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Recent articles have considered the asymptotic behavior of the one-way analysis of variance (ANOVA) F statistic when the number of
levels or groups is large. In these articles, the results were obtained under the assumption of homoscedasticity and for the case when the
sample or group sizes ni remain � xed as the number of groups, a, tends to in� nity. In this article, we study both weighted and unweighted
test statistics in the heteroscedastic case. The unweighted statistic is new and can be used even with small group sizes. We demonstrate that
an asymptotic approximation to the distribution of the weighted statistic is possible only if the group sizes tend to in� nity suitably fast in
relation to a. Our investigation of local alternatives reveals a similarity between lack-of-� t tests for constant regression in the present case
of replicated observations and the case of no replications, which uses smoothing techniques. The asymptotic theory uses a novel application
of the projection principle to obtain the asymptotic distribution of quadratic forms.
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1. INTRODUCTION

It is well known that the F test is robust to the normality
assumption if the number of factor levels or groups is small
(� xed) and the sample or group sizes are large (tend to in� nity);
see Arnold (1980). In this setting the theory of weighted least
squares statistics is also well understood; see Arnold (1981,
chap. 13). However, the case where the number of factor levels
is large (tends to in� nity) is still not adequately developed.

When the number of levels, a, goes to in� nity, the asymp-
totic distribution of the F statistic F D MST=MSE, where
MST is the mean square for treatment and MST is the mean
square for error, is found by obtaining the asymptotic dis-
tribution of a1=2.F ¡ 1/. The MSE typically converges in
probability to a constant and thus, by Slutsky’s theorem,
the foregoing expression reduces to � nding the asymptotic
distribution of a1=2.MST ¡ MSE/. Boos and Brownie (1995)
presented some results in this direction, but used a specialized
techniqueapplicableonly to few models. Because MST ¡ MSE
is a quadratic form, the most direct way to � nd its asymptotic
distribution is to apply results for the asymptotic normality
of quadratic forms; see de Jong (1987) and Jiang (1996) and
references therein. However, it is not straightforward to ap-
ply these results. Akritas and Arnold (2000) developed an ap-
proach that is based on � nding the joint limiting distribution of
.MST; MSE/. With this technique they covered a very general
class of models and also obtained the asymptotic distributionof
the statistics under � xed alternatives. Independently and using
different asymptotic techniques, Bathke (2002) also general-
ized the results of Boos and Brownie (1995) to � xed effects
balanced multifactor designs.

The aforementioned results all pertain to the homoscedastic
case with small (� xed) group sizes. However, the assumption
that a large number of populationsare homoscedastic is dif� cult
to ascertain when the group size from each population is small.
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As demonstrated by Scheffé (1959, chap. 10), the F test is sen-
sitive to departures from the homoscedasticityassumption, par-
ticularly in the unbalanced case. The homoscedastic procedure
based on the asymptotic theory for large a is equally sensitive.
For example, 1,000 simulation replications with a D 30 levels,
group sizes 14, 15, 7, 4, 4, 4, 4, 6, 5, 4, 4, 4, 6, 5, 5, 4, 6, 6,
8, 4, 5, 4, 5, 6, 4, 5, 4, 6, 4, 5, and heteroscedastic normal er-
rors with corresponding variances .1 C :133i/2, i D 1; : : : ;30,
at ® D :05, yielded achieved ® levels of .141 and .178 for the
classical F test and that based on Theorem 2.2(a), respectively.
[For the same setting but homoscedasticerrors, the procedureof
Theorem 2.2(a) achieved an ® level of :070.] For the same set-
ting, the unweighted heteroscedastic test procedure for large a

(see Theorem 2.5), achieved an ® level of .073. [Also see Re-
mark 2.3(ii) for a similar simulation in the balanced case.]

Even under homoscedasticity, the usual F test is not asymp-
totically valid in the unbalanced case if the group sizes are
small; see Section 2.1. Although an asymptotically valid pro-
cedure using the F -test statistic is provided in Section 2.1, it
requires estimation of the fourth moment.

The purpose of the present article is to provide test proce-
dures that are valid and perform well in unbalanced and/or het-
eroscedastic situations when a tends to in� nity. We consider
both the classical weighted statistic and an unweighted sta-
tistic that appears to be new. Using exact calculations under
normality, we demonstrate that the classical weighted statistic
is very unstable if the group sizes are small, which explains
Krutchkoff’s (1989) observation.Asymptotic approximation to
the distribution of the weighted statistic requires the average
group size to tend to in� nity faster than a1=2. The procedure
that uses the new unweighted statistic is applicable also with
small group sizes. Its asymptotic and small sample properties
are preferable to those of the procedure based on the F -test
statistic, even in the homoscedastic case. Indeed, it does not re-
quire estimation of the fourth moment and its asymptotic theory
uses weaker conditions.

The techniquewe apply is based on an applicationof the pro-
jection principle. It allows us to study,directly and elegantly,the
asymptoticnull distributionof the quadratic form MST ¡ MSE.
The novelty of the technique rests on the choice of the class of
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random variables onto which to project. Although for simplic-
ity we focus on the one-way model, it is rather obvious that the
projection principle and the idea of choosing the class of vari-
ables onto which to project, applies to general multifactor mod-
els; see Wang (2003) and Wang (2004). The basic technique
is demonstrated for the homoscedastic case, where the trans-
parency of the method permits derivation of the asymptotic the-
ory under weaker assumptions on the moments and group sizes
in the unbalancedcase than those of Akritas and Arnold (2000).
In doing so, we also consider the case where the group sizes are
allowed to tend to in� nity together with the number of levels.
This setting was also considered by Portnoy (1984), but from
the M-estimation point of view.

The one-way layout F statistic coincides with the lack-of-� t
statistic for testing the hypothesisof constant regression against
a general alternative with replicated observations, and thus the
present results have direct bearing on this problem as well.
The literature of lack-of-� t testing in regression is quite exten-
sive: see Eubank and Hart (1992), Müller (1992), Härdle and
Mammen (1993), Hart (1997), and Dette and Munk (1998), to
mention a few. It is quite interesting that the asymptoticvalidity
of the common lack-of-� t test in the case of replicated observa-
tions has never been considered. Our study of local alternatives
reveals that the classical lack-of-� t test with replicated observa-
tions cannot detect alternatives that converge to the null hypoth-
esis at rate a¡1=2, but rather at rates that resemble those in the
nonparametric literature. Given the calculation in the case of
normal variables with known variance presented in Fan (1996),
this is not surprising.

Section 2 gives the test statistics and their limiting null distri-
bution with some comments on their performance. In Section 3
we present the projection method in the context of quadratic
forms. Section 4 gives asymptotic results under local alterna-
tives. Some simulation results are discussed in Section 5. Proofs
of the results presented in Sections 2 and 4 are given in the
Appendix.

In all that follows, Xij , i D 1; : : : ; a, j D 1; : : : ; ni , de-
notes a double sequence of independentrandom variables, S2

i D
.ni ¡ 1/¡1 Pni

j D1.Xij ¡ Xi¢/2 and

MST D 1
a ¡ 1

aX

iD1

ni.Xi¢ ¡ X¢¢/
2;

MSE D 1
N ¡ a

aX

iD1

niX

jD1

.Xij ¡ Xi¢/
2; (1.1)

Fa D MST

MSE
;

where Xi¢ D n¡1
i

Pni

jD1 Xij and X¢¢ D N¡1 Pa
iD1

Pni

jD1 Xij

with N D n1 C¢ ¢ ¢Cna . In case the group sizes ni D ni.a/ ! 1
as a ! 1, we also write S2

i .a/ and N.a/.

2. MAIN RESULTS

In this section we present and discuss the asymptoticnull dis-
tribution of the proposed test statistics. Corresponding results
under local alternatives are stated in Section 4.

2.1 Homoscedastic Models

Let Ua have an Fa¡1;N¡a distribution, which is the dis-
tribution of Fa under homoscedasticity and normality. Let
also N=a ! b, a¡1 Pa

iD1 n¡1
i ! b1; thus, in the balanced

case, b D n and bb1 D 1. It is easily veri� ed that if b < 1,

a1=2.Ua ¡ 1/
d! N.0;2b=.b ¡ 1// as a ! 1, and if N=a

also tends to in� nity with a, then a1=2.Ua ¡ 1/
d! N.0;2/.

Thus, Theorem 2.1 asserts that the usual F test is asymptoti-
cally, as a ! 1, correct in the balanced homoscedastic case
even without the normality assumption. Theorem 2.2, how-
ever, shows that the usual F procedure for unbalanced models
is robust to departures from the normality assumption only if
bb1 D 1 or the group sizes are also large.

Theorem 2.1 (Balanced case). Let Xij , i D 1; : : : ; a , j D
1; : : : ; n, be an iid (independent,identicallydistributed)sequence
of random variableswith EXij D ¹ and 0 < VarXij D ¾ 2 < 1.

(a) If n ¸ 2 remains � xed, then

a1=2.Fa ¡ 1/
d! N

³
0;

2n

n ¡ 1

´
as a ! 1:

(b) If n D n.a/ ! 1, as a ! 1, then

a1=2.Fa ¡ 1/
d! N.0; 2/ as a ! 1:

Note that the result of part (b) of Theorem 2.1 is easily
guessed from part (a). Its proof, however, involves a rather in-
teresting application of the Lindeberg condition.

Theorem 2.2 (Unbalanced case). Let Xij , i D 1; : : : ; a,
j D 1; : : : ; ni , be an iid sequence of random variables with
EXij D ¹, 0 < VarXij D ¾ 2 < 1.

(a) If, for some ± > 0, EjXij j4C± < 1, supa¸1 a¡1 £Pa
iD1 n4C±

i < 1,

Nn D Nn.a/ D 1
a

aX

iD1

ni ! b 2 .1;1/;

and

1
a

aX

iD1

1
ni

! b1 as a ! 1;

then

a1=2.Fa ¡ 1/
d! N.0; ¿ 2/ as a ! 1;

where, letting ¹4 D E[.Xij ¡ ¹/4=¾ 4],

¿ 2 D 2b

b ¡ 1
C .¹4 ¡ 3/

b.bb1 ¡ 1/

.b ¡ 1/2
:

(b) Let ni D ni.a/, and set n.a/ D minfni.a/I i D 1; : : : ; ag
and ·.a/ D maxfni.a/; i D 1; : : : ; ag. Assume that

n.a/ ! 1 as a ! 1;

and

·.a/=n.a/ · C < 1 for all a:

If EX4
ij < 1, then

a1=2.Fa ¡ 1/
d! N.0; 2/ as a ! 1:
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The reason we need higher moments in the unbalanced case
is because the square terms (i.e., X2

ij ) do not cancel [see (A.6)].
The preceding results with � xed ni ’s overlap with those of Boos
and Brownie (1995) and Akritas and Arnold (2000), although
the present assumptions are slightly weaker. The new results
under homoscedasticity pertain to the case given in Section 4,
where the group sizes also tend to in� nity and the limiting dis-
tribution is under local alternatives.

