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a b s t r a c t

A class of examples concerning the relationship of linear regression and maximal
correlation is provided. More precisely, these examples show that if two random variables
have (strictly) linear regression on each other, then their maximal correlation is not
necessarily equal to their (absolute) correlation.
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1. Maximal correlation and linear regression

Let (X, Y ) be a bivariate random vector such that its Pearson correlation coefficient,

ρ(X, Y ) :=
Cov(X, Y )

√
Var(X)

√
Var(Y )

, (1)

is well defined. If W is a non-degenerate random variable then L∗

2(W ) is defined to be the class of measurable functions
g : R → R such that 0 < Var[g(W )] < ∞. Under the present notation, the maximal correlation coefficient is defined
as [10,11]

R(X, Y ) := sup
g1∈L∗2(X), g2∈L∗2(Y )

ρ(g1(X), g2(Y )). (2)

Due to results of Sarmanov [21,20], it was believed for some time that if both X and Y have linear regression on each other,
i.e., if for some constants a0, a1, b0, b1,

E(X |Y ) = a1Y + a0 (a.s.), E(Y |X) = b1X + b0 (a.s.), (3)

then

R(X, Y ) = |ρ(X, Y )|. (4)
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The implication (3) ⇒ (4) was cited in a number of subsequent works related to maximal correlation of order statistics and
records, including Rohatgi and Székely [19], Arnold et al. [2, p. 101], Székely and Gupta [23], David and Nagaraja [6, p. 74],
Ahsanullah [1, p. 23] and Barakat [3]. However, as we shall show below, this implication is not valid even in the case of a
strictly linear regression, a1b1 ≠ 0. Note that if R(X, Y ) > 0 then the converse implication, (4) ⇒ (3), is valid; see [18, p.
447] and [7].

Examples of uncorrelated random variables X, Y with (trivial) linear regression

E(X |Y ) = E(Y |X) = 0 (a.s.) (5)

and R(X, Y ) > 0 = |ρ(X, Y )| are known for a long time. For instance, P. Bártfai has calculated R(X, Y ) = 1/3 for a uniform
in the interior of the unit disc. This result was extended by P. Csáki and J. Fischer for the uniform distribution in the domain
|x|p + |y|p < 1 (p > 0), in which case R(X, Y ) = (p + 1)−1; see [18, p. 447] and [5]. Furthermore, Székely and Móri [24]
extended this result to the multivariate case and with different exponents. Moreover, in response to a question asked by
Sid Browne of Columbia University, Dembo et al. [7] constructed a pair (X, Y ) satisfying (5) and R(X, Y ) = 1. (Observe
that the same is true for the uniform distribution in the four-point domain {(0,±1), (±1, 0)}.) Using characterizations of
Vershik [26] and Eaton [9], they also showed that for any non-Gaussian spherically symmetric random vector (U1, . . . ,Uk),
with covariance matrix of rank ≥ 2, there exists a pair of uncorrelated linear forms,

X = a1U1 + · · · + akUk, Y = b1U1 + · · · + bkUk,

such that (5) is fulfilled and R(X, Y ) > |ρ(X, Y )| = 0.
However, in the author’s opinion, it is important to definitely know that (3) does not imply (4) even in the non-trivial

linear regression case. Indeed, if this implication were valid in the particular case where a1b1 ≠ 0, then several works
concerning characterizations of distributions through maximal correlation of order statistics and records – including the
papers by Terrell [25], Székely and Móri [24], Nevzorov [16], López-Blázquez and Castaño-Martínez [15], Castaño-Martínez
et al. [4], Papadatos and Xifara [17] – would be reduced to trivial consequences of this implication. The same is true for the
main result in [7], since it is easily checked that for the partial sums Sk = X1 + · · · + Xk, based on an i.i.d. sequence with
mean µ and finite non-zero variance,

E(Sn+m|Sn) = Sn + mµ (a.s.), E(Sn|Sn+m) =
n

n + m
Sn+m (a.s.).

The purpose of the present note is to present examples of random vectors (X, Y ), with X and Y possessing strictly linear
regression on each other, and such that R(X, Y ) > |ρ(X, Y )| > 0. The proposed examples, contained in the next section, are
as elementary as possible.

