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1 Introduction
Karl Pearson (1895), in the context of fitting curves to real data, introduced his famous
family of frequency curves by means of the differential equation

f ′(x)
f (x)

=
p1(x)
p2(x)

,

where f is the probability density and pi is a polynomial in x of degree at most i, i = 1,2.
Since then, a vast bibliography has been developed regarding the properties of Pearson
distributions. The original classification given by Pearson contains twelve types (I–XII),
although this numbering system does not have a clear systematic basis; Johnson et al.
(1994), p. 16. Craig (1936) proposed a new exposition and chart for Pearson curves;
however, a more reasonable and convenient classification is included in a review paper by
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Diaconis and Zabell (1991). Extensions to discrete distributions have been introduced by
Ord (1967) and an extensive review can be found in Ord (1972), Chapter 1.

In this paper we present and review a number of properties satisfied by the distributions
of the Pearson family and the associated Rodrigues polynomials, the polynomials that are
produced by a Rodrigues-type formula. Our main focus is on a suitable subset of Pearson
distributions, the Integrated Pearson Family, because this class subsumes all interesting
properties related to the associated orthogonal polynomial systems. For example, it will
be shown in Section 4 that orthogonality of Rodrigues polynomials with respect to an
ordinary Pearson density f results to an equivalent definition of the integrated Pearson
system. This consideration entails an alternative classification of (integrated) Pearson
distributions, which is essentially the one given in Diaconis and Zabell (1991).

In the context of deriving variance bounds for functions of random variables, Afendras
et al. (2007, 2011) and Afendras and Papadatos (2011) have made use of the following
definition, which provides the main framework of the present article.

DEFINITION 1.1 (Integrated Pearson Family). Let X be an absolutely continuous random
variable with density f and finite mean µ = EX . We say that X (or its density) belongs
to the integrated Pearson family (or integrated Pearson system) if there exists a quadratic
polynomial q(x) = δx2 +βx+ γ (with δ ,β ,γ ∈R, |δ |+ |β |+ |γ |> 0) such that

∫ x

−∞
(µ− t) f (t)dt = q(x) f (x) for all x ∈R. (1.1)

This fact will be denoted by X ∼ IP(µ ;q) or f ∼ IP(µ;q) or, more explicitly, X or f ∼
IP(µ ;δ ,β ,γ).

Despite the fact that the integrated Pearson family is quite restricted, compared to the
usual Pearson system – see Proposition 2.1(iii), below – we believe that the reader will
find here some interesting observations that are worth to be highlighted. The integrated
Pearson system satisfies many interesting properties, like recurrences on moments and on
Rodrigues polynomials, covariance identities, closeness of each type under particularly
useful transformations etc.; such properties are by far more complicated (if they are, at
all, true) for distributions outside the Integrated Pearson system. These features should be
combined with the fact that the Rodrigues polynomials form an orthogonal system for the
corresponding Pearson density if and only if the density belongs to the Integrated Pearson
family. In other words, the Rodrigues polynomials and, consequently, the ordinary Pear-
son densities, are useful only if they are considered in the framework of the Integrated
Pearson system. To our knowledge, these facts have not been written explicitly elsewhere.

The paper is organized as follows: In Section 2 we provide a detailed classification of
the integrated Pearson family. It turns out that, up to an affine transformation, there are
six different types of densities, included in Table 2.1. We also provide conditions guar-
anteeing the existence of moments, and we give recurrences as long as these moments
exist. In Section 3, a detailed comparison between the integrated Pearson family and the
ordinary Pearson system is presented. Interestingly enough, there exist a simple algorithm
that enables one to decide whether a given ordinary Pearson density belongs to the in-
tegrated system, or not. In Section 4, exploiting a result of Diaconis and Zabell (1991),
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we show that (under natural moment conditions) the first three Rodrigues polynomials (of
degree 0, 1 and 2) are orthogonal with respect to an ordinary Pearson density if and only
if this density belongs to the integrated Pearson system. Finally, in Section 5 we provide
recurrences between the orthonormal polynomials and their derivatives; in fact, the deriv-
atives themselves are orthogonal polynomials with respect to other integrating Pearson
densities, having the same quadratic polynomial, up to a scalar multiple. Although we do
not include any specific applications of these results here, we notice that such recurrences
are particularly useful in obtaining Fourier expansions of the derivatives of a function of
a Pearson variate. The main result of Section 5 is given by Corollary 5.4. It provides an
explicit relation (in terms of µ and q) between the m-th derivative of an orthonormal poly-
nomial of degree k > m and the corresponding orthonormal polynomial of degree k−m.
That is, it relates the orthonormal polynomial system, associated with some f ∼ IP(µ ;q),
to the corresponding orthonormal polynomial system associated with the ‘target’ density
fm ∝ qm f .

