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1. INTRODUCTION

In a recent paper, Cacoullos, Papathanasiou, and Utev (1994) obtained
some upper bounds for the total variation distance between an arbitrary
continuous d.f. and the standard normal one. Utev (1989) had also
obtained upper bounds for the total variation distance using integrodif-
ferential inequalities. More recently, Papadatos and Papathanasiou (1995a,
1995b) extended the above results in two directions; they gave analogous
upper bounds for arbitrary (continuous and discrete) d.f.'s (a) via the
corresponding w-functions and (b) in terms of a Fisher-type information
(see also Mayer-Wolf (1990) for a similar approach to the normal). Some
applications of the above results were also given.
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Papathanasiou (1996) extended the results of Cacoullos, Papathanasiou,
and Utev (1994) to the multivariate case. Specifically, he showed under
general conditions imposed on the d.f. F that

sup
A

|F(A)&8(A)|#\(F, 8)�2 :
p

i=1

E |wi (X)&1|, (1.1)

where the supremum is taken over the Borel sets of R p, 8 is the d.f. of the
standard normal variate with independent components, X=(X1 , ..., Xp)$ is
an arbitrary standardized p-dimensional random vector with d.f. F and
density f, and w(X)=(w1(X), ..., w p(X))$ is the w-function associated with
X (see (3.1), below). Furthermore, as a by-product of (1.1), the multi-
variate CLT was obtained and, moreover, the rate of convergence in the
CLT was investigated by Cacoullos, Papadatos, and Papathanasiou
(1997); for other results on the rate of convergence see also Gotze (1991)
and Sweeting (1977). Papathanasiou (1996) obtained also some upper
bounds for the total variation distance between an arbitrary multivariate
d.f. F (with density f ) and the multivariate standard normal one with den-
sity ., in terms of the (relative) Fisher information matrix of f with respect
to . (cf. Barron, 1986).

In the present paper the above results are extended to the general case
of an arbitrary density g instead of .; it is proved that, under general con-
ditions, the total variation distance between two arbitrary continuous d.f.'s
F and G is bounded by some expressions of the form (1.1).

When G is discrete and has independent components, the main result is
presented in Theorem 2.1, while the continuous case (part of which has
been discussed in Papathanasiou, 1996) is studied in Section 3 (Theorems
3.1, 3.2, and Corollary 3.1). Finally, some particular illustrative examples
are presented in Section 4.

It should be noted that upper bounds for the total variation distance
between multivariate d.f.'s in terms of a generalized Fisher-type information
matrix are also valid for a quite large class of multivariate d.f.'s and they
will be the object of a future paper.

2. TOTAL VARIATION DISTANCE FOR DISCRETE
RANDOM VECTORS

In order to obtain the upper bounds for the total variation distance
between two arbitrary discrete random vectors, we first give the definition
of the w-function in this case.

Consider a random vector X=(X1 , ..., Xp)$ with d.f. F and probability
function f (x) supported by a ``convex'' set C p/[0, 1, ...] p such that
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(0, 0, ..., 0)$ # C p (in the sense that if x=(x1 , ..., xp)$ # C p then [0, ..., x1]
_ } } } _[0, ..., xp]/C p). Assume that the mean vector + and the disper-
sion matrix 7 of X are well-defined (7>0) and consider the linear func-
tions qi (x)=� p

j=1 _*ijxj where (_*ij)=7&1. Them the w-function of X is
defined for every x in C p by w(x)=(w1(x), ..., w p(x))$ with

wi (x) f (x)= :
xi

k=0

(+i&qi (ui , k, vi)) f (ui , k, vi), (2.1)

where +i=E[qi (X)], u i=(x1 , ..., x i&1)$, and vi=(xi+1 , ..., xp)$ for
i=1, ..., p (see Cacoullos and Papathanasiou, 1992).

In this section, we derive upper bounds for the total variation distance
between F and G, only when G is a discrete d.f. with independent com-
ponents; similar bounds can also be found for the general case, but we will
not investigate them because of their complexity and since the most inter-
esting situations suggest convergence to a limiting d.f. with independent
components (like the multivariate Poisson; see Corollary 2.1 below and
Examples 1 and 2 of Section 4).

