive, with the help of (14), a simple
expression for the ascending moments of U (N)i:n :

E

[U (N)i:n ]m


= [N + 1]m

[i]m
[n + 1]m

, m = 1, 2, . . . . (15)

We also mention the following obvious relations, holding for all 1 ≤ i < j ≤ n:

(U (N)i:n ,U
(N)
j:n )

d
= (N + 1 − U (N)n+1−i:n,N + 1 − U (N)n+1−j:n), (16)

(U (N)i:n |U (N)j:n = s) d
= U (s−1)

i:j−1 , s ∈ {j, j + 1, . . . ,N − (n − j)}, (17)

(U (N)j:n |U (N)i:n = k) d
= k + U (N−k)

j−i:n−i, k ∈ {i, i + 1, . . . ,N − (n − i)}. (18)
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Now, applying (15) and (17) we have

E

[U (N)i:n ]m|U (N)j:n = s


= [s]m

[i]m
[j]m

, m = 1, 2, . . . . (19)

Let (X, Y ) = (U (N)i:n ,U
(N)
j:n ) and observe that νX = νY = N − n ≥ 1; see Remark 2.1. Relation (19) shows that

E

[X]m|Y


=

[i]m
[j]m

[Y ]m =
[i]m
[j]m

Ym
+ Polm−1(Y ), m = 1, 2, . . . ,

which implies, using induction onm, that

E(Xm
|Y ) =

[i]m
[j]m

Ym
+ Polm−1(Y ), m = 1, 2, . . . . (20)

Similarly, set i′ = n + 1 − j, j′ = n + 1 − i (so that 1 ≤ i′ < j′ ≤ n) and write Ui′ instead of U (N)i′:n ,Uj′ instead of U (N)j′:n . Now,
applying relations (16) and (19),

E

[Y ]m|X = k


= E


[N + 1 − Ui′ ]m|Uj′ = N + 1 − k


= E


(−1)m[Ui′ ]m + Polm−1(Ui′) | Uj′ = N + 1 − k


= (−1)mE


[Ui′ ]m | Uj′ = N + 1 − k


+ Polm−1(N + 1 − k)

= (−1)m[N + 1 − k]m
[i′]m
[j′]m

+ Polm−1(k)

= [k]m
[i′]m
[j′]m

+ Polm−1(k) = [k]m
[n + 1 − j]m
[n + 1 − i]m

+ Polm−1(k).

It follows that E([Y ]m|X) =
[n+1−j]m
[n+1−i]m

[X]m + Polm−1(X) =
[n+1−j]m
[n+1−i]m

Xm
+ Polm−1(X) and, using induction on m,

E(Ym
|X) =

[n + 1 − j]m
[n + 1 − i]m

Xm
+ Polm−1(X), m = 1, 2, . . . . (21)

Clearly, (20) and (21) show that A3 is satisfied for (X, Y ). Moreover, we have found that Am = [i]m/[j]m and Bm =

[n + 1 − j]m/[n + 1 − i]m, both of which do not depend on N . Since Am > 0 and ρm =

AmBm1{m≤N−n} is strictly de-

creasing inm ∈ {1, . . . ,N − n,N − n + 1}, Theorem 2.1 yields the inequality

ρ

g1(U

(N)
i:n ), g2(U

(N)
j:n )


≤


ρ2
1 =


i(n + 1 − j)
j(n + 1 − i)

.

The equality holds if and only if both g1 and g2 are (non-constant and) linear and with the same monotonicity. More pre-
cisely, the restriction of g1 in the set A(N)i:n has to be non-constant and linear and the restriction of g2 in the set A(N)j:n has to be
non-constant, linear and with the same monotonicity as g1. Note that both sets A(N)i:n and A(N)j:n contain at least two points if
and only if N ≥ n + 1.