In the sequel and elsewhere in this article, X ∼ IP(µ ;δ ,β ,γ) means that X has finite
mean µ , and that X admits a density f (w.r.t. Lebesgue measure on R) such that (1.1) is
fulfilled. Define the open (bounded or unbounded) interval

J = J(X) := (ess inf(X), esssup(X)). (1.2)

If F is the distribution function of X then J = (αF ,ωF) = (α,ω), say, where αF := inf{x :
F(x) > 0}, ωF := sup{x : F(x) < 1}. It is clear that (1.1) takes the form 0 = 0 whenever
x = ρ is a zero of q that lies outside the interval (α,ω); thus, f (ρ) may assume any value
in this case. However, in order to be specific, we can redefine f (ρ) = 0 at such points ρ ,
if any, without any loss of generality. Therefore, we shall use this convention through the
whole article without any further reference to it.

2 A complete classification of the Integrated Pearson family
We show in this section that the Integrated Pearson family contains six different types
of distributions. These are classified in terms of the corresponding quadratic polynomial
q(x) = δx2 + βx + γ and its discriminant ∆ = β 2 − 4δγ as follows: Type 1 (Normal-
type, δ = β = 0); type 2 (Gamma-type, δ = 0, β 6= 0); type 3 (Beta-type, δ < 0); type
4 (Student-type, δ > 0, ∆ < 0); type 5 (Reciprocal Gamma-type, δ > 0, ∆ = 0); type 6
(Snedecor-type, δ > 0, ∆ > 0). The first three types (with δ 6 0) consist of the well-known
Normal, Gamma and Beta random variables and their linear transformations; the last three
types (with δ > 0) consist of some less familiar distributions (see Table 2.1, below); they
have finite moments up to order 1 + 1

δ − ε (for any ε > 0) while E|X |1+1/δ = ∞. The
proposed classification is very similar to the one given by Diaconis and Zabell (1991),
Table 2 and pp. 294–296.

We start with an easily verified proposition.

PROPOSITION 2.1. Let X ∼ IP(µ ;q) and set J = (α,ω) = (ess inf(X), esssup(X)). Then,

(i) f (x) is strictly positive for x in J and zero otherwise, i.e., {x : f (x) > 0}= J;
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(ii) f ∈C∞(J), that is, f has derivatives of any order in J;

(iii) X is a (usual) Pearson random variable supported in J;

(iv) q(x) = δx2 +βx+ γ > 0 for all x ∈ J;

(v) if α >−∞ then q(α) = 0 and, similarly, if ω < +∞ then q(ω) = 0;

(vi) for any θ ,c ∈ R with θ 6= 0, the random variable X̃ := θX + c ∼ IP(µ̃; q̃) with
µ̃ = θ µ + c and q̃(x) = θ 2q((x− c)/θ).

Proof. By (1.1), x 7→ q(x) f (x) is continuous. On the other hand, from the definition
of J = (αF ,ωF) = (α ,ω) it follows that q(x) f (x) must vanish for all x 6 α (if any)
and for all x > ω (if any). Also, it must be strictly positive for x ∈ J. Indeed, if x ∈
(µ ,ω) then q(x) f (x) =

∫ ∞
x (t − µ) f (t)dt > (x− µ)(1− F(x)) > 0; if x ∈ (α ,µ) then

q(x) f (x) =
∫ x
−∞(µ − t) f (t)dt > (µ − x)F(x) > 0; finally, q(µ) f (µ) = 1

2E|X − µ | > 0.
Thus, q(x) f (x) > 0 for all x ∈ (α ,ω). Since q is continuous and has no roots in J it fol-
lows that both q(x) and f (x) are strictly positive (and continuous) in J. The vanishing of
q f outside J shows that f (x) = 0 for all x /∈ J, with the possible exception at the points
x /∈ J which are real roots of q. Clearly, if ρ ∈ Rr (α,ω) is a zero of q we can redefine
f (ρ) = 0, if necessary, so that (i) and (iv) follow. On the other hand, f : (α,ω)→ (0,∞)
is C∞(J). Indeed, writing p1(x) = µ− x−q′(x) (a polynomial of degree at most one) we
see from (1.1) that f : J → (0,∞) is continuous and thus,

f ′(x) = f (x)
p1(x)
q(x)

or, equivalently,
f ′(x)
f (x)

=
µ− x−q′(x)

q(x)
, x ∈ J. (2.1)

This proves (iii). Moreover, (2.1) shows that f ′ is continuous in J and, inductively, that
f (n+1) : J →R is continuous, since for x ∈ J,

f (n+1)(x) =
n

∑
j=0

(
n
j

)
f ( j)(x)

(
p1(x)
q(x)

)(n− j)

, n = 0,1,2, . . . .