Cacoullos and Papathanasiou (1992) established the identity

Cov[qi (X), �(X)]=E[wi (X) 2i�(X)], (2.2)

where � is an arbitrary function defined on C p such that the two sides of
(2.2) exist, and 2i denotes the i th partial difference operator

2i �(x)=�(x1 , ..., xi+1, ..., xp)&�(x).

Consider now another d.f., G=G1 } } } } } Gp , with probability function
g= g1 } } } } } gp supported on a set of the form I p=[0, ..., b1]
_ } } } _[0, ..., bp], where 0<bi��. It is furthermore assumed that the
mean mi and the variance s2

i of g i exist. Then, according to the definition
(2.1), the w-function of g exists and it is given by wg(x)=(w1

g(x1), ...,
w p

g(xp))$, where

s2
i w i

g(x i) gi (x i)= :
xi

k=0

(m i&k) gi (k), for xi # [0, ..., b i].

Assume that h is a given bounded function defined on I p and consider the
special function (cf. Papathanasiou, 1996; Papadatos and Papathanasiou,
1995a)

�i (x)=
1

gi (xi&1) w i
g(xi&1)

:
xi&1

k=0

(Eg[h | vi]&Eg[h | k, v i]) gi (k), (2.3)
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defined for all x # I p such that xi�1 (for simplicity, set �i (x)#0 for all
other x), where vi=(xi+1, ..., xp)$ as before. The following lemma gives suf-
ficient conditions for �i and 2j �i to be uniformly bounded and will be used
in the sequel.

Lemma 2.1. If bi<+� or

bi=+� and lim sup
xi � +�

1&Gi (xi)
w i

g(x i) g i (x i)
<�,

then, there exist finite constants ci such that

|�i (x)|�(b&:) ci (2.4)

and

2j �i (x)#0 for j<i while |2j�i (x)|�2(b&:) ci for j�i (2.5)

for all x in I p and all bounded h with :�h(x)�b.

Proof. Observe that

:
xi&1

k=0

(Eg[h | vi]&Eg[h | k, vi]) g i (k)

= :
bi

k=xi

(Eg[h | k, vi]&Eg[h | vi]) gi (k)

and thus

|�i (x)|�(b&:)
min[Gi (xi&1), 1&Gi (xi&1)]

w i
g(x i&1) gi (x i&1)

. (2.6)

The rest of the proof for (2.4) follows by using exactly the same
arguments as those of Lemma 3.2 in Papadatos and Papathanasiou
(1995a), while (2.5) is a simple consequence of (2.4) and the fact that for
j<i, �i is independent of xj .

In the case of a multivariate Poisson d.f. where

g(x)= `
p

i=1

g i (xi)= `
p

i=1

e&*i
*xi

i

xi !
, *i>0, x i=0, 1, ..., i=1, ..., p, (2.7)

we have w i
g(xi)#1 and the conditions of Lemma 2.1 are obviously satisfied.

However, we can go further if we apply the results of Barbour, Holst, and
Janson (1992) for a special choice of h as an indicator function.
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Lemma 2.2. If g is a multivariate Poisson as in (2.7) and h(x)=IA(x),
where A is an arbitrary subset of [0, 1, ...] p, then

|�i (x)|�min[*i , - *i ] (2.8)

and

|2i �i (x)|�1&e&*i while for j>i, |2j �i (x)|�2 min[*i , - *i ].

(2.9)

Proof. Fix x # A and consider the set

Ai #Ai (x1 , ..., x i&1 , xi+1 , ..., xp)=[k : (ui , k, v i) # A].

It is not hard to verify that

�i (x)=&*i E*1, ..., *i&1
[ g*i , Ai

(xi)], (2.10)

where g*, A( } ) is given by (1.10) in Barbour, Holst, and Janson (1992, p. 6)
and the expectation in (2.10) is taken with respect to the first i&1 com-
ponents of the multivariate Poisson defined in (2.7). Similarly,

2i �i (x)=&*i E*1, ..., *i&1
[2i g*i , Ai

(xi)]

and the estimates (2.8) and (2.9) follow from Lemma 1.1.1 in Barbour,
Holst, and Janson (1992, p. 7).