Lemma 2.1 of Balakrishnan et al. [3] asserts that for the non-decreasing function g : {1, 2, . . . ,N} → {x1 ≤ x2 ≤ · · · ≤

xN} := ΠN with g(i) = xi, i = 1, 2, . . . ,N ,
g(U (N)i:n ), g(U

(N)
j:n )

 d
= (Xi:n, Xj:n), 1 ≤ i < j ≤ n,

where X1:n ≤ X2:n ≤ · · · ≤ Xn:n are the order statistics corresponding to a simple random sample drawn (without
replacement) from the finite population ΠN . Suppose that ρ(Xi:n, Xj:n) is well-defined or, equivalently, that the elements
of ΠN satisfy xi < xN−(n−i) and xj < xN−(n−j) (otherwise, at least one of Xi:n, Xj:n would be degenerate). Then we conclude
that

ρ(Xi:n, Xj:n) ≤


i(n + 1 − j)
j(n + 1 − i)

, 1 ≤ i < j ≤ n < N. (22)

The equality, for fixed i, j, n,N , characterizes those finite populations ΠN for which the sets {xi, xi+1, . . . , xN−(n−i)} and
{xj, xj+1, . . . , xN−(n−j)}, which may or may not have common points, consist of consecutive terms of two (possibly different)
strictly increasing arithmetic progresses. That is, a population of size N with elements x1 ≤ x2 ≤ · · · ≤ xN satisfying
xi < xN−(n−i) and xj < xN−(n−j) attains the equality in (22) if and only if there exist constants a1 > 0, b1 ∈ R, a2 > 0 and
b2 ∈ R such that

xk =

a1k + b1, for k = i, i + 1, . . . ,N − (n − i),
a2k + b2, for k = j, j + 1, . . . ,N − (n − j),
arbitrary, otherwise.
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López-Blázquez and Castaño-Martínez [16], using Hahn polynomials, have obtained a corresponding inequality for the
correlation ratio, which implies inequality (22). Their arguments, however, apply to populations ΠN having N distinct
elements. We also refer to Theorem 2.1 and Corollary 2.1 in [7], noting that the characterization result stated in Corollary
2.1 of this article is incomplete, unless the sets A(N)i:n and A(N)j:n have at least two common points, i.e., N ≥ n + (j − i)+ 1.

4. Records from a splitting model and a Nevzorov-type characterization of the exponential distribution

Assume that in a particular country and for a specific athletic event, the consecutive performances of the athletes are
described by an i.i.d. sequence {Xi}

∞

i=1. Here and elsewhere in this section, the commondistribution of eachXi will be assumed
to be continuous, i.e., with no atoms—absolute continuity is not required. As the time goes on, the common practice is that
some data regarding the sequence of national records, i.e., the sequence {Ri}

∞

i=1, are recorded, in contrast to the original
performances of the athletes, Xi, which are usually lost or forgotten. The above considerations give rise to the classical
record model, based on an i.i.d. sequence, which is well-developed in the literature; see [2]. Under this classical model the
observed sequence {Ri}

n
i=1 of the first n upper national records is defined as R1 = X1 and Ri = XT (i), i = 2, . . . , n, where

T (i) = min{j ∈ {1, 2, . . .} : Xj > Ri−1}.
Suppose now that, after the appearance of the n-th national record, the initial country is divided into, say, two new

countries (branches), and assume that the athletes in each country are of the same strength as theywere before the division.
Then, the subsequent national records in each branch will take into account the current (common) national record, Rn, and
the subsequent sequence of their individual records will be of the form (R′

n+n1 , R
′′
n+n2), with n1, n2 ∈ {1, 2, . . .}. Clearly,

R′

n+n1
d
= Rn+n1 and R′′

n+n2
d
= Rn+n2 (23)

where Rn+m is the (n + m)-th record from the initial sequence, but as n1 and n2 become large, the r.v.’s R′
n+n1 and R′′

n+n2
should tend towards independence.

Thus, the actual definition of the splitting record sequence is equivalent to the following model: Let {X1, X ′

1, X
′′

1 , X2, X ′

2,
X ′′

2 , . . .} be an i.i.d. sequence of r.v.’s. Define the n-th upper record Rn as before (based on the Xi’s), then set R′
n = R′′

n := Rn
and T ′(n) = T ′′(n) := T (n). For i = 1, 2, . . . define the subsequent record times and record values by

T ′(n + i) = min{j ∈ {1, 2, . . .} : X ′

j > R′

n+i−1}, R′

n+i = X ′

T ′(n+i), and

T ′′(n + i) = min{j ∈ {1, 2, . . .} : X ′′

j > R′′

n+i−1}, R′′

n+i = X ′′

T ′′(n+i).