Now (vi) is straightforward and it remains to show (v). To this end, assume that ω < ∞.
Since q(ω) = limx↗ω q(x) and q(x) > 0 for x in a left neighborhood of ω , it follows that
q(ω) > 0. Assume now that q(ω) > 0 and define

λ1 := inf
x∈[µ ,ω]

{q(x)}> 0, λ2 := sup
x∈[µ ,ω ]

|µ− x−q′(x)|< ∞.

Then, for all x ∈ [µ ,ω),
∣∣∣∣
∫ x

µ

µ− t−q′(t)
q(t)

dt
∣∣∣∣ 6

∫ x

µ

|µ− t−q′(t)|
q(t)

dt 6
∫ ω

µ

|µ− t−q′(t)|
q(t)

dt 6 (ω−µ)
λ2

λ1
< ∞.

Setting λ := (ω−µ)λ2
λ1

< ∞ and observing that

ln f (x) = ln f (µ)+
∫ x

µ

f ′(t)
f (t)

dt = ln f (µ)+
∫ x

µ

µ− t−q′(t)
q(t)

dt, x ∈ [µ,ω),
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we have

| ln f (x)|6 | ln f (µ)|+λ := c < ∞, µ 6 x < ω .

Therefore, there exist constants c1,c2 such that 0 < c1 6 f (x) 6 c2 < ∞ for all x ∈ [µ,ω).
Thus,

q(ω) = lim
x↗ω

q(x) = lim
x↗ω

1
f (x)

∫ ω

x
(t−µ) f (t)dt = 0,

which contradicts the assumption q(ω) > 0. The case α > −∞ is reduced to the case
ω < ∞ if we consider the random variable X̃ = −X with mean µ̃ = −µ and support
J(X̃) = (α̃, ω̃) = (−ω,−α). According to (vi), its density f̃ satisfies (1.1) with quadratic
polynomial q̃(x) = q(−x). Thus, if α > −∞ then ω̃ < ∞ and q(α) = q̃(−α) = q̃(ω̃) =
0.

COROLLARY 2.1. Let X ∼ IP(µ;q) and assume that α = ess inf(X) and ω = esssup(X)
are the lower and upper endpoints of the distribution function of X . Then, the support
of X (or of its density f ) S( f ) = S(X) := {x : f (x) > 0}, equals to the open interval
J = J(X) = (α,ω). This interval support has the following two properties:

(i) J ⊆ S+(q) := {x : q(x) > 0} and

(ii) J is a maximal open interval contained in S+(q), i.e., for any open interval J̃⊆ S+(q)
it is true that either J̃ ⊆ J or J̃∩ J =∅.

In other words, the support J of X can be taken to be an open interval that coincides
to some connected component of the open set {x : q(x) > 0}. Since q is a polynomial
of degree at most two, it is clear that the set {x : q(x) > 0} has at most two connected
components. For example, if q(x) = x2 then either J = (−∞,0) or J = (0,∞); if q(x) =
x2−1 then either J = (−∞,−1) or J = (1,∞); if q(x) = 1−x2 then J = (−1,1); if q(x) = x
then J = (0,∞); if q(x) = 1 + x2 or q(x) ≡ 1 then J = R. Since, however, EX = µ ∈ J,
any particular choice of µ ∈ {x : q(x) > 0} characterizes the support J of X . We say that
q(x) = δx2 + βx + γ is admissible if there exists µ ∈ R such that µ ∈ {x : q(x) > 0};
thus, {x : q(x) > 0} 6= ∅ whenever q is admissible. In the sequel we shall show that
for any admissible choice of q and for any µ ∈ {x : q(x) > 0} there exists an absolutely
continuous random variable X with density f such that EX = µ and (1.1) is fulfilled.
Moreover, it will become clear that f is characterized by the pair (µ ;q). Therefore, the
notation X ∼ IP(µ ;q) or, equivalently, f ∼ IP(µ ;q), has a well-defined meaning.

The proposed classification distinguishes between the cases δ = 0, δ < 0 and δ > 0,
as follows:

2.1 The case δδδ === 000

We have to further distinguish between the cases β = 0 and β 6= 0.
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2.1.1 The subcase δ = 0, β = 0
Since q(x) ≡ γ and q is admissible we must have γ > 0. Therefore, J(X) = R. Fixing
µ ∈R and solving the differential equation (2.1) we get

f (x) =
1√
2πγ

e−
(x−µ)2

2γ , x ∈R,

i.e. X ∼ N(µ ,σ2) with σ2 = γ .