The main result of this section is given in the following

Theorem 2.1. Let G be as in Lemma 2.1 and consider an arbitrary d.f.
F with probability function f satisfying the above conditions. Suppose also
that C p/I p and that f has mean vector +=(+1 , ..., +p)$ and positive definite
dispersion matrix 7=(_ij) with diagonal elements _ii=_2

i . Then, there exist
constants ci (depending only on Gi) such that

\(F, G)� :
p

i=1

2
ci

s2
i

Ef |s2
i w i

g(Xi)&_2
i wi (X)|+ :

p

i=1

ci
|+i&mi |

s2
i

+ : :
1�i< j�p

2
ci

s2
i

|_ij | Ef |w j (X)|, (2.11)
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where w is given by (2.1) and the total variation distance in this case is given
by

\(F, G)=sup
A

|F(A)&G(A)|,

where the supremum is taken over the sets A/[0, 1, ...] p.

Proof. Taking forward differences with respect to xi in (2.3) we have

Eg[h | vi]&Eg[h | vi&1]=w i
g(xi) 2i�i (x)&

x i&mi

s2
i

�i (x)

and thus, adding for all i,

Eg[h]&h(x)= :
p

i=1
_w i

g(x i) 2i�i (x)&
x i&m i

s2
i

�i (x)& .

Taking expectations with respect to f we get

Eg[h]&Ef [h]= :
p

i=1 _Ef [w i
g(X i) 2i �i (X)]&

1
s2

i

Ef [(Xi&mi) �i (X)]&
= :

p

i=1

Ef [w i
g(Xi) 2i� i (X)]+ :

p

i=1

mi&+ i

s2
i

Ef [�i (X)]

& :
p

i=1

1
s2

i

Ef [(Xi&+i) �i (X)].

Applying identity (2.2) for �=�i (a bounded function) in combination
with the identity

Xi&+i= :
p

j=1

_ ij (q j (X)&+ j)

in the last summand, we conclude that

Ef [(Xi&+ i) �i (X)]

=_2
i Ef [wi (X) 2i�i (X)]+ :

j{i

_ ij Ef [w j (X) 2j�i (X)]
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so that

Eg[h]&Ef [h]

= :
p

i=1

1
s2

i

Ef [2i�i (X)(s2
i w i

g(Xi)&_2
i wi (X))]

+ :
p

i=1

mi&+i

s2
i

Ef [�i (X)]& :
p

i=1

1
s2

i

:
j{i

_ ij Ef [w j (X) 2j�i (X)].

Now, (2.11) follows from Lemma 2.1 by choosing h(x)=IA(x), where A is
an arbitrary subset of [0, 1, ...] p.

By using Lemma 2.2 for the multivariate Poisson (2.7) we have the
following bound.

Corollary 2.1. If G=P* is the multivariate Poisson (2.7), then for any
arbitrary d. f. F,

\(F, P* )� :
p

i=1

1&e&*i

*i
Ef |* i&_2

i w i (X)|+ :
p

i=1

min[1, *&1�2
i ] |+i&*i |

+2 : :
1�i< j�p

min[1, *&1�2
i ] |_ ij | Ef |w j (X)|. (2.12)

It should be noted that the general case of a discrete random vector X
with correlated components has been treated here, since a linear transform
of X to another random vector Z with uncorrelated components would
lead (in general) to a non-integer valued Z. This is the reason for using for-
mulas involving the covariances in (2.11) and (2.12), in contrast to the con-
tinuous analogue (see Theorem 3.2 and Corollary 3.1, below).

3. CONTINUOUS CASE

Suppose that the p-dimensional random vector X=(X1 , ..., Xp)$ has a
density f supported by a convex set C p (in the sense that f (x1)>0 and
f (x2)>0 implies f (*x1+(1&*) x2)>0 for all * # [0, 1]) and dispersion
matrix 7>0. The w-function of X, w(x)=(w1(x), ..., w p(x))$, is defined, as
in the discrete case, for every x in the support of f by the relations (see
Cacoullos and Papathanasiou, 1992)

wi (x) f (x)=|
xi

&�
(+i&qi (u i , t, v i)) f (ui , t, vi) dt, i=1, ..., p, (3.1)

where qi (x), +i, ui and vi are as in the discrete case (see (2.1)).
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As in the discrete case, Cacoullos and Papathanasiou (1992) established
the identity

Cov[qi (X), �(X)]=E[wi (X) �i (X)] (3.2)

satisfied by any function � defined on C p with {�=(�1 , ..., �p)$, provided
that both sides of (3.2) exist and that wi (x) f (x) � 0 monotonically as x
approaches any boundary point of C p. It should be noted that Cacoullos
and Papathanasiou proved (3.2) when the support of f is a p-rectangle,
though their assertions continue to hold also for the case of a general con-
vex support.