2.2 Heteroscedastic Models

2.2.1 The Possible Statistics. Under heteroscedasticity it is
possible to have both weighted and unweighted statistics. In
this section we � rst introduce the two statistics and then present
their asymptotic theory.

The unweighted statistic, whose version for the unbalanced
case is new, is based on the observation that in the balanced
case, E.MST/ D E.MSE/ under the null hypothesis, so that
the statistic MST ¡ MSE is still centered. In the unbalanced
case this is not true, but centering can be achieved by replacing
MSE with MSE¤ D .a ¡ 1/¡1 Pa

iD1.1 ¡ ni=N/S2
i . This leads

to the statistic

Ta D a¡1=2
aX

iD1

µ
ni.Xi¢ ¡ X¢¢/

2 ¡
³

1 ¡
ni

N

´
S2

i

¶
; (2.1)

which, for the balanced case only, is closely connected to Fa

via the relationship

Ta D
³

1 ¡ 1
a

´¡
a1=2.Fa ¡ 1/

¢
Á

1
a

aX

iD1

S2
i

!

D
³

1 ¡ 1
a

´¡
a1=2.MST ¡ MSE/

¢
: (2.2)

The Wald-type weighted statistic is

TW D X
0
¢C

0.CVC0/¡1CX¢; (2.3)

where X¢ D .X1¢; : : : ; Xa¢/0 is the vector of sample means with
dispersion matrix V D VarX¢ D diag.¾ 2

1 =n1; : : : ; ¾ 2
a =na/, and

C D .1a¡1j¡Ia¡1/, where 1k D .1; : : : ;1/0 2 Rk and Ik denotes
the k-dimensional identitymatrix. Note that this is similar to the
weighted scheme that would be used if ni ! 1 and a is � xed.
Also note that, writing J D 1a10

a ,

TW D X
0
¢

³
V¡1 ¡ 1

tr.V¡1/
V¡1JV¡1

´
X¢

D
aX

iD1

ni

¾ 2
i

X
2
i¢ ¡ 1Pa

iD1 ni=¾ 2
i

Á
aX

iD1

ni

¾ 2
i

Xi¢

!2

; (2.4)

so that it is easily calculated without inverting a matrix. Note
that in the homoscedastic case and with the usual estimation of
the common variance, TW becomes the usual one-way analysis
of variance (ANOVA) statistic.

Remark 2.1. An alternative derivation of TW is � rst to stan-
dardize X¢ and then center it before forming the quadratic
form. In particular, V¡1=2X¢ has mean value V¡1=2¹ and co-
variance matrix Ia . Thus, the appropriate quadratic form is
.X¢ ¡ b¹/0V¡1.X¢ ¡ b¹/. The minimum variance unbiased esti-
mator of ¹ under the hypothesisof a common mean is b¹ D b¹1a ,

where b¹ D
Pa

iD1 wiXi¢, where the wi are proportionalto ni=¾ 2
i

and sum to 1. With this choice of b¹ it is easy to verify that the
preceding quadratic form equals TW . However, TW involvesun-
known variances that must be estimated. The resulting general-
ized or weighted least squares statistic is

bTW D
aX

iD1

ni

S2
i

X
2
i¢ ¡ 1

Pa
iD1 ni=S2

i

Á
aX

iD1

ni

S2
i

Xi¢

!2

: (2.5)

It will be shown that bTW is asymptotically equivalent to TW

only if the group sizes tend to in� nity as a ! 1 suitably fast.
The dif� culties with � xed group sizes are highlighted by the
following proposition, which indicates that bTW, applied to the
simplest case (i.e., to the balanced homoscedasticnormal case),
is quite unstable. The assertion is stated here without proof.

Proposition 2.3. Let Xij be iid N.¹;¾ 2/, i D 1; : : : ; a,
j D 1; : : : ; n, ¾ 2 > 0, n � xed. Then, provided n ¸ 6,

a¡1=2
³

bTW ¡
n ¡ 1
n ¡ 3

a

´

d! N

³
0;2

.n ¡ 1/2.n ¡ 2/

.n ¡ 3/2.n ¡ 5/

´
as a ! 1:

Note that the requirement n ¸ 6 arises from the fact that
Var[.Xi¢ ¡ ¹/2=S2

i ] D 2.n ¡ 1/2.n ¡ 2/n¡2.n¡ 3/¡2.n ¡ 5/¡1.
Thus, for small group sizes, one can expect unstable behavior
of the Wald-type weighted statistic.

Remark 2.2. Although weighted statistics are known to have
better power properties, the results of Proposition 2.3 and Sec-
tion 2.2.3 suggest that their use requires the group sizes to be
large also. For example, in the last simulation setting in Sec-
tion 5 (a D 30; n D 10), the achieved ® level of the weighted
test statistic is .295, but if n is increased to 70 and 80, the
achieved ® levels become .096 and .076, respectively.Thus, we
do not recommend using the weighted test statistic if the group
sizes are less than 80. On the other hand, the unweighted test
statistic proposed here can be used also with small n.

2.2.2 The Unweighted Statistic. The asymptotic distribu-
tion of Ta is given separately for the balanced and unbalanced
cases, and small or large group sizes.

Theorem 2.4 (Balanced case, small n). For n ¸ 2 � xed,
let Xij , i D 1; : : : ; a, j D 1; : : : ; n, be a double sequence of
independent random variables with EXij D ¹ and
0 < VarXij D ¾ 2

i < 1, and suppose that in each row i , the ran-
dom variables Xij , j D 1; : : : ; n, have the same distribution.
Moreover, assume that

1
a

aX

iD1

¾ 4
i ! s4 2 .0; 1/ as a ! 1 (2.6)

and that for some ± > 0, supa¸1 a¡1 Pa
iD1.EjXi1j2C±/2 < 1.

Then, with Ta given by (2.1),

Ta
d! N

³
0;

2ns4

n ¡ 1

´
as a ! 1:
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Remark 2.3. (i) Assuming that the MSE is consistent for
¾ 2 D lima¡1 Pa

iD1 ¾ 2
i , (2.2) implies that the assertion of The-

orem 2.4 is equivalent to

a1=2.Fa ¡ 1/
d! N

³
0;

2ns4

.n ¡ 1/¾ 4

´
as a ! 1: (2.7)

Similar observations are valid for the results of Theorems 2.6,
4.3, and 4.5(a).

(ii) Because s4 ¸ ¾ 4 in (2.7), it follows that the usual F test,
or that based on Theorem 2.1, will be liberal under het-
eroscedasticity. To illustrate this effect, we conducted small
simulation with 1,000 runs and Xij » N.0; ¾ 2

i /, i D 1; : : : ; 30,
j D 1; : : :10, where ¾i D 1 if i · 15 and ¾i D 5 if i ¸ 16, at
nominal ® D :05. The achieved ® levels of the classical F test
and the procedure based on Theorem 2.1 are .109 and .129,
respectively,whereas that based on Theorem 2.4 achieved .074.

(iii) If ¾ 2
i D ¾ 2 for all i , then s4 D ¾ 4 and (2.7) coincides

with the result of Theorem 2.1(a). However, the results use dif-
ferent conditions. Theorem 2.4 does not require Xij to be iid,
but uses extra moment assumptions to control the variation of
the summands.

Theorem 2.5 (Unbalanced case, small ni ). Let Xij , i D
1; : : : ; a , j D 1; : : : ; ni , be a double sequence of independent
random variables with EXij D ¹ and 0 < Var Xij D ¾ 2

i < 1,
where ni ¸ 2 for each i . Suppose that in each row i , the ran-
dom variables Xij , j D 1; : : : ; ni , have the same distribution.
Moreover, assume that

1
a

aX

iD1

¾ 4
i ! s4 2 .0;1/;

1
a

aX

iD1

¾ 4
i

ni ¡ 1
! ° 4 2 .0; 1/ as a ! 1;

and that for some ± > 0, supa¸1
1
a

Pa
iD1 n2C±

i < 1 and
supi¸1 EjXi1j2C± < 1. Then, with Ta given by (2.1),

Ta
d! N

¡
0;2.s4 C ° 4/

¢
as a ! 1:

Remark 2.4. Compared to its homoscedastic counterpart,
Theorem 2.5 does not require the Xij to be iid, uses weaker
moment conditions,and the limiting result does not involve ¹4.
This highlights the differences between Ta and Fa in the unbal-
anced case.

Next we present versions of Theorems 2.4 and 2.5 when the
group sizes tend to in� nity with the number of factor levels.
Here, the balanced and unbalanced cases are combined in one
theorem, where the asymptotic result is shown under two dif-
ferent sets of conditions,one being weaker in moment assump-
tions and more restrictive in conditions on group sizes than
the other.

Theorem 2.6 (Large ni ). Let Xij , i D 1; : : : ; a, j D 1;

: : : ; ni.a/, be independent with EXij D ¹ and 0 < Var Xij D
¾ 2

i < 1, and suppose that for each i , Xij , j D 1; : : : ; ni.a/,
have the same distribution.Set n.a/ D minfni.a/I i D 1; : : : ; ag,
·.a/ D maxfni.a/I i D 1; : : : ; ag, and assume that 2 ·
n.a/ ! 1, ·.a/=n.a/ · C < 1 for all a , and

1
a

aX

iD1

¾ 4
i ! s4 2 .0;1/ as a ! 1:

If for some ± > 0, either

sup
a¸1

1
a

aX

iD1

.EjXi1j2C±/2 < 1 and n.a/ D o
¡
a±=.4C2±/

¢

(2.8)
or

sup
a¸1

1
a

aX

iD1

EjXi1j4C± < 1; (2.9)

then, with Ta given by (2.1),

Ta
d! N.0; 2s4/ as a ! 1:

2.2.3 The Weighted Statistic. Given the dif� culties with
boundedgroup sizes when the unknownvariances are estimated
(see Proposition 2.3), this section considers the case where the
group sizes tend to 1.

Let TW be given in (2.3) or (2.4). A straightforward calcula-
tion reveals that

ETW D a ¡ 1 C
aX

iD1

ni

¾ 2
i

¹2
i ¡ 1

Pa
iD1 ni=¾ 2

i

Á
aX

iD1

ni

¾ 2
i

¹i

!2

¸ a ¡ 1

with equality if and only if the null hypothesis H0 : ¹1 D
¢ ¢ ¢ D ¹a is true. Thus we are led to consideration of the as-
ymptotic distribution,under the null hypothesis, of

TW ¡ .a ¡ 1/

D
aX

iD1

³
ni

¾ 2
i

X
2
i¢ ¡ 1

´
¡ 1

t .a/

aX

iD1

ni

¾ 2
i

³
ni

¾ 2
i

X
2
i¢ ¡ 1

´

¡ 1
t .a/

X

i 6Dj

ni

¾ 2
i

nj

¾ 2
j

Xi¢Xj ¢;

where t .a/ D
Pa

iD1 ni=¾ 2
i .