2.1.2 The subcase δ = 0, β 6= 0
Assume that q(x) = βx + γ with β 6= 0 and fix a number µ ∈ {x : q(x) > 0}; that is,
q(µ) = β µ + γ > 0. According to Proposition 2.1(vi) we may further assume that β > 0,
γ = 0 and µ > 0; otherwise, it suffices to consider the random variable X̃ = β

|β |(X + γ
β ) with

q̃(x) = |β |x and EX̃ = µ̃ = β
|β |(µ + γ

β ) = q(µ)
|β | > 0 since q(µ) > 0. Now, since q(x) = βx

with β > 0 we must have J(X) = (0,∞). Fixing µ > 0 and solving the differential equation
(2.1) we get

f (x) =
(1/β )µ/β

Γ (µ/β )
xµ/β−1e−x/β , x > 0.

That is, X ∼ Γ (a,λ ) with a = µ/β > 0 and λ = 1/β > 0. Hence, a linear non-constant q
corresponds to a linear transformation, X̃ = θX + c, θ 6= 0, of a Gamma random variable
X , i.e., to Gamma-type distributions.

2.2 The case δδδ <<< 000

Since δ < 0 and {x : q(x) > 0} must contain some interval it follows that the discriminant
β 2− 4δγ of q must be strictly positive. If ρ1 < ρ2 are the real roots of q we can write
q(x) = δ (x− ρ1)(x− ρ2) so that the support of X is the finite interval J(X) = (ρ1,ρ2).
Now we show that for any choice of µ ∈ (ρ1,ρ2) there exist a (unique) random variable X
with X ∼ IP(µ;q). To this end, it suffices to examine the particular case q(x) =−δx(1−x)
and 0 < µ < 1; the general case is reduced to the particular one if we consider the random
variable X̃ = (X −ρ1)/(ρ2−ρ1). Fixing µ ∈ (0,1), q(x) = −δx(1− x) and solving the
differential equation (2.1) on J(X) = (0,1) we get

f (x) =
1

B(−µ/δ ,−(1−µ)/δ )
x−µ/δ−1(1− x)−(1−µ)/δ−1, 0 < x < 1,

that is, X ∼ B(a,b) with a = µ/|δ | > 0, b = (1− µ)/|δ | > 0. It follows that the case
δ < 0 corresponds to a linear transformation of a Beta random variable, the Beta-type
distributions.

2.3 The case δδδ >>> 000

We have to further distinguish between the cases where the discriminant ∆ = β 2−4δγ is
positive, zero or negative.
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2.3.1 The subcase δ > 0, ∆ < 0
Since q has no real roots, J(X) = R. Thus, µ ∈ R can take any arbitrary value. Also, q
has the form q(x) = δ (x−c)2 +θ with δ > 0, θ > 0 and c∈R. Without loss of generality
we further assume that c = 0; otherwise we can consider the random variable X̃ = X − c.
Fixing µ ∈R, q(x) = δx2 +θ and solving (2.1) one finds that

f (x) =
C

(δx2 +θ)1+ 1
2δ

exp
(

µ√
δθ

tan−1(x
√

δ/θ)
)

, x ∈R.

The normalizing constant C = Cµ(δ ,θ) can be calculated explicitly when µ = 0:

C0(δ ,θ) =
Γ (1+1/(2δ ))

√
δθ 1+1/δ

Γ (1/2+1/(2δ ))
√

π
.

Therefore, the quadratic polynomial q(x) = δ (x− c)2 + θ with δ > 0 and θ > 0 cor-
responds to Student-type distributions centered at c, provided that µ = c; otherwise, i.e.,
when µ 6= c, it corresponds to some asymmetric, say skew Student-type, distributions.

2.3.2 The subcase δ > 0, ∆ = 0
Since q has a unique real root at ρ = −β/(2δ ), it follows that q(x) = δ (x− ρ)2 and,
therefore, the support J(X) is either (−∞,ρ) or (ρ,∞), according to µ < ρ or µ > ρ ,
respectively. Without loss of generality we may assume that q(x) = δx2 with δ > 0 and
µ > 0; otherwise, it suffices to consider the random variable X̃ = µ−ρ

|µ−ρ|(X − ρ). Now,
setting J(X) = (0,∞), q(x) = δx2 (δ > 0) and µ > 0 in eq. (2.1) we get the solution

f (x) =
λ a

Γ (a)
x−a−1e−λ/x, x > 0,

where λ = µ/δ > 0 and a = 1 + 1/δ > 1. Observing that 1/X ∼ Γ (a,λ ) it follows that
the case δ > 0, ∆ = 0 corresponds to Reciprocal Gamma-type distributions.