2. Counterexamples

Normal marginals. Fix p ∈ (0, 1), α, β ∈ (−1, 1), and define the (symmetric) mixture density

f (x, y) := (1 − p)fα(x, y)+ pfβ(x, y), (x, y) ∈ R
2, (6)

where fρ be the bivariate standard normal density with correlation coefficient ρ ∈ (−1, 1), that is,

fρ(x, y) =
1

2π

1 − ρ2

exp


−

1
2(1 − ρ2)

(x2 − 2ρxy + y2)


, (x, y) ∈ R

2.

Since both fα and fβ have standard normal marginals, the same is true for f . A straightforward calculation shows that for a
random pair (X, Y )with density f ,

E(X |Y ) = [(1 − p)α + pβ]Y , E(Y |X) = [(1 − p)α + pβ]X . (7)

If (1 − p)α + pβ ≠ 0, (7) shows that X and Y have strictly linear regression on each other and, clearly,

ρ(X, Y ) = E(XY ) = E[YE(X |Y )] = (1 − p)α + pβ.

Another simple calculation reveals that

E(X2Y 2) = E[Y 2
E(X2

|Y )] = E{Y 2
[1 + ((1 − p)α2

+ pβ2)(Y 2
− 1)]}.

Using E(X2) = E(Y 2) = 1,E(X4) = E(Y 4) = 3,Var(X2) = Var(Y 2) = 2, we get

ρ(X2, Y 2) = (1 − p)α2
+ pβ2.

Hence, if the parameter vector (p, α, β) ∈ (0, 1)× (−1, 1)2 satisfies 0 < |(1 − p)α + pβ| < |(1 − p)α2
+ pβ2

| then

R(X, Y ) ≥ |ρ(X2, Y 2)| = |(1 − p)α2
+ pβ2

| > |(1 − p)α + pβ| = |ρ(X, Y )| > 0.

For example, the particular choice (p, α, β) = (1/2,−1/4, 3/4) leads to E(X |Y ) = Y/4 (a.s.),E(Y |X) = X/4 (a.s.),
ρ(X, Y ) = 1/4 and R(X, Y ) ≥ ρ(X2, Y 2) = 5/16.
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Arbitrary marginals with bounded supports. Let f1 and f2 be two univariate probability densities (with respect to Lebesgue
measure on R) with bounded supports, supp(fi) ⊆ [αi, ωi],−∞ < αi < ωi < ∞ (i = 1, 2). Since f1 has finite moments of
any order, it is well known that there exists an orthonormal polynomial system {φn(x)}∞n=0, corresponding to f1. That is,

∞

−∞

φn(x)φm(x)f1(x)dx = δn,m,

where δn,m is Kronecker’s delta. Clearly, the support of f1 contains infinitely many points and, therefore, each φn is of degree
n. By the same reasoning, there exists an orthonormal polynomial system {ψn(y)}∞n=0, corresponding to f2. Since every
polynomial is uniformly bounded in any finite interval, we can find constants cn, dn such that

1 < sup
α1≤x≤ω1

|φn(x)| = cn < ∞, 1 < sup
α2≤y≤ω2

|ψn(y)| = dn < ∞, n = 1, 2, . . . .

Consider an arbitrary real sequence {ρn}
∞

n=1 such that

∞
n=1

|ρn|cndn ≤ 1, (8)

e.g.,ρn = 6(π2n2cndn)−1 (n = 1, 2, . . .) orρn = λn (n = 1, . . . ,N) andρn = 0, otherwise,where 0 < λ ≤ (
N

n=1 ncndn)
−1.

Then, the function

f (x, y) := f1(x)f2(y)


1 +

∞
n=1

ρnφn(x)ψn(y)


, (x, y) ∈ [α1, ω1] × [α2, ω2], (9)

and f := 0 outside [α1, ω1] × [α2, ω2], is a bivariate probability density with marginal densities f1, f2; this is so because,
due to (8), the series in (9) converges, for each (x, y) in the domain of definition, to a value greater than or equal to −1.
(Actually, the series converges uniformly and absolutely in [α1, ω1] × [α2, ω2].) Therefore, f (x, y) is nonnegative. Next, it is
easily checked that its integral overR2 equals 1, due to the orthonormality of the polynomials. Finally, it is obvious that the
marginal densities of f are f1, f2.