An interesting application of (3.2) arises when X is normal. In this case,
wi (x)#1 for all i and x and thus (3.2) provides a tool for obtaining lower
variance bounds (and the corresponding characterizations) in terms of the
partial derivatives of � (cf. Chernoff (1981) and Chen (1982) for upper
bounds in the case of independence; see also Hudson (1978) and Chou
(1988) for analogous identities involving the multivariate exponential
family).

Now let G be another arbitrary d.f. with density g supported by a convex
set E p such that C p/E p. We further assume that g has mean vector
m=(m1 , ..., mp)$ and dispersion matrix S=(sij)>0. For any bounded
function h and all vi&1 # E p&i+1 (the projection of E p to the p&i+1 last
components), we define the functions (cf. Papathanasiou, 1996; Papadatos
and Papathanasiou, 1995a)

�(i)(vi&1)=
1

g(vi&1) w (i)
g (vi&1)

_|
xi

&�
(Eg[h | vi]&Eg[h | t, vi]) g(t, vi) dt, (3.3)

where g(xi , vi)= g(vi&1) is the marginal density of the last p&i+1 com-
ponents of g and

g(xi , vi) w (i)
g (xi , vi)=|

xi

&�
(m(i)&q(i)(t, vi)) g(t, vi) dt, (3.4)

where q(i)(xi , vi)=� p
j=i s*ijx j , S &1=(s*ij), m(i)=Eg[q(i)]. Then, one can

easily establish the following

Lemma 3.1. If

sup
vi&1

min[G(xi | vi), 1&G(xi | vi)]
g(xi | v i) |w (i)

g (vi&1)|
<� (3.5)
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and

sup
vi&1

|q(i)(vi&1)&m(i)| min[G(x i | vi), 1&G(xi | vi)]
g(x i | vi) |w (i)

g (vi&1)|
<�, (3.6)

where g(xi | vi) is the conditional density of the i th component of g given the
p&i last components, G(xi | vi) is the corresponding conditional d.f. and the
supremum in (3.5) and (3.6) is taken over vi&1 # E p&i+1, then, there exist
finite constants ci and c$i such that, for all vi&1 # E p&i+1 and all bounded h
with :�h(x)�b,

|�(i)(vi&1)|�(b&:) c$i and |w (i)
g (vi&1) � (i)

i (vi&1)|�(b&:) ci ,

(3.7)

where � (i)
i =��(i)��xi .

Proof. Observe that

|
+�

&�
(Eg[h | vi]&Eg[h | t, vi]) g(t, vi) dt=0

and thus,

|�(i)|�(b&:)
min[G(x i | vi), 1&G(xi | vi)]

g(xi | vi) |w (i)
g (vi&1)|

.

On the other hand, by (3.3),

w (i)
g (vi&1) � (i)

i (v i&1)

=(q(i)(v i&1)&m(i)) �(i)(vi&1)+Eg[h | vi]&Eg[h | vi&1]. (3.8)

Therefore,

|w(i)
g � (i)

i |�(b&:)
|q(i)&m(i)| min[G(xi | v i), 1&G(xi | v i)]

|w (i)
g | g(xi | vi)

+(b&:)

and (3.7) follows from (3.5) and (3.6).

We can now state the following

Theorem 3.1. Under the preceding conditions and, furthermore, +=m
and 7=S, there exist constants ci (depending only on G) such that

\(F, G)� :
p

i=1

ci Ef }w
(i)(X i , ..., Xp)

w (i)
g (Xi , ..., Xp)

&1 } , (3.9)
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where w (i)
g (xi , ..., xp) is given by (3.4) and w(i)(xi , ..., xp) is defined by

f (xi , ..., xp) w(i)(xi , ..., xp)=|
xi

&�
(+(i)&q(i)(t, vi)) f (t, vi) dt,

where q(i)(x i , vi)=� p
j=i s*ijxj=� p

j=i _*ij xj , S&1=(s*ij)=(_*ij)=7&1, and
m(i)=Eg[q(i)]=Ef [q(i)]=+(i) (i.e., w(i) is the first component of the w-func-
tion associated with the marginal density f (xi , ..., xp); cf. (3.1)).