2.3.3 The subcase δ > 0, ∆ > 0
Assuming that ρ1 < ρ2 are the roots of q we can write q(x) = δ (x− ρ1)(x− ρ2) and
the support J(X) has to be either (−∞,ρ1) or (ρ2,∞), according to µ < ρ1 or µ > ρ2,
respectively. By considering the random variable X̃ = −(X −ρ1) when µ < ρ1 and the
random variable X̃ = X−ρ2 when µ > ρ2 it is easily seen that both cases reduce to µ̃ > 0,
J(X̃) = (0,∞) and q̃(x) = δx(x + θ) with δ > 0 and θ = ρ2−ρ1 > 0. Thus, there is no
loss of generality in assuming µ > 0, J(X) = (0,∞) and q(x) = δx(x+θ) with δ > 0 and
θ > 0. Then, (2.1) yields

f (x) =
1

B(a,b)
θ axb−1(x+θ)−a−b, x > 0,

with a = 1+ 1
δ > 1 and b = µ

δθ > 0. Equivalently, θ
X+θ ∼ B(a,b). It follows that the case

δ > 0, ∆ > 0 corresponds to Snedecor-type distributions.

All the above possibilities are summarized in Table 2.1, below; compare with Table 2,
p. 296, in Diaconis and Zabell (1991).
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REMARK 2.1. Since

(µ− x)
exp

(
µ√
δγ

tan−1(x
√

δ/γ)
)

(δx2 + γ)1+ 1
2δ

=
d
dx

exp
(

µ√
δγ

tan−1(x
√

δ/γ)
)

(δx2 + γ)
1

2δ
,

it follows that EX = µ for the Student-type densities (type 4), while for all other cases it
is evident to check that the mean is as displayed in Table 2.1. Next, it is easily verified
that the densities of Table 2.1 satisfy the assumptions (B) of Proposition 3.3, below, with
µ = EX , p2(x) = q(x) and p1(x) = µ − x− q′(x), where µ and q are as in the Table.
Hence, according to Proposition 3.3, all these densities are, indeed, integrated Pearson.

COROLLARY 2.2. Assume that X ∼ IP(µ ;δ ,β ,γ).

(a) If δ 6 0 then E|X |α < ∞ for any α ∈ [0,∞).

(b) If δ > 0 then E|X |α < ∞ for any α ∈ [0,1+1/δ ), while E|X |1+1/δ = ∞.

Proof. If X ∼ IP(µ;δ ,β ,γ) then we can find constants c1 6= 0 and c2 ∈ R such that the
density of X̃ = c1X + c2 is contained in Table 2.1. Then, according to Proposition 2.1(vi),
X̃ ∼ IP(µ̃; δ̃ , β̃ , γ̃) with δ̃ = δ . The assertion follows from the fact that E|X |α < ∞ if and
only if E|c1X + c2|α < ∞.

Next, we shall obtain a recurrence for the moments and the central moments of a
random variable X ∼ IP(µ ;q). To this end we first prove a simple lemma.

LEMMA 2.1. If X ∼ IP(µ ;δ ,β ,γ) has support J(X) = (α,ω) and E|X |n < ∞ for some
n > 1 (that is, δ < 1

n−1 ) then

lim
x↗ω

xkq(x) f (x) = lim
x↘α

xkq(x) f (x) = 0, k = 0,1, . . . ,n−1, (2.2)

and, in general, for any c ∈R,

lim
x↗ω

(x− c)kq(x) f (x) = lim
x↘α

(x− c)kq(x) f (x) = 0, k = 0,1, . . . ,n−1. (2.3)

Proof. Since xkq(x) f (x) = xk ∫ x
α(µ − t) f (t)dt, α < x < ω , the second limit in (2.2) is

trivial whenever α >−∞ and the first one is trivial whenever ω < ∞. If ω = ∞ it suffices
to verify the first limit in (2.2) only when k = n− 1 and n > 2 (because the case k = 0
is obvious); then, since q(x) f (x) is eventually decreasing we have that for large enough
x > 0,

xn−1q(x) f (x) = q(x) f (x)
(n−1)2n−1

2n−1−1

∫ x

x/2
tn−2dt

6 (n−1)2n−1

2n−1−1

∫ x

x/2
tn−2q(t) f (t)dt

6 (n−1)2n−1

2n−1−1

∫ ∞

x/2
tn−2q(t) f (t)dt → 0, as x→ ∞,
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because deg(q) 6 2 and, by assumption,Eq(X)|X |n−2 < ∞. The case α =−∞ is translated
to the previous one by considering the random variable X̃ = −X with density f̃ (x) =
f (−x), quadratic polynomial q̃(x) = q(−x) and support J(X̃) = (α̃, ω̃) = (−ω,−α) =
(−ω,∞). Then E|X̃ |n = E|X |n < ∞ and

lim
x→−∞

xkq(x) f (x) = (−1)k lim
x→∞

xkq(−x) f (−x) = (−1)k lim
x→∞

xkq̃(x) f̃ (x) = 0

for all k ∈ {0,1, . . . ,n− 1}. Now it suffices to observe that all limits in (2.3) are linear
combinations of limits in (2.2). Indeed, the first limit in (2.3) is

limx↗ω (x− c)kq(x) f (x) = ∑k
i=0

(k
i

)
(−c)k−i limx↗ω xiq(x) f (x) = 0

and, similarly, the second limit in (2.3) is

limx↘α (x− c)kq(x) f (x) = ∑k
i=0

(k
i

)
(−c)k−i limx↘α xiq(x) f (x) = 0.