Proposition 2.7. Assume that Xij are independent random
variables such that EXij D ¹ and Var Xij D ¾ 2

i > 0, i D
1; : : : ; a , j D 1; : : : ; ni .a/, and suppose that in each row i , the
random variables Xij , j D 1; : : : ; ni.a/, have the same distrib-
ution. Moreover, assume that for some ± > 0, supi¸1 Ej.Xi1 ¡
¹/=¾ij4C± < 1. If n.a/ D minfni.a/I i D 1; : : : ; ag ! 1
as a ! 1, then, for TW given in (2.3) or (2.4),

a¡1=2
¡
TW ¡ .a ¡ 1/

¢ d! N.0;2/ as a ! 1:

Theorem 2.8. Consider the setting of Proposition 2.7 and,
moreover, assume that the variances ¾ 2

i , i ¸ 1, are bounded
away from zero and that the random variablesXij are uniformly
bounded by some constant M . Let bTW be the statistic given
in (2.5), let ni D ni.a/ and set n.a/ D minfni.a/I i D 1; : : : ; ag,
Nn D Nn.a/ D a¡1 Pa

iD1 ni . If condition (C.1) of Lemma C.2
holds and, in addition,

(a) a¡1=2
aX

iD1

.logni/
4

ni
D o.1/;

(b)
a1=2

Nn
D o.1/; and

(c) n.a/ ! 1;

(2.10)
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then

a¡1=2¡bTW ¡ .a ¡ 1/
¢ d! N.0;2/ as a ! 1:

We remark that the condition of uniform boundednessof the
random variables, which will be used to apply Bernstein’s in-
equality in the proof of Lemmas C.1 and C.2, can be replaced
by a condition that imposes a bound on the rate of growth of the
absolute moments (cf. Shorack and Wellner, 1986, p. 855).

3. THE PROJECTION METHOD FOR
QUADRATIC FORMS

A common method for obtaining the limit distribution of a
sequence of statistics Sa is to show that it is asymptotically
equivalent to a sequence eSa of which the limit behavior is easy
to derive. For certain classes of statistics (e.g., U statistics,
R statistics) the suitable sequence eSa is found by the method
of projection. For a nice presentation of the projection method,
see van der Vaart (1998, chap. 11). If Sa is based on U1; : : : ; Ua

and has � nite second moment, its projection onto the class of
random variables of the form

Pa
iD1 gi.Ui/, where gi are mea-

surable with
Pa

iD1 E[g2
i .Ui/] < 1, is given by

eSa D
aX

iD1

E.Sa jUi/ ¡ .a ¡ 1/ESa :

This is known as the Hájek projection of Sa . In this section we
show that a slight modi� cation of the Hájek projection method
yields a sequence of statistics that is asymptotically equivalent
to the sequence of quadratic forms MST ¡ MSE. For simplicity
only, the formulation of this section is limited to homoscedas-
tic models, but includes both cases where the possibly unequal
group sizes are either � xed or tend to in� nity. In fact (see Ap-
pendix A), the proofs given in the present article are all based
on the same projection method.

Let Xi D .Xi1; : : : ;Xini
/0, i D 1; : : : ; a , be independent ran-

dom vectors with independentcomponents, and without loss of
generality assume that EXij D 0 and Var Xij D 1 for all i , j .
We are interested in the limiting distribution of Fa ¡ 1, or

equivalently, whereas MSE
p! 1, in the limiting distribution

of MST ¡ MSE, as a ! 1. To do so, we use the projection
method, projecting onto the class of random variables

C H D

(
aX

iD1

gi.Xi/ : gi measurable with
aX

iD1

E[g2
i .Xi/] < 1

)

:

(3.1)
It is easily seen that the projection onto the class C H of any
statistic Sa (satisfying ES2

a < 1), based on Xi , i D 1; : : : ; a, is
given by

eSa D
aX

iD1

E.Sa jXi/ ¡ .a ¡ 1/ESa : (3.2)

This is a slight variation of Hájek’s projection in the sense that,
to de� ne the class of random variables onto which we project,
the original set of independent variables is grouped into inde-
pendent vectors.

Remark 3.1. We stipulate that such variations of Hájek’s
projection produce asymptotically equivalent statistics for
most quadratic forms arising in statistics. Indeed, the inter-
esting part in most quadratic forms is due to blocks that
lie along the diagonal. In the present case, if we let X D
.X11; : : : ;X1n1 ; : : : ;Xa1; : : : ;Xana /0 , then MST ¡ MSE can be
written as a quadratic form in X, MST ¡ MSE D X0AX, with
A given by

A D

0

BB@

B1 ¡c31n11
0
n2

¢ ¢ ¢ ¡c31n11
0
na

¡c31n2 10
n1

B2 ¢ ¢ ¢ ¡c31n21
0
na

:::
:::

:::
:::

¡c31na 10
n1

¡c31na 10
n2

¢ ¢ ¢ Ba

1

CCA ;

where 1k D .1; : : : ;1/0 2 Rk and Bi are ni £ ni matrices with
elements bi;sk given by

bi;sk D

8
><

>:

c1

ni
¡ c2 ¡ c3 if s D k

c1

ni
¡ c3 if s 6D k,

(3.3)

where

c1 D
N ¡ 1

.N ¡ a/.a ¡ 1/
;

c2 D
1

N ¡ a
; (3.4)

c3 D 1
N.a ¡ 1/

:

Thus, all elements of A outside the block diagonal equal c3,
which is an order of magnitude smaller than the other elements.

Using the quadratic form representation of MST ¡ MSE, the
notation introduced in Remark 3.1, and under EXij D 0 and
Var Xij D 1, we have

X0AX D
aX

iD1

X0
iBiXi ¡ c3

X

i1 6Di2

ni1X

j1

ni2X

j2

Xi1j1Xi2j2 (3.5)

and thus

E.X0AXjXr/ D X0
rBrXr C

aX

i 6Dr;iD1

niX

sD1

bi;ss

D X0
rBrXr ¡

nrX

sD1

br;ss;

where the second equality follows from the fact that the diago-
nal elements of A sum to zero. According to (3.2), the projec-
tion of X0AX onto the class C H given in (3.1) is

aX

rD1

E.X0AXjXr / D
aX

rD1

"

X0
rBrXr ¡

nrX

sD1

br;ss

#

D
aX

rD1

X0
rBr Xr

D X0ADX; (3.6)

where AD D diagfB1; : : : ; Bag. Using the facts that the Xij are
independent with zero mean, and the diagonal elements of A
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(and hence also of AD) sum to zero, it is easy to see that
E.X0AX/ D E.X0ADX/ D 0. Using the notation in (3.4) and a
straightforward computation,

X0ADX D
aX

rD1

X0
rBrXr

D
aX

iD1

"³
c1

ni
¡ c3

´Á
niX

jD1

Xij

!2

¡ c2

niX

j D1

X2
ij

#

: (3.7)

Because this is a sum of a independent random variables with
zero mean, it is reasonable to expect that

¡
Var.X0ADX/

¢¡1=2
X0ADX

d! N.0; 1/: (3.8)

Direct computations given in Appendix A show that, with no
restriction on the ni ,

Var.X0ADX/ D O.a¡1/: (3.9)

This suggests that the proper scaling of X0ADX is a¡1=2, even
if the group sizes tend to in� nity. Relationships (3.5), (3.6),
(3.8), and (3.9) imply that for the projection method to be suc-
cessful in � nding the asymptotic distribution of X0AX, we must
have X0AX¡X0ADX D op.a¡1=2/. This fact, in the present par-
ticular case of homoscedastic models, is given in the following
proposition.

Proposition 3.1. Under EXij D 0 and Var Xij D 1 (note
there is no assumption regarding a common distribution, no re-
quirement of existence of higher moments, and no restriction
on the ni ; the only requirement is the independence of Xij ),
we have

a1=2.X0AX ¡ X0ADX/
p! 0:

Remark 3.2. Since MST=MSE is invariant to a common
location–scale transformation of Xij , the statement of Propo-
sition 3.1 includes the general homoscedastic case and pertains
to the null hypothesis of equality of means.

Proof of Proposition3.1. From (3.5) and (3.6), it follows that

aE.X0AX ¡ X0ADX/2

D ac2
3

X

i1 6Di2

X

i3 6Di4

ni1X

j1

ni2X

j2

ni3X

j3

ni4X

j4

E
¡
Xi1j1 Xi2j2 Xi3j3Xi4j4

¢
:

Each of these expectations is zero unless either i1 D i3 and
i2 D i4 and j1 D j3 and j2 D j4 , or i1 D i4 and i2 D i3 and
j1 D j4 and j2 D j3, in which case the expectation equals 1.
Thus,

aE.X0AX ¡ X0ADX/2 D 2a

.a ¡ 1/2

Á

1 ¡ 1
N2

aX

iD1

n2
i

!

· 2a

.a ¡ 1/2
! 0 as a ! 1:

In Section 2.1, as well as in the next section, this result is
used to � nd the asymptotic distribution of a1=2X0AX.

4. LOCAL ALTERNATIVES

To obtain the limiting distributionof the statistics under local
alternatives, it is convenientto assume that the observed random
variables are simple translations of the original ones described
in the corresponding theorems, that is,

Yij D Xij C ¹i.a/; i D 1; : : : ; a; j D 1; : : : ; ni; (4.1)

where the constants ¹i.a/ ! 0 as a ! 1 in a suitable rate, so
that the limiting distribution exists. It turns out that we can � nd
convenient alternatives of the form (4.1) with

¹i.a/ D a3=4n
¡1=2
i

Z i=a

.i¡1/=a

g.t/ dt; (4.2)

where g is a continuous function on [0;1] such that
Z 1

0
g.t/ dt D 0: (4.3)

It is also useful to de� ne the “departure parameter,”

µ2 D
Z 1

0
g2.t/ dt; (4.4)

which vanishes if and only if the null hypothesis is correct.
The form of (4.2) reveals that the statistics cannot detect alter-
natives that converge to the null hypothesisfaster than a¡1=4 for
bounded (� xed) group sizes and faster than a¡1=4.ni.a//¡1=2

for group sizes going to in� nity.

4.1 The Homoscedastic Case

The two results of this section generalize Theorems
2.1 and 2.2 by presenting the asymptotic distribution of Fa un-
der local alternatives. Here and in the proofs we use the nota-
tion Fa.X/ and Fa.Y/ for the Fa statistic in (1.1) evaluated on
the Xij ’s and Yij ’s, respectively.