Clearly, it is of some interest to study the correlation behavior of the marginal records under this model, since large
correlation among these variables entails good prediction of one branch to the other. It is not surprising that, similarly
to the classic case, the splitting record sequence satisfies several interesting properties. In particular, in what follows we
shall make use of the following lemma.

Lemma 4.1. (a) Let {(W ′
n+n1 ,W

′′
n+n2)}

∞

n1,n2=1 be the splitting record sequence based on the i.i.d. sequence {Ei, E ′

i , E
′′

i }
∞

i=1 from the
standard exponential distribution, Exp(1). Then for each n1, n2 ∈ {1, 2, . . .},

(W ′

n+n1 ,W
′′

n+n2)
d
= (E1 + · · · + En + E ′

1 + · · · + E ′

n1 , E1 + · · · + En + E ′′

1 + · · · + E ′′

n2). (24)

(b) Let {(R′
n+n1 , R

′′
n+n2)}

∞

n1,n2=1 be the splitting record sequence based on the i.i.d. sequence {Xi, X ′

i , X
′′

i }
∞

i=1 from a non-atomic
(continuous) distribution function F . Then, for each n1, n2 ∈ {1, 2, . . .},

(R′

n+n1 , R
′′

n+n2)
d
= (g(W ′

n+n1), g(W
′′

n+n2)), (25)

where g(u) = F−1(1 − e−u), u > 0, with F−1(y) = inf{x : F(x) ≥ y}, y ∈ (0, 1).

The proof of Lemma 4.1 is simple and is left to the reader—cf. [2]. With the help of this lemma, Theorem 2.1 yields the
following characterization.

Theorem 4.1. If (R′
n+n1 , R

′′
n+n2) are splitting records based on an i.i.d. sequence {Xi, X ′

i , X
′′

i }
∞

i=1 from a non-atomic distribution F
with E(R′

n+n1)
2 < ∞ and E(R′′

n+n2)
2 < ∞ then

ρ(R′

n+n1 , R
′′

n+n2) ≤
n

√
n + n1

√
n + n2

.

The equality holds if and only if F is the distribution function of αE + β for some α > 0 and β ∈ R, where E ∼ Exp(1).

Proof. Set X = E1 + · · · + En + E ′

1 + · · · + E ′
n1 and Y = E1 + · · · + En + E ′′

1 + · · · + E ′′
n2 with (E1, . . . , E ′′

n2) being a vector of
n + n1 + n2 i.i.d. standard exponential r.v.’s. It can be shown (see the proof of Theorem 4.2) that for all k ∈ {1, 2, . . .},

E(Xk
|Y ) =

[n]k
[n + n2]k

Y k
+ Polk−1(Y ), E(Y k

|X) =
[n]k

[n + n1]k
Xk

+ Polk−1(X).



112 N. Papadatos, T. Xifara / Journal of Multivariate Analysis 118 (2013) 102–114

That is, the random vector (X, Y ) has the polynomial regression property with Ak = [n]k/[n+ n2]k and Bk = [n]k/[n+ n1]k.
Clearly, ρ2

k = ([n]k)2/([n + n1]k[n + n2]k) is strictly decreasing in k. In view of Lemma 4.1, Theorem 2.1 shows that, with
g(u) = F−1(1 − e−u),

ρ(R′

n+n1 , R
′′

n+n2) = ρ

g(W ′

n+n1), g(W
′′

n+n2)


= ρ(g(X), g(Y )) ≤


ρ2
1 =

n
√
n + n1

√
n + n2

,

where the equality holds if and only if g : (0,∞) → R is linear. This, together with the fact that g is assumed to be strictly
increasing, completes the proof. �

Provided that every component is representative as a sum on independent gamma r.v.’s with the same scale parameter,
say 1/λ, Theorem 4.1 and Nevzorov’s [17] characterization reflect the polynomial regression property of a specific class of
multivariate gamma random vectors. Recall that a random variable X follows a gamma distribution with parameters α > 0
and λ > 0 if its density is given by

f (x) =
λα

Γ (α)
xα−1e−λx, x > 0.