LEMMA 2.2. If X ∼ IP(µ ;δ ,β ,γ) and E|X |n < ∞ for some n > 2 (that is, δ < 1
n−1 ) then

for any c ∈R, the central moments about c satisfy the recurrence

E(X− c)k+1 =
(µ− c+ kq′(c))E(X − c)k + kq(c)E(X − c)k−1

1− kδ
,

k = 1,2, . . . ,n−1,
(2.4)

with initial conditions E(X − c)0 = 1, E(X − c)1 = µ − c, where q(c) = δc2 + βc + γ ,
q′(c) = 2δc+β . In particular,

(i) the usual moments (c = 0) satisfy the recurrence

EXk+1 =
(µ + kβ )EXk + kγEXk−1

1− kδ
, k = 1,2, . . . ,n−1, (2.5)

with initial conditions EX0 = 1 and EX1 = µ ;

(ii) the central moments (c = µ) satisfy the recurrence

E(X−µ)k+1 =
kq′(µ)E(X−µ)k + kq(µ)E(X −µ)k−1

1− kδ
, k = 1,2, . . . ,n−1, (2.6)

with initial conditions E(X−µ)0 = 1 and E(X −µ)1 = 0.

Proof. If J(X) = (α,ω) is the support of X and k ∈ {1,2, . . . ,n−1} then we have

E(X− c)k+1 = E[((µ− c)− (µ−X))(X − c)k]

= (µ− c)E(X − c)k−
∫ ω

α
(x− c)k(µ− x) f (x)dx.
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Using (2.3) and the fact that q(X) = δ (X − c)2 +q′(c)(X − c)+q(c) we see that

−
∫ ω

α
(x− c)k(µ− x) f (x)dx =−

∫ ω

α
(x− c)k(q(x) f (x))′dx

=−(x− c)kq(x) f (x)
∣∣ω
α + kEq(X)(X− c)k−1

= kδE(X − c)k+1 + kq′(c)E(X − c)k + kq(c)E(X− c)k−1.

Therefore,

(1− kδ )E(X − c)k+1 = (µ− c+ kq′(c))E(X − c)k + kq(c)E(X − c)k−1,

k = 1,2, . . . ,n−1,

and, since the initial conditions are obvious, (2.4) follows.

3 Comparison with the ordinary Pearson system
The ordinary Pearson family consists of absolutely continuous random variables X sup-
ported in some (open) interval (α,ω), such that their density f , which is assumed strictly
positive and differentiable in (α ,ω), satisfies the Pearson differential equation

f ′(x)
f (x)

=
p1(x)
p2(x)

, α < x < ω , (3.1)

where p1 is a polynomial of degree at most one and p2 is a polynomial of degree at
most two. Since we can multiply the nominator and the denominator of (3.1) by the
same nonzero constant, it is usually assumed, for convenience, that p1 is a monic linear
polynomial of degree one, e.g., p1(x) = x + a0. Although this restriction specifies both
p1 and p2 whenever p1 is non-constant, it is not satisfactory for our purposes because it
eliminates all rectangular (uniform over some interval) distributions and several B(a,b)
densities (those with a + b = 2) – see Table 2.1, above. Therefore, when we say that a
function f satisfies the Pearson differential equation (3.1) it will be assumed that p1 is
any polynomial of degree at most one (the cases p1 ≡ 0 and p1 ≡ c 6= 0 are allowed) and
p2 6≡ 0 is any polynomial of degree at most two. Note that common zeros of p1 and p2
are allowed inside the interval (α,ω). Also, it may happen that p1 and p2 have common
zeros outside the interval (α,ω); this is the case of an exponential density.

Clearly, the ordinary Pearson family contains some random variables whose expecta-
tion does not exist, e.g., Cauchy. Sometimes it is asserted that, under finiteness of the first
moment, (1.1) and (3.1) are equivalent – see, e.g., Korwar (1991), pp. 292–293. However,
this is true only in particular cases, i.e. when we have made the ‘correct’ choice of p2 and
provided that a solution f of (3.1) is considered in a maximal subinterval of the support of
p2, {x : p2(x) 6= 0}. The following algorithmic procedure will always decides correctly if
a given Pearson density belongs to the Integrated Pearson family. The algorithm makes a
correct choice of p2, if it exists, as follows:
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The Integrated Pearson Algorithm

Step 0. Assume that a Pearson density f with finite (unknown) mean and (known) support
S( f ) = {x : f (x) > 0}= (α,ω) satisfies f ′/ f = p̃1/p̃2 for given (real) polynomials
p̃1, p̃2 (with p̃2 6≡ 0), of degree at most one and two, respectively.