Theorem 4.1 (Balanced case). Under the conditions of The-
orem 2.1 imposed on the Xij , and if ¹i .a/ are given by (4.2)
with ni ´ n ¸ 2, we have the following results:

(a) If n ¸ 2 remains � xed and µ 2 denotes the departure pa-
rameter given by (4.4), then

a1=2¡
Fa.Y/ ¡ 1

¢ d! N

³
µ 2

¾ 2
;

2n

n ¡ 1

´
as a ! 1:

(b) If n.a/ ! 1, then, with µ 2 as in (a),

a1=2¡
Fa.Y/ ¡ 1

¢ d! N

³
µ 2

¾ 2
;2

´
as a ! 1:

Theorem 4.2 (Unbalanced case). De� ne the function sa.t/ DPa
iD1 n

1=2
i I .i ¡ 1 · at < i/, 0 · t < 1, and let ¹i.a/ be given

by (4.2) and Yij be given by (4.1). Then we have the follow-
ing results:

(a) In the case where the ni remain � xed, if the conditions
of Theorem 2.2(a) are satis� ed and also

lim
a!1

Z 1

0
sa.t/g.t/ dt D ½1
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exists, then with µ 2 denoting the departure parameter
given by (4.4), we have

a1=2
¡
Fa.Y/¡ 1

¢ d! N

³
µ 2 ¡ ½2

1=b

¾ 2
; ¿ 2

´
as a ! 1:

(b) If the ni.a/ ! 1 as a ! 1, consider the assumptions
of Theorem 2.2(b) and also assume that the limits

lim
a!1

Z 1

0

sa.t/

·.a/1=2
g.t/ dt D ½2; lim

a!1
·.a/

Nn.a/
D ¯

exist, where Nn.a/ D a¡1 Pa
iD1 ni.a/. Then, with µ2 is as

in (a),

a1=2¡
Fa.Y/ ¡ 1

¢ d! N

³
µ2 ¡ ¯½2

2

¾ 2 ;2

´
as a ! 1:

Remark 4.1. (1) As mentioned in Section 1 and demon-
strated in the present section, the rates that local alternatives
must converge to the null hypothesis to allow detection re-
semble those found in the literature for lack-of-� t testing in
nonparametric regression. Proposition 3.1, however, shows
that MST ¡ MSE is essentially a sum of independent random
variables. Thus, it should be possible to de� ne and study a cor-
responding partial sum process that would allow ideas such as
the cumulative sum and the adaptive Neyman test to be applied
to improve the performance of the local alternatives. This re-
search, however, is beyond the scope of the present article.

(2) Requiring the existence of lima!1
R 1

0 sa.t/g.t/ dt D ½1

(which is necessarily � nite, as the proof of Theorem 4.2
shows) does not seem to be very restrictive. For instance, let
the ni be uniformly bounded, assuming values in f1; : : : ; mg
for some m, and de� ne Ak;a D fi 2 f1; : : : ; ag : ni D kg and
Ik;a D

S
i2Ak;a

[.i ¡ 1/=a; i=a/ for k D 1; : : : ; m. Then, by the
dominated convergence theorem, we have

Z 1

0
sa.t/g.t/ dt D

mX

kD1

k1=2
Z

Ik;a

g.t/ dt

!
mX

kD1

k1=2
Z

Ik

g.t/ dt

D ½1;

provided lima!1 Ik;a D Ik exists for all k. Similar observations
hold for the existence of the limit ½2 in Theorem 4.2(b).

4.2 The Heteroscedastic Case

Here and in the proofs, we write Ta.X/ and Ta.Y/ for the
Ta statistic in (2.1) evaluated on the Xij ’s and Yij ’s, respec-
tively. We again note the close connection between Ta and Fa

for the balanced case, described in (2.2). The � rst two re-
sults deal, respectively, with the balanced and unbalanced
heteroscedastic cases with small group sizes.

Theorem 4.3. Assume that the conditions of Theorem 2.4
imposed on the Xij hold, and let Yij and ¹i.a/ be as in
(4.1) and (4.2) with ni ´ n ¸ 2. Then, with µ2 denoting the
departure parameter given in (4.4) and Ta.Y/ denoting the sta-
tistic (2.1) calculated in Y,

Ta.Y/
d! N

³
µ 2;

2ns4

n ¡ 1

´
as a ! 1:

Theorem 4.4. Suppose that the conditions of Theorem 2.5
imposed on the Xij and ni are satis� ed, and let Yij and ¹i.a/ be
as in (4.1) and (4.2). Furthermore, let ½1 be as in Theorem 4.2(a)
and set b D lima!1 a¡1

Pa
iD1 ni (assumed to exist). Then

Ta.Y/
d! N

¡
µ2 ¡ ½2

1=b;2.s4 C ° 4/
¢

as a ! 1;

where Ta.Y/ is the statistic given by (2.1) calculated in Y
and µ2 is given by (4.4).

When the group sizes also tend to in� nity, we have the fol-
lowing result.

Theorem 4.5. (a) In the balanced case, assume that either one
of the two sets of conditionsof Theorem 2.6 imposed on the Xij

hold, and let Yij and ¹i.a/ be as in (4.1) and (4.2) with 2 · ni ´
n.a/ ! 1. Then

Ta.Y/
d! N.µ2;2s4/ as a ! 1;

where Ta.Y/ is the statistic given by (2.1) calculated in Y
and µ2 is the departure parameter given in (4.4).

(b) In the unbalanced case, assume that either one of the two
sets of conditionsof Theorem 2.6 imposed on the Xij and ni.a/

are satis� ed, and let Yij and ¹i .a/ be as in (4.1) and (4.2)
[with ni D ni.a/ ! 1]. Furthermore, let ½2 and ¯ be as in
Theorem 4.2(b) (assumed to exist). Then

Ta.Y/
d! N.µ2 ¡ ¯½2

2 ; 2s4/ as a ! 1;

with Ta.Y/ and µ 2 as in (a).

5. SIMULATION RESULTS

The simulations reported in Section 1 and Remark 2.3(ii)
suggest that the heteroscedastic procedures should be used
whenever homoscedasticitycannot be ascertained. The purpose
of this section is to investigate possible disadvantages of using
heteroscedastic procedures on homoscedastic data. The simu-
lations focus mainly on the unweighted statistics that can be
used also with small group sizes. Indeed, the simulation re-
ported in Remark 2.2 indicates that for the Type I error rate
of the weighted statistic to be acceptable, there must be at least
80 observations per group. Thus it is not included in the simu-
lations in this section. However, as an indication of the power
advantageof the weighted statistic, our last simulation uses het-
eroscedastic data and includes the statistic that standardizes by
the true variances.

All simulations are based on 1,000 replications and use nor-
mal and lognormal distributions. In this section, CF denotes the
classical F test, and BHOM and BHET denote the test proce-
dures of Theorems 2.1(a) and 2.4, respectively.

It should be pointed out that consistent estimation of s4

in Theorem 2.4 requires unbiased estimation of each ¾ 4
i .

For this we used U statistics, each with kernel .Xi1 ¡ Xi2/2 £
.Xi3 ¡ Xi4/2. Thus, even though the asymptotic result in The-
orem 2.4 requires only that n ¸ 2, actual application of BHET
requires n ¸ 4.

To investigate the achieved ® levels, we considered balanced
groups of size n D 5 and number of groups a D 10;15; 20;25,
with nominal ® D :05. In the case of Lognormal.0;1/ sam-
ples, the achieved ® levels were satisfactory even with a D 10
(.040, .074, and .060 for CF, BHOM, and BHET), with BHOM



Akritas and Papadatos: Heteroscedastic One-Way ANOVA and Lack-of-Fit Tests 375

always somewhat more liberal than BHET. Under normality,
BHET is more liberal than BHOM, and both are more lib-
eral than in the lognormal case. For example, with a D 25 the
achieved ® levels of CF, BHOM, and BHET were .050, .073,
and .077.

Power simulations in the homoscedastic case used a D 20
and balanced groups of size n D 5, at nominal ® D :05. Data
values were generated as Xij » i¿=a C error, where the error
was again either Normal.0;1/ or Lognormal.0;1/. In the log-
normal case, BHET seems to outperform both CF and BHOM.
For example, the achieved ® levels (i.e., for ¿ D 0) were .048,
.075, and .054 for CF, BHOM, and BHET, and their achieved
powers at ¿ D 3 were, respectively, .670, .732, and .810. Due to
the already mentioned liberal tendency of BHOM and BHET in
the normal case, their achieved powers in the simulation with
normal errors turned out to be higher than that of CF.

For comparison purposes with the weighted statistic, our last
simulation uses heteroscedastic data with a D 30, n D 10, and
nominal ® D :05. The heteroscedasticity in the generated data,
Xij » N.i¿=a; 1 C 25i=a/, was chosen so that the achieved
® level of CF is in an acceptable range (although that of BHOM
is not). As expected, the weighted statistic (with weights based
on the true variances) outperforms the other procedures. For
example, the achieved ® levels were .071, .095, .071, and .056
for CF, BHOM, BHET, and the weighted statistic, whereas their
powers at ¿ D 2 were .249, .299, .252, and .360, respectively.

6. CONCLUSIONS

Recent work by Boos and Brownie (1995), Akritas and
Arnold (2000), and Bathke (2002) considered the behavior of
the classical F statistic, Fa , in homoscedastic ANOVA models
with a large number of levels and small group sizes. In this ar-
ticle we consider the heteroscedastic one-way ANOVA model
with a large number of levels and small or large group sizes.

Our theoretical results, backed by numerical evidence, show
that the F procedure (using Fa with F distribution critical
points) is sensitive to departures from homoscedasticity in both
the balanced and the unbalancedcase. Even under homoscedas-
ticity, it is not asymptotically valid in the unbalanced case un-
less the group sizes are also large. An asymptotically valid
procedure using Fa in the unbalanced homoscedastic case with
small group sizes is suggested in Theorem 2.2, but it requires
estimation of the fourth moment and assumes the existence
of 4 C ± moments.

Because of this sensitivity of the F procedure to departures
from homoscedasticity, our investigation also considered two
statistics designed to accommodate heteroscedasticity. One is
the classical weighted statistic, bTW, and the other is an un-
weighted statistic, Ta , which appears to be new. Statistic Ta dif-
fers from Fa only in the unbalanced case, and performs well
even with small group sizes. It is recommended in any situation
where homoscedasticity cannot be ascertained, although if the
group sizes are also large (we recommend at least 80), bTW can
also be used for improved power.

Althoughthey were designed for the heteroscedasticcase, the
asymptotic properties of Ta are preferable to those of Fa , even
in the homoscedastic case. For example, the asymptotic null re-
sults for Ta assume only that the variables in the same group

have the same distribution,whereas those for Fa require all ob-
servations to be iid. Moreover, in the unbalanced case, the as-
ymptotic distribution of Ta uses fewer moment conditions and
its limiting distribution does not involve the fourth moment. On
the basis of this, we recommend Ta over Fa in all unbalanced
situations (homoscedastic or not).

The theoretical results do not clearly identify a preferable
procedure in the balanced homoscedastic case. (Although the
asymptotic result for Fa requires all observations to be iid, that
for Ta uses slightly stronger moment assumptions.) However,
the simulations in Section 5 suggest that Ta behaves at least
comparably to Fa , even in the balanced homoscedastic case.

The combined overall recommendation is that Ta be used in
all situationswith small group sizes. For heteroscedasticmodels
with large group sizes, we also recommend bTW.