Proof. Adding (3.8) for all i and taking expectations with respect to f
we get (here Vi=(Xi+1 , ..., Xp)$)

Eg[h]&Ef[h]

= :
p

i=1

[Ef [w (i)
g (X i , Vi) � (i)

i (X i , Vi)]&Covf [q(i)(Xi , Vi), �(i)(X i , Vi)]]

= :
p

i=1

Ef _w (i)
g (Xi , V i) � (i)

i (X i , Vi) \1&
w(i)(Xi , Vi)
w (i)

g (X i , V) +& ,

by (3.2) for �=�(i) applied to the marginal density f (xi , ..., xp). Taking
h(x)=IA(x), where A is an arbitrary Borel set of R p, and applying
Lemma 3.1 we conclude (3.9).

Similarly, one can easily show the following

Theorem 3.2. If G is as in Lemma 3.1 and the matrices S and 7 are
diagonal with elements s2

1 , ..., s2
p and _11 , ..., _pp , respectively, then there exist

constants ci and c$i (depending only on G) such that

\(F, G)� :
p

i=1

ci Ef } _iiwi (X)
s2

i w (i)
g (Xi , ..., Xp)

&1 }+ :
p

i=1

c$i
|+ i&mi |

s2
i

, (3.10)

where w (i)
g (xi , ..., xp) is given by (3.4) and wi (x) is given by (3.1).

The proof of Theorem 3.2 is similar to that of Theorem 2.1 in
Papathanasiou (1996) and is omitted. A special case is considered in the
following

Corollary 3.1. If the d.f. G is as in Theorem 3.2 and moreover it has
independent components (i.e, G=G1 } } } } } Gp with density g= g1 } } } } } gp),
then there exist constants ci and c$i (depending only on Gi) such that

\(F, G)� :
p

i=1

ci Ef } _ iiwi (X)
s2

i w i
g(Xi)

&1 }+ :
p

i=1

c$i
|+i&mi |

s2
i

, (3.11)
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where w is given by (3.1) and w i
g(xi) is the (univariate) w-function associated

with the density gi .

4. EXAMPLES

Here we present some illustrative examples, applying the above results.

Example 1. Let Xn be the multinomial random vector MN(n; %1 , ..., %p),
where the parameters %i=%i (n)=*i �n (*i>0 fixed) for all i=1, ..., p. The
w-function of Xn is given by (see Cacoullos and Papathanasiou, 1992)

wi (x)=
n&x1& } } } &xp

n(1&%1& } } } &%p)
=

n&x
n&*

, i=1, ..., p,

where x=x1+ } } } +xp and *=*1+ } } } +*p . The support of Xn is
obviously the ``convex'' set C p=[x1�0, ..., xp�0 : x1+ } } } +xp�n] and,
of course, +i=*i , _2

i =*i (1&*i �n) and _ ij=&*i*j �n. Since X=
X1+ } } } +Xp has a Binomial d.f. Bi(n; *�n) and wi (x)�0 for all x in C p,
we have

E |wi (X)|=E[wi (X)]=1

and Corollary 2.1 leads to the estimate

\(Fn , P* )� :
p

i=1

(1&e&*i) E } 1&\1&
*i

n +
n&X
n&* }

+
2
n

: :
1�i< j�p

min[1, *&1�2
i ] *i *j

�
2p*

n&*
+

2*2

n
=O(n&1) as n � �,

and the well-known convergence of multinomial to the multivariate
Poisson follows, with a rate of convergence of order at least n&1.

Example 2. Let Xn be the negative multinomial random vector
NM(n; %1 , ..., %p); that is, the probability function of Xn is given by

fn(x)=\n+x1+ } } } +xp&1
x1 , ..., xp + %x1

1 } } } } } %xp
p } %n, x # [0, 1, ...] p,

where %=1&%1& } } } &%p is the failure probability. Assume that the
parameters %i=%i (n)=*i �(n+*) (*i>0 fixed) for all i=1, ..., p, where
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*=*1+ } } } +*p as in the previous example. The w-function of Xn is given
in this case by

wi (x)=
1
n

(1&%1& } } } &%p)(n+x1+ } } } +xp)=
n+x
n+*

, i=1, ..., p,

where x=x1+ } } } +xp (note that (1+%1+ } } } +%p)&1 in the corre-
sponding result of Cacoullos and Papathanasiou (1992, p. 179) has been
replaced by the corrected one, 1&%1& } } } &%p). Since +i=*i ,
_2

i =*i (1+*i �n), and _ij=*i* j �n, we get from Corollary 2.1 (note that
wi (x)�0 for all x in [0, 1, ...] p and E |wi (X)|=E[wi (X)]=1 as in the
previous example)