Step 1. Cancel the common factors of p̃1 and p̃2, if any. Then the resulting polynomials,
say p̃(1)

1 and p̃(1)
2 , have become irreducible – they do not have any common zeros in

C. In case p̃1 ≡ 0 it suffices to define p̃(1)
1 ≡ 0, p̃(1)

2 ≡ 1.

Step 2. If α > −∞ and p̃(1)
2 (α) 6= 0 then multiply both p̃(1)

1 and p̃(1)
2 by x−α and name

the resulting polynomials p̃(2)
1 and p̃(2)

2 ; otherwise (i.e. if either α =−∞ or α >−∞
and p̃(1)

2 (α) = 0) set p̃(2)
1 = p̃(1)

1 and p̃(2)
2 = p̃(1)

2 .

Step 3. If ω < ∞ and p̃(2)
2 (ω) 6= 0 then multiply both p̃(2)

1 and p̃(2)
2 by ω − x and name

the resulting polynomials p1 and p2; otherwise (i.e. if either ω = ∞ or ω < ∞ and
p̃(2)

2 (ω) = 0) set p1 = p̃(2)
1 and p2 = p̃(2)

2 .

Step 4. If the resulting polynomials p1 and p2 satisfy the conditions deg(p1) 6 1 and
deg(p2) 6 2 then p2 is a correct choice and f ∼ IP(µ ;q) with q(x) = θ p2(x) for
some θ 6= 0; otherwise the given density f does not belong to the Integrated Pearson
system.

It is clear that the above procedure starts with the equation f ′/ f = p̃1/ p̃2 and, at
Step 3, it produces two new (real) polynomials p1, p2, of degree at most three and four,
respectively, such that f ′/ f = p1/p2. Moreover, the polynomial p2 satisfies the relations
p2(α) = 0 if α >−∞, p2(ω) = 0 if ω < ∞ and p2(x) 6= 0 for all x ∈ (α ,ω). Furthermore,
because of Step 1, the polynomials p1(z) and p2(z) cannot have any common zeros in
Cr{α ,ω}.

The algorithm guarantees that we have chosen a correct p2 in each case where such a
p2 exists. For example, the standard exponential density,

f (x) = e−x, x > 0,

satisfies (3.1) when (p1, p2) = (−1,1), when (p1, p2) = (−x,x) and when (p1, p2) =
(−x−1,x+1); the correct choice is the second one. The standard uniform density,

f (x) = 1, 0 < x < 1,

satisfies (3.1) for p1 ≡ 0 and for any p2 (with no roots in (0,1)), and the correct choice is
p2 = x(1− x). The power density,

f (x) = 2x, 0 < x < 1,
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satisfies (3.1) with (p1, p2) = (2−x,x(2−x)) and the correct choice arises when we mul-
tiply both polynomials by (1− x)/(2− x), that is, (p1, p2) = (1− x,x(1− x)). The Pareto
density,

f (x) =
2

(x+1)3 , x > 0,

satisfies (3.1) when (p1, p2) = (−3,x + 1), when (p1, p2) = (−3x,x(x + 1)) and when
(p1, p2) = (−3(x + 1),(x + 1)2); the correct choice is the second one. The half-Normal
density,

f (x) =

√
2
π

e−x2/2, x > 0,

satisfies (3.1) in its interval support (α,ω) = (0,∞), although it does not satisfy (1.1) –
there not exists a correct choice for p2. A more natural example is as follows: Consider
the density

f (x) =
C√

1+ x2
, α < x < ω,

where C = C(α,ω) > 0 is the normalizing constant. This density satisfies, in any finite
interval (α,ω), the Pearson differential equation (3.1) with p1 = −x, p2 = 1 + x2, while
its integral over unbounded intervals diverges. This density does not fulfill (1.1) and thus,
it does not belong to the Integrated Pearson family – again there does not exist a correct
choice for p2.

The algorithm is justified because of the following propositions.

PROPOSITION 3.1. Let X ∼ f and assume that the density f satisfies the assumptions of
Step 0. If X ∼ IP(µ ;q) then the polynomials p1 and p2 of Step 3 are of degree at most one
and two, respectively, and q(x) = θ p2(x) for some θ 6= 0.