APPENDIX A: PROOFS

Proof of Theorems 2.1 and 4.1. We � rstly study MSE. If n if
� xed, it is immediate (using an obvious notation) that MSE.Y/ D
MSE.X/

p
! ¾ 2 as a ! 1. In the nontrivial case where n D

n.a/ ! 1, we evidently have S2
i D S2

i .a/
p
! ¾ 2 as a ! 1, and

because the S2
i .a/, a ¸ 1, are nonnegative random variables with

E.S2
i .a// D ¾ 2, it follows by Scheffé’s lemma (see the subsequent

proof of Lemma D.1) that EjS2
i .a/ ¡ ¾ 2j ! 0. Thus, the assertion

MSE D MSE.X/ D MSE.Y/
p

! ¾ 2 follows from EjMSE ¡ ¾ 2j ·
.1=a/

Pa
iD1 EjS2

i .a/ ¡ ¾ 2j D EjS2
1 .a/ ¡ ¾ 2j ! 0. Therefore, writing

a1=2¡
Fa .Y/ ¡1

¢
D a1=2¡

Fa.X/ ¡1
¢
C 1 ¡ a¡1

MSE.X/

¡
h.a/ CHa

¢
;

(A.1)
where

h.a/ D a¡1=2n

aX

iD1

¹2
i .a/; Ha D 2na¡1=2

aX

iD1

¹i .a/Xi¢ (A.2)

[note that n1=2.¹1.a/ C ¢ ¢ ¢ C ¹a .a// D
R 1
0 g.t/ dt D 0], the desired

results follow if we show parts (a) and (b) of Theorem 2.1 together

with h.a/ ! µ2 and Ha
p
! 0 as a ! 1.

Observe that h.a/ D a
Pa

iD1.
R i=a
.i¡1/=a g.t/ dt/2 D a¡1 £

Pa
iD1 g2.ti;a / ! µ2 , where ti;a 2 [.i ¡ 1/=a; i=a]. Also, EHa D 0

and Var Ha D 4¾ 2a¡1=2h.a/; thus Ha D op.1/. Hence, it remains to
establish the null distributionresults [parts (a) and (b) of Theorem 2.1],
and without loss of generality, we may assume that EXij D 0 and
VarXij D 1. Proposition 3.1 implies that in both cases it suf� ces to
consider X0ADX. Using (3.7) for the present balanced case, it fol-
lows that

X0ADX D 1
a

aX

iD1

Ui ; (A.3)

where

Ui D 1
n ¡ 1

"Á
nX

j D1

Xij

!2

¡
nX

j D1

X2
ij

#

are iid random variables. Clearly, EUi D 0, whereas

E
¡
.n ¡ 1/2U2

i

¢
D E

Á
nX

j1D1

nX

j2D1;j2 6Dj1

2X2
ij1

X2
ij2

!

D 2n.n ¡ 1/: (A.4)
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[Note that the computation in (A.4) requires the � niteness of only the
second moment.] The classical central limit theorem and the preced-

ing variance computation yield a1=2X0ADX
d! N.0; 2n=.n ¡ 1// as

a ! 1, showing part (a) of Theorem 2.1. For part (b), write (A.3) as

X0ADX D 1

a

aX

iD1

Ua;i ;

where

Ua;i D n.a/

n.a/ ¡ 1

"Á
1

n.a/1=2

n.a/X

jD1

Xij

!2

¡ 1

n.a/

n.a/X

jD1

X2
ij

#
;

i D 1; : : : ; a, are iid random variables. As previously remarked,
EUa;i D 0 and [see (A.4)] Var Ua;i D 2n.a/=.n.a/ ¡ 1/. Note the
similarity between Ua;1 and Ua of Lemma D.1(a). Using the result
of this lemma,

a.n.a/ ¡ 1/

2n.a/

aX

iD1

E
µ

1

a2 U2
a;iI

³
jUa;i j ¸ a

³
2n.a/

a.n.a/ ¡ 1/

´1=2
²

´¶

D n.a/ ¡ 1

2n.a/
E

µ
U2

a;1I

³
jUa;1j ¸

³
2an.a/

n.a/ ¡ 1

´1=2
²

´¶

! 0

as a ! 1. It follows that Lindeberg’s condition is satis� ed for X0ADX
and part (b) of Theorem 2.1 is proved.

Proof of Theorems 2.2 and 4.2. It is easy to see that, in both cases
[with ni � xed or ni D ni .a/ ! 1], MSE D MSE.X/ D MSE.Y/ is
a consistent estimator of ¾ 2 as a ! 1, because it is unbiased and
a. Nn ¡ 1/ Var.MSE/=¾ 4 D ¹4 ¡ 1 ¡ .¹4 ¡ 3/.1 ¡ .1=a/

Pa
iD1 1=ni/=

. Nn ¡ 1/, where ¹4 D E[.Xij ¡ ¹/4=¾ 4]. Again split a1=2.Fa .Y/ ¡ 1/

as in (A.1), where now

h.a/ D a¡1=2
aX

iD1

ni

¡
¹i .a/ ¡ ¹.a/

¢2
;

(A.5)

Ha D 2a¡1=2
aX

iD1

ni

¡
¹i .a/ ¡ ¹.a/

¢
Xi¢;

with ¹.a/ D .1=N/
Pa

iD1 ni¹i .a/. We observe that to establish
both parts (a) and (b) of Theorem 4.2, it is suf� cient to verify
the null-hypothesis results [parts (a) and (b) of Theorem 2.2] to-
gether with the fact that h.a/ tends to an appropriate constant as
a ! 1. Regarding the last limit, write h.a/ D a¡1=2 Pa

iD1 ni¹
2
i .a/¡

Na¡1=2¹2.a/ and observe that the � rst term tends to µ 2, as in
the previous proof, whereas the second term is Na¡1=2¹2.a/ D
aN¡1.

Pa
iD1 n

1=2
i

R i=a
.i¡1/=a g.t/ dt/2 D Nn¡1.

R 1
0 sa .t /g.t/ dt/2, which,

when the ni are � xed, converges to ½2
1=b · µ2 ; in the case where

ni D ni.a/ !1, we have N.a/a¡1=2¹2.a/ D ·.a/ Nn.a/¡1.
R 1
0 sa .t /£

·.a/¡1=2g.t/ dt/2 ! ¯½2
2 · µ 2. Therefore, it remains to verify the

null distributionresults [parts (a) and (b) of Theorem 2.2], and without
loss of generality, we may assume that EXij D 0 and VarXij D 1, so

that ¹4 D EX4
ij .

(a) By Proposition 3.1 and the fact that MSE
p
! 1, it suf� ces to

show that a1=2X0ADX
d! N.0; ¿ 2/. By (3.7), it follows that

a1=2X0ADX D
aX

iD1

Ua;i ;

where

Ua;i D a1=2
³

c1

ni
¡ c3

´Á niX

jD1

Xij

!2

¡ c2a1=2
niX

jD1

X2
ij ;

i D 1; : : : ; a, are independent random variables. It is easily seen that
EUa;i D a1=2[c1 ¡ ni .c2 C c3/], so that

Pa
iD1 EUa;i D 0. Thus

a1=2X0ADX is centered and part (a) of Theorem 2.2 follows by an
application of Lyapounov’s theorem. To do this, we make use of the
variance expression

Var.a1=2X0ADX/ D a

aX

iD1

»³
c1

ni
¡ c2 ¡ c3

´2
.¹4 ¡ 1/ni

C 2ni .ni ¡ 1/

³
c1

ni
¡ c3

´2 ¼
; (A.6)

which can be easily veri� ed after some algebra. (Note that in the bal-
ance case (ni D n, for all i), (A.6) reduces to Var.a1=2X0ADX/ D
2n=.n ¡ 1/, [see the proof of Theorem 2.1(a)], because c1=n ¡ c2 ¡
c3 D 0, c1=n ¡ c3 D c2 D [a.n ¡ 1/]¡1. Of course, this deriva-
tion assumes a � nite fourth moment, which is not assumed in The-
orem 2.1(a), and the reason is that the square terms, in contrast
to the balanced case, do not cancel here.) Using lima!1 a2c2

1 D
.b=.b ¡ 1//2, lima!1 a2.c2 C c3/2 D .b ¡ 1/¡2 , lima!1 a2c2

3 D
lima!1 a2c1c3 D 0, and lima!1 a2c1c2 D b=.b ¡ 1/2, it can be
easily veri� ed that

Var.a1=2X0ADX/ ! .¹4 ¡ 1/
b.bb1 ¡ 1/

.b ¡ 1/2
C 2

b2.1 ¡ b1/

.b ¡ 1/2

D ¿ 2; (A.7)

where the last equality can be seen by adding and subtracting
2b=.b ¡ 1/. Because of (A.7), Lyapounov’s condition is satis� ed if,
for some ± > 0,

aX

iD1

EjUa;i ¡ EUa;i j2C± ! 0 as a ! 1: (A.8)

This is shown in Appendix B.
(b) Using (3.7), write

a1=2X0ADX D a¡1=2
aX

iD1

Ua;i ; (A.9)

where now

Ua;i D ac1.a/

"Á

ni.a/¡1=2
ni .a/X

jD1

Xij

!2

¡ 1

#

C N.a/c2.a/
ani .a/

N.a/

"
1 ¡ 1

ni .a/

ni.a/X

jD1

X2
ij

#

C aN.a/c3.a/
ni .a/

N.a/

"
1 ¡

Á
ni .a/¡1=2

ni .a/X

jD1

Xij

!2#
: (A.10)

From the assumptions, we have

ac1.a/ ! 1;

N.a/c2.a/ ! 1;

aN.a/c3.a/ ! 1; (A.11)

ni.a/

N.a/
! 0;

ani.a/

N.a/
· C:
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Using (A.9), (A.10), (A.11), and Chebyshev’s inequality, it is easy to
see that

a1=2X0ADX

D .ac1.a//a¡1=2
aX

iD1

"Á

ni .a/¡1=2
ni .a/X

jD1

Xij

!2

¡ 1

#
C op.1/

D .ac1.a//a¡1=2
aX

iD1

Va;i C op.1/; (A.12)

where Va;i are de� ned in the preceding equation. Also

v2
a D Var

"

a¡1=2
aX

iD1

Va;i

#
D 2 C .¹4 ¡ 3/

1

a

aX

iD1

1

ni .a/
! 2:

It remains to verify Lindeberg’s condition, that is, to show that for
any ² > 0,

1

av2
a

aX

iD1

E
£
V 2

a;i I .jVa;i j ¸ ²vaa1=2/
¤

! 0 as a ! 1: (A.13)

This, however, follows immediately from Lemma D.2.

Proof of Theorem 2.4. Without loss of generality, we may assume
that EXij D 0. The limiting distribution of Ta coincides with that of

a1=2X0ADX D a1=2.MST ¡ MSE/, because aE.X0AX ¡ X0ADX/2 ·
2a¡1.a ¡ 1/¡2.