\(Fn , P* )� :
p

i=1

(1&e&*i) E } 1&\1+
*i

n +
n+X
n+* }

+
2
n

: :
1�i< j�p

min[1, *&1�2
i ] * i*j

�
(2p&1) *+*2�n

n+*
+

2*2

n
=O(n&1),

and thus, the negative multinomial d.f. converges to the multivariate
Poisson with a rate of convergence of order at least n&1.

Example 3. Let X be an n-dimensional random vector uniformly dis-
tributed in the interior of a sphere with center (0, ..., 0)$ and radius - n+2.
Since the r.v.'s X1 , ..., Xn are exchangeable, it is clear that each pair (say
(X, Y )$=(Xi , Xj)$) has the same density,

fn(x, y)=
n

2?(n+2)n�2 (n+2&x2& y2)n�2&1, x2+ y2<n+2,

with marginal densities

fX (x)= fY (x)

=
1

B(1�2, (n+1)�2)(n+2)n�2 (n+2&x2) (n&1)�2, x2<n+2,

where B(:, b)#1(:) 1(b)�1(:+b).
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It is evident that X and Y are uncorrelated with mean 0 and variance 1.
Furthermore, the w-function is given by

w1(x, y)=w2(x, y)=
1
n

(n+2&x2& y2), x2+ y2<n+2.

Applying (1.1) (or Corollary 3.1 with G=8, the bivariate standard normal
d.f.), we have

\(Fn , 8)�
4
n

E |2&X 2&Y2|�
8
n

E |1&X 2|

�
8
n

- E[X4]&1=
8
n �

2(n+1)
n+4

r
8 - 2

n
.

In order to apply Theorem 3.1, we first calculate

w(1)(x, y)=w1(x, y)=
1
n

(n+2&x2& y2), x2+ y2<n+2

and

w(2)( y)=
1

n+1
(n+2& y2), y2<n+2.

Therefore, Theorem 3.1 gives

\(Fn , 8)�
2
n

E |2&X 2&Y2|+
2

n+1
E |1&Y2|

�\4
n

+
2

n+1+ E |1&X2|�\4
n

+
2

n+1+ �
2(n+1)

n+4
r

6 - 2
n

,

which is slightly better than the previous one.

Example 4. Let U(1)< } } } <U(n) be the order statistics corresponding
to a random sample of size n from the uniform (0, 1) r.v. Fix p and q with
0<p<q<1 and suppose that i=(n+1) p, j=(n+1) q. It is well known
that the random pair

(Xn , Yn)$=- n+2 (U(i)& p, U( j)&q)$
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has, as n � �, a limiting normal distribution with mean (0, 0)$ and disper-
sion matrix

7=\p(1& p)
p(1&q)

p(1&q)
q(1&q)+ .

If 8p, q denotes this normal d.f. and Fn is the d.f. of (Xn , Yn)$, then we
have after some algebra

w(1)(xn , yn)=
n+2

p(q& p)(n+1) \
xn

- n+2
+ p+\yn&xn

n+2
+q& p+ ,

w(2)( yn)=
n+2

q(1& p)(n+1) \
yn

n+1
+q+\1&q&

yn

- n+2+ .

Since E[Xn]=E[Yn]=0, D[Xn , Yn]=7 for all n, one can apply
Theorem 3.1 (it can be shown that the constants ci=2, as in the case of
two independent normal r.v.'s) leading to the bound

\(Fn , 8p, q)�2 {E } (n+2) U(i)(U( j)&U (i))
p(q& p)(n+1)

&1 }
+E } (n+2) U( j)(1&U( j))

q(1& p)(n+1)
&1 }=

�
2(n+2)

n+1 { 1
p(q& p)

- Var[U(i)(U( j)&U (i))]

+
1

q(1&q)
- Var[U( j)(1&U( j))]=

r
2

- n {�
q

p(q& p)
&4+� 1

q(1&q)
&4= ,

which gives an estimate of order n&1�2 for the rate of convergence, by only
using the moments of uniform order statistics.
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