Assume now that the random vector (X, Y ) has density f . Then X has density f1 and Y has density f2. Moreover, versions
of the conditional densities are given by

fX |Y (x|y) = f1(x)


1 +

∞
n=1

ρnφn(x)ψn(y)


, α1 ≤ x ≤ ω1 (for each y ∈ supp(f2)),

fY |X (y|x) = f2(y)


1 +

∞
n=1

ρnφn(x)ψn(y)


, α2 ≤ y ≤ ω2 (for each x ∈ supp(f1)).

Due to the orthonormality of the polynomials it follows that for all n ≥ 1,

E(φn(X)|Y ) = ρnψn(Y ) (a.s.), E(ψn(Y )|X) = ρnφn(X) (a.s.). (10)

Clearly, if ρ1 ≠ 0, (10) with n = 1 shows that X and Y have strictly linear regression on each other. From (10) we conclude
that ρ(φn(X), ψn(Y )) = ρn for all n ≥ 1 and, therefore, ρ(X, Y ) = ρ(φ1(X), ψ1(Y )) = ρ1 and R(X, Y ) ≥ supn≥1 |ρn|. Since
the choice of {ρn}∞n=1 is quite arbitrary (see (8)), it follows that

R(X, Y ) > |ρ(X, Y )| = |ρ1| > 0 whenever 0 < |ρ1| < sup
n≥2

|ρn|.

3. Concluding remarks

(a) Kingman [12] proved that there exist random vectors (X, Y ) with E(X |Y ) = a1Y ,E(Y |X) = b1X and −1 < a1b1 < 0;
of course, in such cases, E(X2

+ Y 2) = ∞ so that ρ(X, Y ) is not defined. An open question is to find examples of L2
random vectors (X, Y )with non-zero linear regressions, whose marginal densities have one sided unbounded supports,
and R(X, Y ) > |ρ(X, Y )| > 0. The question about exponential marginals was posed by Milan Stehlik of Johannes Kepler
University.

(b) It is obvious that the construction (9) can be adapted to the discrete (lattice) case where (X, Y ) ∈ {1, . . . ,N}
2, covering

the characterizations (for finite populations) treated by López-Blázquez and Castaño-Martínez [15] and Castaño-
Martínez et al. [4].

(c) Distributions with densities of the form (9) are known as Lancaster distributions; Lancaster [14], Koudou [13], Diaconis
andGriffiths [8]. They can be viewed as extensions of the Sarmanov-type distribution (ρn = 0 forn ≥ 2)which, assuming
standard uniform marginals, generalizes the so called Farlie–Gumbel–Morgenstern family.

(d) It is of some interest to observe that the mixture density (6) admits a series representation of the form (9). Indeed, let
{hn}

∞

n=0 be the orthonormal system of (standardized) Hermite polynomials corresponding to the (univariate) standard
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normal density φ(t) = e−t2/2/
√
2π . Sarmanov [22] showed that the series

g(x, y) := φ(x)φ(y)


1 +

∞
n=1

ρnhn(x)hn(y)


, (x, y) ∈ R

2,

represents a bivariate density if and only if ρn = EUn, n = 1, 2, . . . , whereU is a random variablewithP(|U| < 1) = 1.
The special choice of a two-valued U with P(U = β) = p = 1 − P(U = α) leads to ρn = EUn

= (1 − p)αn
+ pβn.

Substituting these values of ρn in the series representation of g , above, and in view of Mehler’s identity (tetrachoric
series) of the bivariate normal density,

fρ(x, y) = φ(x)φ(y)


1 +

∞
n=1

ρnhn(x)hn(y)


, (x, y) ∈ R

2, − 1 < ρ < 1,

we conclude that g = (1 − p)fα + pfβ , as in (6).
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