Pa
iD1 ¾ 2

i /2 ! 0. From

a1=2X0ADX D
aX

iD1

Ua;i ;

where

Ua;i D 1

a1=2.n ¡ 1/

"Á
nX

jD1

Xij

!2

¡
nX

jD1

X2
ij

#
;

it follows that EUa;i D 0, VarUa;i D 2n¾ 4
i =..n ¡ 1/a/ and, therefore,

Var.a1=2X0ADX/ D 2n

.n ¡ 1/a

aX

iD1

¾ 4
i ! 2ns4

n ¡ 1
: (A.14)

As in the proof of Theorem 2.2(a), we proceed to verify Lyapounov’s
condition (A.8); this can be easily done using (B.4) and the assump-
tions as follows:

aX

iD1

EjUa;i j2C±

D
¡
a.n ¡ 1/2¢¡1¡±=2

aX

iD1

E



Á
nX

jD1

Xij

!2

¡
nX

jD1

X2
ij



2C±

· n2C±a¡1¡±=2
aX

iD1

¡
EjXi1j2C±

¢2 ! 0:

Proof of Theorem 2.5. The existence of lima!1 a¡1 Pa
iD1 ¾ 4

i
D

s4 < 1 implies that ¾ 4
a D o.a/ as a ! 1. Thus, for any ² > 0,

¾ 4
a =a < ² for all a ¸ a0 , showing that for large enough a, a¡1 £

max1·i·af¾ 4
i g · a¡1 maxf¾ 4

1 ; : : : ; ¾ 4
a0¡1g C a¡1 maxf¾ 4

a0
; : : : ;

¾ 4
a g · C0=a C ² , which yields

lim
a!1

1

a
max

1·i·a
f¾ 4

i g D 0: (A.15)

We � nd the asymptotic distribution of Ta by projecting it onto the
class C H given in (3.1), and without loss of generality we may as-
sume that EXij D 0. From (3.2) and ETa D 0, the projected statistic is
eTa D

Pa
iD1 E.Ta jXi/, where easy calculations yield

E.Ta jXi / D
1

p
a

³
1 ¡

ni

N

´
.niX

2
i¢ ¡ S2

i /

D 1p
a

³
1 ¡ ni

N

´
1

ni ¡ 1

niX

j1;j2D1;j2 6Dj1

Xij1Xij2 :

After some algebra, we get eTa ¡ Ta D a¡1=2N¡1 Pa
i1 6Di2;i1;i2D1 £

Pni1
j1D1

Pni2
j2D1 Xi1j1Xi2j2 and, therefore,

E.eTa ¡ Ta/2 D 2

aN2

ÁÁ
aX

iD1

ni¾
2
i

!2

¡
aX

iD1

ni¾
4
i

!

· 2

a
max

1·i·a
f¾ 4

i g ! 0

by (A.15). Moreover,

Var eTa D 2

³
1 ¡

1

N

´2
Á

1

a

aX

iD1

¾ 4
i C

1

a

aX

iD1

¾ 4
i

ni ¡ 1

!

¡
2

N

³
2 ¡

1

N

´
1

a

aX

iD1

ni ¾
4
i C

2

N2

1

a

aX

iD1

n2
i ¾ 4

i ;

and by using the assumptions, (A.15), and the fact that N ! 1 as
a ! 1, we conclude that Var eTa ! 2.s4 C ° 4/ 2 .0;1/ as a ! 1.
Therefore, it remains to verify Lyapounov’s condition for eTa , that is, it
suf� ces to show that

L.a/ D a¡1¡±=2
aX

iD1

³³
1 ¡

ni

N

´
1

ni ¡ 1

´2C±

EjUi j2C± ! 0 (A.16)

for some ± > 0, as a ! 1, where Ui D
Pni

j1 6Dj2;j1;j2D1 Xij1Xij2 .

Using (B.4) again, it follows that EjUi j2C± · .ni.ni ¡ 1//2C± £
.EjXi1j2C±/2, and using the assumptions that a¡1 Pa

iD1 n
2C±
i ·

C1 < 1 and max1·i·a EjXi1j2C± · C2 < 1 for all a and the fact
that .1 ¡ ni=N/ < 1, we get L.a/ · a¡±=2C1C2

2 , from which (A.16)
follows.

Proof of Theorem 2.6. Without loss of generality we may as-
sume that EXij D 0. According to (3.2), the projection of Ta onto the
class C H , in (3.1), is eTa D

Pa
iD1 E.Ta jXi /, where

E.Ta jXi/ D 1p
a

³
1 ¡ ni .a/

N.a/

´
1

ni.a/ ¡ 1

ni .a/X

j1;j2D1;j2 6Dj1

Xij1 Xij2 :

As in the proof of Theorem 2.5, we have E.eTa ¡Ta/2 · 2a¡1N.a/¡1£Pa
iD1 ni .a/¾ 4

i
· 2·.a/a¡2n.a/¡1 Pa

iD1 ¾ 4
i

! 0 by the assumption
that ·.a/=n.a/ · C . Moreover,

Var eTa · 2
a

³
1 ¡ n.a/

a·.a/

´2 n.a/

n.a/ ¡ 1

aX

iD1

¾ 4
i ! 2s4

and, similarly, Var eTa ¸ 2a¡1.1 ¡ a¡1·.a/=n.a//2
Pa

iD1 ¾4
i

! 2s4 ,

showing that Var eTa ! 2s4 as a ! 1. Therefore, it remains to verify
Lyapounov’s condition for eTa , that is, it suf� ces to show that

L.a/ D a¡1¡±=2
aX

iD1

³³
1 ¡ ni .a/

N.a/

´
1

ni.a/ ¡ 1

´2C±

EjUa;i j2C± ! 0
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for some ± > 0, as a ! 1, where Ua;i D
Pni .a/

j1 6Dj2;j1;j2D1 Xij1 Xij2 .
However, because

L.a/ · R.a/ D a¡1¡±=2

.n.a/ ¡ 1/2C±

aX

iD1

EjUa;i j2C±;

the desired result is proved if we show that R.a/ ! 0 as a ! 1.
Assuming � rst (2.8) and using (B.4), it follows that EjUa;i j2C± ·
.ni.a/.ni .a/ ¡ 1//2C±.EjXi1j2C±/2 and, thus,

R.a/ · a¡±=2
³

·.a/.·.a/ ¡ 1/

n.a/ ¡ 1

´2C±

a¡1
aX

iD1

¡
EjXi1j2C±¢2 ! 0;

because ·.a/=n.a/ · C, n.a/ ! 1, a¡1 Pa
iD1.EjXi1j2C±/2 ·

C2 < 1 for all a, and ·.a/2C± · Cn.a/2C± D o.a±=2/. Assume
next (2.9). It is known that for any p ¸ 2, there exists a � nite posi-
tive constant Ap (depending only on p) such that for any iid random
variables V1; : : : ;Vn with EVi D 0,

EjV1 C ¢ ¢ ¢ C Vnjp · Apnp=2EjV1jpI (A.17)

this fact follows if we � rst use the Marcinkiewich–Zygmund inequal-
ity, EjV1 C ¢ ¢ ¢ C Vnjp · ApE.V 2

1 C ¢ ¢ ¢ C V 2
n /p=2, p ¸ 1, and then

apply (B.1) to the last sum (see Chow and Teicher 1997, pp. 386–387).
Using (A.17) and (B.1), it can be shown that

E



Áni .a/X

jD1

Xij

!2

¡
ni .a/X

jD1

X2
ij



2C±

· D±ni .a/2C±EjXi1j4C2±; (A.18)

where D± is a � nite positive constant that depends only on ±. Use
of (A.18) yields

R.a/ · D±
a¡1¡±=2

.n.a/ ¡ 1/2C±

aX

iD1

ni.a/2C±EjXi1j4C2±

· D± a¡±=2
³

·.a/

n.a/ ¡ 1

´2C±

a¡1
aX

iD1

EjXi1j4C2± ! 0:

Proof of Proposition 2.7. Without loss of generality, we may as-
sume that EXij D 0 for all i, j . Let TW be given as in (2.3) or (2.4)
and set Sa D TW ¡ .a ¡ 1/. A straightforward calculation yields that
the projection of TW ¡ .a ¡ 1/ onto C H, de� ned in (3.1), is

eSa D
aX

iD1

E
¡
TW ¡ .a ¡ 1/jXi

¢

D
aX

iD1

³
1 ¡ 1

t .a/

ni

¾ 2
i

´³
ni

¾ 2
i

X
2
i¢ ¡ 1

´
: (A.19)

It follows easily using Chebyshev’s inequality that a¡1=2.Sa ¡
eSa /

p
! 0 as a ! 1 holds without any restrictions on the group sizes

n1; : : : ; na and with no higher moment assumptions. Thus, the asymp-
totic distribution of Sa is the same as that of its projection eSa , given
in (A.19). Now, with t .a/ D

Pa
iD1 ni=¾ 2

i ,

Var.a¡1=2eSa / D 2
1

a

aX

iD1

³
1 ¡

1

t .a/

ni

¾ 2
i

´2

C 1

a

aX

iD1

³
1 ¡ 1

t .a/

ni

¾ 2
i

´2 EX4
i1 ¡ 3¾ 4

i

ni¾
4
i

! 2;

because the � rst term on the right of the equality converges to 2 as is
seen by

Pa
iD1.1¡.1=t .a//.ni=¾ 2

i //2 D a ¡.2=t .a//
Pa

iD1.ni=¾ 2
i /C

.1=t .a/2/
Pa

iD1.n2
i =¾ 4

i / D a ¡ 2 C ca , ca 2 [0; 1], while the second

is easily seen to converge to 0 by the assumptions made. Hence, it
suf� ces to show Lyapounov’s condition, that is,

L.a/ D a¡1¡±=2
aX

iD1

³
1 ¡

1

t .a/

ni

¾ 2
i

´2C±

£ 1

n
2C±
i ¾

4C2±
i

E


³X

j

Xij

´2
¡ ni¾

2
i


2C±

! 0

as a ! 1, for some ± > 0. If follows that

E


³X

j

Xij

´2
¡ ni¾

2
i


2C±

· 21C±

»
E


X

j

.X2
ij ¡ ¾ 2

i /


2C±

C E


X

j1 6Dj2

Xij1 Xij2


2C± ¼

· 21C±
¡
A2C±n

1C±=2
i EjX2

ij ¡ ¾ 2
i j2C± C D±n2C±

i EjXij j4C2±
¢

· K±n
2C±
i EjXij j4C2±;

where the � rst inequality follows by (B.1), the second by (A.17)
and (A.18), the de� nitions of Ap and D± are also given there, and
K± D 23C2±A2C± C 21C±D± . Thus,

L.a/ · a¡1¡±=2
aX

iD1

³
1 ¡

1

t .a/

ni

¾ 2
i

´2
K±

EjXij j4C2±

¾ 4C2±
i

! 0

by the assumptions made.