This is denoted by X ∼ Γ (α; λ), while the notation X ∼ Γ (0; λ) (for some λ > 0) means that X is degenerate and takes the
value zero w.p. 1. In any case, EX = α/λ and Var X = α/λ2. Under the above notation one can easily verify the following
result, which contains both Theorem 4.1 and Nevzorov’s characterization as particular cases. In fact, Theorem 4.2 obtains
the maximal correlation of Cherian’s bivariate gamma distribution—see [8], [4, pp. 322–325].

Theorem 4.2. Let Xi ∼ Γ (αi; λ) (i = 0, 1, 2) be independent r.v.’s with λ > 0, αi ≥ 0 (i = 0, 1, 2) and α0 + αi > 0 (i =

1, 2). Then the random vector (X, Y ) = (X0 + X1, X0 + X2) follows a bivariate distribution with gamma marginals, namely
X ∼ Γ (α0 + α1; λ) and Y ∼ Γ (α0 + α2; λ). Moreover, (X, Y ) satisfies the polynomial regression property. More precisely, for
all n ∈ {1, 2, . . .},

E(Xn
|Y ) =

n
j=0


n
j


[α0]j[α1]n−j

λn−j[α0 + α2]j
Y j, E(Y n

|X) =

n
j=0


n
j


[α0]j[α2]n−j

λn−j[α0 + α1]j
X j,

where [α]0 ≡ 1 for all α ∈ R and [α]k = α(α + 1) · · · (α + k − 1) for k ∈ {1, 2, . . .}. Finally, for any g1 ∈ L2(X) with
Var g1(X) > 0 and for any g2 ∈ L2(Y ) with Var g2(Y ) > 0 we have the inequality

ρ(g1(X), g2(Y )) ≤
α0

√
α0 + α1

√
α0 + α2

.

Provided that α1 + α2 > 0, the equality holds if and only if either (i) α0 = 0 and g1, g2 are arbitrary or (ii) α0 > 0 and both
g1, g2 are non-constant, linear and with the same monotonicity.

Proof. Cases α0 = 0 and α1 = α2 = 0 are simple (X, Y are independent and X = Y w.p. 1, respectively). Both cases
α0 > 0, α1 = 0, α2 > 0 and α0 > 0, α1 > 0, α2 = 0 are similar to Nevzorov’s case and can be shown as in Section 3.
Assume now that αi > 0 for i = 0, 1, 2. Then, it is easily shown that the conditional density of X given Y = y (for any fixed
y > 0) is

fX |Y (x|y) = ce−λx
 min{x,y}

0
wα0−1(x − w)α1−1(y − w)α2−1eλwdw, x > 0,

where

c = c(α0, α1, α2; λ; y) =
λα1Γ (α0 + α2)

yα0+α2−1Γ (α0)Γ (α1)Γ (α2)
.

Despite the fact that this conditional density is not given in a closed form, we can calculate E(Xn
|Y = y) using Tonelli’s

theorem. Indeed, consider the nonnegative functions θ(w) = wα0−1eλw (w > 0) and h(x, y, w) = (x − w)α1−1(y −

w)α2−11{w<min{x,y}} (x, y, w > 0). Then,

E(Xn
|Y = y) = c

 y

0
xne−λx

 x

0
θ(w)h(x, y, w)dwdx +


∞

y
xne−λx

 y

0
θ(w)h(x, y, w)dwdx



= c

 y

0
θ(w)

 y

w

xne−λxh(x, y, w)dxdw +

 y

0
θ(w)


∞

y
xne−λxh(x, y, w)dxdw


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= c
 y

0
θ(w)


∞

w

xne−λxh(x, y, w)dxdw

= c
 y

0
wα0−1(y − w)α2−1


∞

0
(x + w)ne−λxxα1−1dx


dw.

Now, expanding (x+w)n according to Newton’s formula and using


∞

0 xj+α1−1e−λxdx = Γ (α1 + j)/λα1+j (j = 0, 1, . . . , n),
the inner integral is equal to

∞

0
(x + w)ne−λxxα1−1dx =

1
λα1

n
j=0


n
j


Γ (α1 + j)

λj
wn−j.