Proof of Theorem 2.8. We � rst note that assumptions (2.10) imply

(a)
1

Nn1=2a

aX

iD1

.logni /
2 ! 0;

(b)
1

Nn2a1=2

aX

iD1

.logni/
2 ! 0; (A.20)

(c)
1

Nna3=2

aX

iD1

n
1=2
i logni ! 0:

In view of Proposition 2.7, it suf� ces to show that a¡1=2.bTW ¡
TW/

p
! 0. Use the notation in Remark 2.1 to write TW D

Pa
iD1.ni=

¾ 2
i /.Xi¢ ¡ b¹/2 and bTW D

Pa
iD1.ni=S2

i /.Xi¢ ¡ e¹/2, with

e¹ D
Pa

iD1 bwiXi¢, where bwi are proportional to ni=S2
i and sum to 1.

Relationship a¡1=2.bTW ¡ TW/
p
! 0 is implied by showing

V1.a/ D a¡1=2
aX

iD1

³
1

¾ 2
i

¡ 1

S2
i

´
ni.Xi¢ ¡ e¹/2 D op.1/; (A.21)

V2.a/ D a¡1=2
aX

iD1

ni

¾ 2
i

£
.Xi¢ ¡ b¹/2 ¡ .Xi¢ ¡ e¹/2¤

D op.1/: (A.22)

Write

V1.a/ D a¡1=2
aX

iD1

S2
i ¡ ¾ 2

i

S2
i ¾ 2

i

ni

£
.Xi¢ ¡ b¹/2 C .e¹ ¡ b¹/2

¡ 2.e¹ ¡ b¹/.Xi¢ ¡ b¹/
¤

D V1;1.a/ C V1;2.a/ C V1;3.a/:

Using Lemma C.2, we have that Xi¢ ¡ b¹ D Xi¢ ¡ ¹ ¡
Pa

i1 D1 wi1 £

.Xi1¢ ¡ ¹/ D Op.logni=n
1=2
i / C Op.. Nna/¡1=2/ D Op.logni=n

1=2
i /
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uniformly in i. Assuming, without loss of generality, that ¹ D 0 and
using, in addition, Lemma C.1, it is seen that

a¡1=2
aX

iD1

.S2
i

¡ ¾ 2
i /2

¾ 4
i S2

i

ni .Xi¢ ¡ b¹/2 D Op

³
a¡1=2

aX

iD1

.logni/
4

ni

´

D op.1/

by assumption (2.10)(a). Thus, V1;1.a/ D a¡1=2 Pa
iD1[.S2

i ¡ ¾ 2
i /=

¾ 4
i ]ni .Xi¢ ¡ b¹/2 C op .1/. Using now

a¡1=2
aX

iD1

S2
i ¡ ¾ 2

i

¾ 4
i

nib¹2 D Op

Á
1

Nna3=2

aX

iD1

n
1=2
i logni

!

D op.1/ by (A.20)(c)

and

a¡1=2
aX

iD1

S2
i

¡ ¾ 2
i

¾ 4
i

nib¹Xi¢ D Op

Á
1

Nn1=2a

aX

iD1

.logni /
2

!

D op.1/ by (A.20)(a);

we have

V1;1.a/ D a¡1=2
aX

iD1

1

¾ 4
i

µ
1

ni ¡ 1

niX

j D1

.X2
ij ¡ ¾ 2

i /

¡ ni

ni ¡ 1

³
X

2
i¢ ¡

¾ 2
i

ni

´¶
niX

2
i¢ C op.1/

D a¡1=2
aX

iD1

1

¾ 4
i

1

ni ¡ 1

niX

jD1

.X2
ij ¡ ¾ 2

i /
1

ni

niX

j1D1

niX

j2D1

Xij1 Xij2

¡ a¡1=2
aX

iD1

1

¾ 4
i

ni

ni ¡ 1
1

n2
i

niX

jD1

.X2
ij ¡ ¾ 2

i /

£
1

ni

niX

j1D1

niX

j2D1

Xij1Xij2

¡ a¡1=2
aX

iD1

1

¾ 4
i

ni

ni ¡ 1

1

n2
i

X

r1 6Dr2

Xir1Xir2

£ 1
ni

niX

j1D1

niX

j2D1

Xij1Xij2
C op.1/

D .A/ C .B/ C .C/ C op.1/: (A.23)

Direct calculations, using the fact that the ¾i stay bounded away from
zero, yield that E[.A/2], E[.C/2], and, of course, E[.B/2] are all
O..a¡1=2 Pa

iD1 n
¡1
i /2/. Thus, by assumption (2.10)(a), V1;1.a/ D

op.1/. To show that V1;2.a/ D op.1/ and V1;3.a/ D op.1/ we � rst
consider the rate with which e¹ ¡ b¹ goes to zero. Adding and subtract-
ing .

Pa
iD1 ni=¾ 2

i /¡1.nr=S2
r / inside .bwr ¡ wr/ gives

e¹ ¡ b¹

D
aX

rD1

.bwr ¡ wr/.Xr ¢ ¡ ¹/

D
1=. Nna/

Pa
iD1 ni=¾ 2

i ¡ 1=. Nna/
Pa

iD1 ni=S2
i

1=. Nna/2.
Pa

iD1 ni=S2
i /.

Pa
iD1 ni=¾ 2

i /

1
Nna

aX

rD1

nr

S2
r

.Xr¢ ¡ ¹/

C
1

1=. Nna/
Pa

iD1 ni=¾ 2
i

1
Nna

aX

rD1

nr

S2
r ¾ 2

r

.Xr¢ ¡ ¹/.S2
r ¡ ¾ 2

r /

D Op.1/ £
Á

1
Nna

aX

iD1

ni

S2
i

¡ ¾ 2
i

¾ 2
i S2

i

!Á
1
Nna

aX

iD1

ni

S2
i

.Xi¢ ¡ ¹/

!

C O.1/ £
Á

1
Nna

aX

iD1

ni

S2
i ¾ 2

i

.Xi¢ ¡ ¹/.S2
i ¡ ¾ 2

i /

!
: (A.24)

The expression in the second term on the right side of (A.24) equals
(assuming, without loss of generality, that ¹ D 0)

1
Nna

aX

iD1

ni

¾ 4
i

Xi¢.S
2
i ¡ ¾ 2

i / C 1
Nna

aX

iD1

ni

S2
i ¾ 4

i

.S2
i ¡ ¾ 2

i /2Xi¢

D Op

³
1
Nn

´
C Op

³Pa
iD1 n

¡1=2
i .logni /

3
Pa

iD1 ni

´

D Op

³
1
Nn

´
(A.25)

by Lemmas C.1 and C.2 and the fact that E[fa¡1 Pa
iD1.ni=¾ 4

i / £
.S2

i
¡¾ 2

i /Xi¢g2] D O.1/ as follows by direct calculationsand assump-
tion that the ¾i stay bounded away from zero. The expression in the
� rst term on the right side of (A.24) equals (assuming, without loss of
generality, that ¹ D 0)
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!Á
1
Nna

aX

iD1

ni

¾ 2
i

Xi¢

!

¡
Á

1
Nna

aX

iD1

ni

S2
i ¡ ¾ 2

i

¾ 4
i

!Á
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Á
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.S2

i ¡ ¾ 2
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!Á
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1

. Nna/1=2

´
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³
1
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´

C Op

³
1
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1
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i .logni/
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C Op

³
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i .logni/
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Nn

´
£ Op

³
1
Nn

´
; (A.26)

as is easily seen by decomposing S2
i ¡ ¾ 2

i as was done for (A.23),
direct moment calculations, use of Lemmas C.1 and C.2 and (A.25).
Relationships (A.24), (A.25), and (A.26) imply that

e¹ ¡ b¹ D
aX

rD1

.bwr ¡ wr /.Xr ¢ ¡ ¹/ D Op

³
1
Nn

´
: (A.27)

Thus, by (A.20)(b),

V1;2.a/ D .e¹ ¡ b¹/2a¡1=2
aX

iD1

ni

µ
S2

i ¡ ¾ 2
i

¾ 4
i

¡
.S2

i ¡ ¾ 2
i /2

¾ 4
i S2

i

¶

D Op

³
1

Nn2

´
£ Op. Nn1=2/

C Op

³
1

Nn2

´
£ Op

Á
1

a1=2

aX

iD1

.logni/
2

!

D op.1/; (A.28)
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and, using also (A.25),

V1;3.a/ D 2.e¹ ¡ b¹/a¡1=2
aX

iD1

S2
i ¡ ¾ 2

i

S2
i ¾ 2

i

ni.Xi¢ ¡ ¹/

D Op

³
1
Nn

´
£ Op.a1=2/

D op.1/

by (2.10)(b). Next, we show (A.22). With some algebra we have

V2.a/ D a¡1=2
aX

iD1

ni

¾ 2
i

"
aX

rD1

.bwr ¡ wr/Xr ¢

£
(

2Xi¢ ¡
aX

mD1

.bwm C wm/Xm¢

)#

D a¡1=2
aX

iD1

ni

¾ 2
i

"
aX

rD1

.bwr ¡ wr/Xr ¢f2Xi¢ ¡ 2¹g

¡
aX

rD1

.bwr ¡ wr/Xr¢

(
aX

mD1

.bwm C wm/Xm¢ ¡ 2¹

)#

:

D V2;1.a/ ¡ V2;2.a/: (A.29)

Using the assumption that the ¾ 2
i are bounded away from zero,

we have

V2;1.a/ D Nn1=2
aX

rD1

.bwr ¡ wr /Xr¢

£
(Á

aX

iD1

ni

¾ 2
i

!¡1=2 aX

iD1

ni

¾ 2
i

.2Xi¢ ¡ 2¹/

)Á
1
Nna

aX

iD1

ni

¾ 2
i

!1=2

D Nn1=2
aX

rD1

.bwr ¡ wr /.Xr¢ ¡ ¹/ £ Op.1/ £ O.1/

D op.1/ (A.30)

by (A.27). Next, using (A.27) again and a direct variance calculation,

aX

mD1

.bwm C wm/Xm¢ ¡ 2¹

D
aX

mD1

.bwm C wm/.Xm¢ ¡ ¹/

D
aX

mD1

.bwm ¡ wm/.Xm¢ ¡ ¹/ C 2
aX

mD1

wm.Xm¢ ¡ ¹/

D Op
¡
. Nna/¡1=2¢

:

It follows that

V2;2.a/ D a¡1=2 £ O. Nna/ £ Op

³
1
Nn

´
£ Op

¡
. Nna/¡1=2¢

D Op
¡
. Nn/¡1=2¢

: (A.31)

Relationships (A.29), (A.30), and (A.31) show (A.22), completing
the proof.

Proof of Theorem 4.3. It is easy to see that, with h.a/ and Ha as
in (A.2),

Ta.Y/ D Ta.X/ C h.a/ C Ha : (A.32)

Therefore, we may repeat the same arguments as in the proof
of Theorem 4.1(a); the only difference arises from the fact that
Var Ha D 4na¡1 Pa

iD1 ¹2
i .a/¾ 2

i depends on the different ¾ 2
i . This

can be easily treated, however, because from (A.15), which follows
from (2.6), we have VarHa · 4 max1·i·af¾ 2

i
ga¡1=2h.a/ ! 0.

Proof of Theorem 4.4. Again split Ta.Y/ as in (A.32), where now
h.a/ and Ha are given by (A.5). Therefore, h.a/ ! µ2 ¡ ½2

1=b ¸ 0,
as in the proof Theorem 4.2(a) (with � xed ni). On the other hand, the
variance of Ha goes to zero by (A.15), as in the proof of Theorem 4.3.

Proof of Theorem 4.5. (a) The conclusion follows by using the
same arguments as in the proof of Theorem 4.3 in combinationwith the
proof of Theorem 4.1(b), because h.a/ depends only on the function g

[and not on n.a/], and similarly for the expectation and the variance
of Ha .

(b) Use (A.32) as in the proof of Theorem 4.4, with h.a/ and Ha

as in (A.5). Therefore, h.a/ ! µ 2 ¡ ¯½2
2 ¸ 0, as in the proof of Theo-

rem 4.2(b), and also the variance of Ha goes to zero by (A.15).

APPENDIX B: PROOF OF (A.8)

Let 0 < ± < 1 and write
Pa

iD1 EjUa;i ¡ EUa;i j2C± D [.ac1/2C±=

a±=2]a¡1 Pa
iD1 Ra;i , where

Ra;i D E



³
1
ni

¡ c2 C c3

c1

´Á
niX

jD1

Xij

!2

C
c2

c1

niX

j1;j2D1;j2 6Dj1

Xij1 Xij2
¡

µ
1 ¡ ni

c2 C c3

c1

¶

2C±

:

Because ac1 ! b=.b¡1/ and a±=2 ! 1, (A.8) is satis� ed if we show
that a¡1 Pa

iD1 Ra;i remains bounded. In the following discussion,we
make use of the inequality



mX

iD1

zi



p

· mp¡1
mX

iD1

jzi jp; m ¸ 1; p ¸ 1: (B.1)

(For p > 1, the inequality follows from Hölder’s inequality.)
From (B.1) we have

Ra;i · 31C±

(
1

ni
¡

c2 C c3

c1


2C±

E



niX

j D1

Xij



4C2±

C

c2

c1


2C±

E



niX

j1;j2D1;j2 6Dj1

Xij1 Xij2



2C±

C
1 ¡ ni

c2 C c3

c1


2C±

)

; (B.2)

E



niX

j D1

Xij



4C2±

· n3C2±
i

niX

jD1

EjXij j4C2±

D n4C2±
i EjXij j4C2±; (B.3)

and

E



niX

j1;j2D1;j2 6Dj1

Xij1 Xij2



2C±

D 22C±E


X

1·j1<j2·ni

Xij1 Xij2


2C±
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· 22C±

³
ni .ni ¡ 1/

2

´1C± X

1·j1<j2·ni

E
Xij1 Xij2

2C±

D
¡
ni.ni ¡ 1/

¢2C±¡
EjXij j2C±

¢2
: (B.4)

Using (B.3) and (B.4), (B.2) becomes [set M.±/ D EjXij j4C2± ¸
.EjXij j2C±/2]

Ra;i · 31C±

»
1
ni

¡ c2 C c3

c1


2C±

n
4C2±
i M.±/

C

c2

c1


2C±

n
4C2±
i M.±/ C

1 ¡ ni
c2 C c3

c1


2C± ¼

· 31C±n4C2±
i [2M.±/ C 1]

by the facts j1=ni ¡ .c2 C c3/=c1 j · 1 [which follows from
0 < .c2 C c3/=c1 · 1], c2=c1 · 1, and j1 ¡ ni.c2 C c3/=c1 j · ni .
Thus a¡1 Pa

iD1 Ra;i remains bounded, showing (A.8).

APPENDIX C: LEMMAS USED IN THE PROOF
OF THEOREM 2.8

Lemma C.1. Consider the setting of Theorem 2.8. If the ni ! 1 so
that n.a/ > c log.a/, where the constant c is given in the proof, then,
with probability as high as desired, the S2

i stay bounded away from
zero for all a large enough.

Proof. Pick ± 2 .0; inff¾ 2
i

I i ¸ 1g/. Then

P[S2
i > ±]

D 1 ¡ P[S2
i ¡ ¾ 2

i < ± ¡ ¾ 2
i ]

¸ 1 ¡ P[jS2
i ¡ ¾ 2

i j > j± ¡ ¾ 2
i j]

¸ 1 ¡ P
µ

1
ni ¡ 1

niX

jD1

[.Xij ¡ ¹i /
2 ¡ ¾ 2

i ]

>
1
2

j± ¡ ¾ 2
i j

¶

¡ P
µ

ni

ni ¡ 1

.Xi¢ ¡ ¹i /
2 ¡

¾ 2
i

ni

>
1

2
j± ¡ ¾ 2

i j
¶

D 1 ¡ P

"

niX

jD1

[.Xij ¡ ¹i/
2 ¡ ¾ 2

i ]

> .ni ¡ 1/
1

2
j± ¡ ¾ 2

i j
#

¡ P

"

niX

j D1

.Xij ¡ ¹i /

> ni

³
1

2
j± ¡ ¾ 2

i j ni ¡ 1

ni
C

¾ 2
i

ni

´1=2
#

;

where the last equality holds for all n.a/ larger than a constant
that does not depend on i. Using the preceding relationship, Bern-
stein’s inequality, and the notation ti D .1 ¡ n¡1

i /j± ¡ ¾ 2
i

j=2, Qti D
.ti C ¾ 2

i =ni/
1=2, we have

logP

"
a\

iD1

fS2
i > ±g

#

D log

Á
aY

iD1

P[S2
i > ±]

!

¸
aX

iD1
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³
1 ¡ exp

µ
¡
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i

2ni Var[.Xij ¡ ¹i /
2] C .2=3/Mni ti

¶

¡ exp

µ
¡

n2
i

Qt 2
i

2ni Var Xij C .2=3/Mni Qti

¶´
! 0;

provided n.a/ > c log.a/, some

c > sup
i¸1

max

»
2Var[.Xij ¡ ¹i /

2] C .2=3/M Qti
t2
i

;

2 Var Xij C .2=3/M Qti
Qt 2
i

¼
:

Lemma C.2. Consider the setting of Theorem 2.8. If

aX

iD1

expf¡.logni/
2g ! 0; (C.1)

then

n
1=2
i

logni
.S2

i ¡ ¾ 2
i / D Op.1/;

n
1=2
i

logni
.Xi¢ ¡ ¹i/ D Op.1/

uniformly in i D 1; : : : ; a, as a ! 1.

Remark. In the balanced case, condition(C.1) reduces to .logn/2 ¡
loga ! 1, which is implied by (2.10)(b).

Proof of Lemma C.2. Let ± be any positive number. Working as in
the proof of Lemma C.1, we have

P[jS2
i ¡ ¾ 2

i j ¸ ±]

· P

"

niX

jD1
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µ
¡ .ni ¡ 1/2±2=4
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i =ni ]
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i =ni]

1=2¢¤
:

Thus, with K D 9M4 ,

P

"
a[

iD1

©
jS2

i ¡ ¾ 2
i j ¸ Kn

¡1=2
i logni

ª
#

·
aX

iD1

P
£
jS2

i ¡ ¾ 2
i j ¸ Kn

¡1=2
i logni

¤
! 0

as follows by a straightforward calculation using (C.1). This shows
the � rst of the two statements of the lemma. The second statement
follows similarly.

APPENDIX D: TWO USEFUL LEMMAS

Lemma D.1. (a) Let Xi , i ¸ 1, be a sequence of iid random vari-
ables with EXi D 0 and EX2

i D 1. Let n.a/ be a sequence of positive
integers tending to 1 as a ! 1 and set

Ua D 2

n.a/

n.a/X

j <k;j;kD1

XjXk

D
Á

1

n.a/1=2

n.a/X

jD1

Xj

!2

¡ 1

n.a/

n.a/X

jD1

X2
j ; a ¸ 1:
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Then the sequence of random variables U 2
a , a ¸ 1, is uniformly

integrable.
(b) If, furthermore, EX4

i < 1, then the same is true for the se-

quence V 2
· , · ¸ 1, with

V· D
Á

1

n.·/1=2

n.·/X

j D1

Xj

!2

¡ 1; · ¸ 1:

Proof. (a) Using the central limit theorem, the law of largenumbers,
and Slutsky’s theorem it follows that

U2
a D

"Á
1

n.a/1=2

n.a/X

jD1

Xj

!2

¡ 1

n.a/

n.a/X

jD1

X2
j

#2
d! .Z2 ¡ 1/2

as a ! 1;

where Z is a random variable that has standard normal distribu-
tion. Thus,

lim
a!1 EU 2

a D lim
a!1

2.n.a/ ¡ 1/

n.a/
D 2 D E

³
lim

a!1 U 2
a

´
;

which, together with U 2
a ¸ 0, implies that U2

a ; a ¸ 1, are uniformly
integrable by Scheffé’s lemma; see theorem 5.4 of Billingsley (1968).
Part (b) can be proved similarly.

Lemma D.2. Let Xij , i; j ¸ 1, be a double sequence of iid ran-

dom variables with EXij D 0, EX2
ij D 1, and EX4

ij < 1. Assume
that ni .a/, i D 1; : : : ; a, a ¸ 1, are sequences of positive integers
(group sizes) that satisfy minfni.a/I i D 1; : : : ; ag ! 1 as a ! 1
and de� ne the double sequence of random variables

Va;i D
Á

1

ni .a/1=2

ni .a/X

jD1

Xij

!2

¡ 1; 1 · i · a;a ¸ 1:

Then, for any sequence c.a/ tending to 1, as a ! 1,

1
a

aX

iD1

E
£
V 2

a;iI
¡
jVa;i j ¸ c.a/

¢¤
! 0 as a ! 1: (D.1)

Proof. De� ne the sequence of “pooled group sizes” m.·/, · ¸ 1, as

m.1/ D n1.1/;

m.2/ D n1.2/; m.3/ D n2.2/;

m.4/ D n1.3/; m.5/ D n2.3/; m.6/ D n3.3/;

:::
:::

:::

and de� ne the sequence of random variables V· D .m.·/¡1=2 £Pm.·/
jD1 Xj /2 ¡ 1, · ¸ 1, where X1;X2; : : : is an iid sequence that

has the same distribution as the Xij ’s. It is clear from the preceding

construction that m.·/ ! 1 as · ! 1, and from Lemma D.1(b),
we conclude that the sequence V 2

· , · ¸ 1, is uniformly integrable. It is
also clear that the left side of (D.1) is less than or equal to

sup
·¸1

E
£
V 2

· I
¡
jV· j ¸ c.a/

¢¤
! 0 as a ! 1:

[Received May 2002. Revised October 2003.]
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