Substituting this expression to the double integral, we obtain

E(Xn
|Y = y) =

c
λα1

n
j=0


n
j


Γ (α1 + j)

λj

 y

0
wα0+(n−j)−1(y − w)α2−1dw

=
c
λα1

n
j=0


n
j


Γ (α1 + j)

λj

Γ (α2)Γ (α0 + n − j)
Γ (α0 + α2 + n − j)

yα0+α2+(n−j)−1

=
Γ (α0 + α2)

Γ (α0)Γ (α1)

n
j=0


n
j


Γ (α0 + j)Γ (α1 + n − j)
λn−jΓ (α0 + α2 + j)

yj.

Therefore, X has polynomial regression on Y and, similarly, Y has polynomial regression on X . It follows that (X, Y ) satisfies
conditions A1–A3 and, moreover,

ρn = sign(An)

AnBn =

[α0]n
√

[α0 + α1]n
√

[α0 + α2]n
.

Since |ρn| = ρn is strictly decreasing in n, a final application of Theorem 2.1 completes the proof. �

Theorem 4.2 includes Nevzorov’s [17] characterization because, taking λ = 1, α0 = n, α1 = 0, α2 = m and g1(u) =

g2(u) = F−1(1 − e−u), u > 0, we have that, under the standard record model, (Rn, Rn+m)
d
= (g(Wn), g(Wn+m))

d
=

(g(X), g(Y )).Here (Wn,Wn+m) are the corresponding upper records from the standard exponential distribution. Clearly, the
theoremalso includes the result on splitting recordmodels of Theorem4.1—the only difference being that, due to Lemma4.1,
one has now to put α1 = n1 (rather than α1 = 0) and α2 = n2 (rather than α2 = m).

Provided that g1, g2 ∈ C∞(0,∞), g1(X) ∈ L2(X), g2(Y ) ∈ L2(Y ), and assuming that E|Xng(n)1 (X)| < ∞ and E|Y ng(n)2 (Y )|
< ∞ for all n, where g(n)i denotes the n-th derivative of gi, i = 1, 2, it is of some interest to note that (11) yields the
covariance identity

Cov[g1(X), g2(Y )] =

∞
n=1

[α0]n

n![α0 + α1]n[α0 + α2]n
E

Xng(n)1 (X)


E

Y ng(n)2 (Y )


. (26)

Of course one can apply (26) to the case α1 = α2 = 0, α0 > 0. Then, X = Y ∼ Γ (α0; λ) and we reobtain the generalized
Stein-type identity for the Γ (α0; λ) distribution (see [1]):

Cov[g1(X), g2(X)] =

∞
n=1

1
n![α0]n

E

Xng(n)1 (X)


E

Xng(n)2 (X)


. (27)

Similarly, we can apply (26) to the classical record setup from the standard exponential (setting λ = 1, α0 = n, α1 = 0 and
α2 = m). Then we get

Cov[g1(Wn), g2(Wn+m)] =

∞
k=1

1
k![n + m]k

E

W k

ng
(k)
1 (Wn)


E

W k

n+mg
(k)
2 (Wn+m)


. (28)

5. Conclusions

The simplicity of the proposed method depends heavily on the polynomial regression property, A3, which is satisfied by
all bivariate distributions discussed in the present article. Incidentally, in all of our cases we concluded that R = |ρ(X, Y )| =√
A1B1, and some times it is asserted that this is the typical situation whenever A3 is merely satisfied for n = 1 (i.e., when
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both variables have linear regression). However, this is not true, e.g., when (X, Y ) is uniformly distributed on the interior of
the unit disc (then A1 = B1 = ρ(X, Y ) = 0); see, also, [9].

Castaño-Martínez et al. [7] develop a correlation model for partial minima (or maxima) rather than records. Their
Section 3 indicates that many difficulties can enter to the correlation problem when A3 fails. It appears that, in such cases,
one has to calculate the values of ρn,k := E[φn(X)ψk(Y )] for all n and k. This is not an easy task in general, in contrast to
the present simplified situation, where knowledge of the values An and Bn in A3 suffices for the calculation of the maximal
correlation coefficient.
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