Proof. Since X is Integrated Pearson, Y = λX + c is also Integrated Pearson for all λ 6=
0 and c ∈ R; see Proposition 2.1(vi). Also, its density fY (x) = 1

|λ | f (x−c
λ ) satisfies, by

assumption, the differential equation

f ′Y (x)
fY (x)

=
p̃Y

1 (x)
p̃Y

2 (x)
, x ∈ (α̃, ω̃), with p̃Y

1 (x) = λ p̃1

(
x− c

λ

)
, p̃Y

2 (x) = λ 2 p̃2

(
x− c

λ

)
,

where (α̃, ω̃) = (λα + c,λω + c) or (λω + c,λα + c), according to λ > 0 or λ < 0,
respectively. It is easily shown that the new polynomials p1, p2 (those that the algorithm
produces at Step 3 for f ) are related to the corresponding polynomials pY

1 , pY
2 (those that

the algorithm produces at Step 3 for fY ) by the relationships

pY
1 (x) = λ i p1

(
x− c

λ

)
, pY

2 (x) = λ i+1 p2

(
x− c

λ

)
,

for some i ∈ {1,2,3}. Therefore, it suffices to show that deg(pY
i ) 6 i, i = 1,2, and that

the quadratic polynomial qY (x) = λ 2q(x−c
λ ) of Y is related to pY

2 through qY (x) = θ pY
2 (x)

for some θ 6= 0. Thus, without any loss of generality we may assume that f is one of the
densities given in Table 2.1.
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Now observe that (p̃1, p̃2) is always irreducible for types 1,4,5 (Normal-type, Student-
type, Reciprocal Gamma-type) with deg(p̃1) = 1 for all types 1,4,5, while deg(p̃2) = 0
for type 1 and deg(p̃2) = 2 for types 4 and 5. Since the corresponding supports are R, R
and (0,∞), respectively, and since in type 5, p̃2(x) = θx2 for some θ 6= 0, it follows that
(p1, p2) = ( p̃1, p̃2), q = θ p2 for some θ 6= 0, and the assertion follows.

For types 2,3 and 6 (Gamma-type, Beta-type and Snedecor-type) the irreducibility of
p̃1 and p̃2 depends on the parameters. Let us see these cases separately.

If f ∼Γ (a,λ ) with a 6= 1 (α > 0, λ > 0) then p̃1 = θ(a−1−λx) and p̃2 = θx for some
θ 6= 0, so that p̃1, p̃2 are irreducible with degree one. It follows that pi = p̃i, deg(pi) = 1
(i = 1,2) and

q(x) =
x
λ

=
p2(x)
θλ

.

If f ∼Γ (1,λ ) (λ > 0) then all possible choices for (p̃1, p̃2) are given by p̃1 =−λθ(x+c)
and p̃2 = θ(x+ c) for θ 6= 0, c ∈R. Therefore, Step 3 yields (p1, p2) = (−λθx,θx) and,
thus, deg(pi) = 1 (i = 1,2) and

q(x) =
x
λ

=
p2(x)
λθ

.

If f is of type 6 and b 6= 1 then

(p̃1(x), p̃2(x)) = (c((b−1)− (a+1)x),cx(x+θ)) for some c 6= 0;

here the parameters are a,b,θ with a > 1, b > 0 and θ > 0. It follows that (p1, p2) =
(p̃1, p̃2), deg(pi) = i (i = 1,2) and

q(x) =
x(x+θ)

a−1
=

p2(x)
(a−1)c

.

If f is of type 6 with b = 1 then all possible choices for (p̃1, p̃2) are given by

p̃1(x) =−c(a+1)(x+ γ) and p̃2(x) = c(x+θ)(x+ γ) for some c 6= 0, γ ∈R.

Therefore, Step 3 yields (p1, p2) = (−c(a+1)x,cx(x+θ)) and, thus, deg(pi) = i (i = 1,2)
and

q(x) =
x(x+θ)

a−1
=

p2(x)
(a−1)c

.

Finally, let f be of type 3 (Beta-type), that is, f ∼ B(a,b) with a,b > 0. If a 6= 1 and
b 6= 1 it is easily shown that

(p̃1(x), p̃2(x)) = (θ(a−1− (a+b−2)x),θx(1− x)) (θ 6= 0)

are irreducible, so that (p1, p2) = ( p̃1, p̃2), deg(pi) = i (i = 1,2) and

q(x) =
x(1− x)

a+b
=

p2(x)
(a+b)θ

.
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If a = 1, b 6= 1, the most general form of (p̃1, p̃2) is given by

(p̃1(x), p̃2(x)) = (−(b−1)θ(x+ c),θ(1− x)(x+ c)), where θ 6= 0, c ∈R.

Therefore, Step 3 yields (p1, p2) = (−(b−1)θx,θx(1−x)) and, thus, deg(pi) = i (i = 1,2)
and

q(x) =
x(1− x)

b+1
=

p2(x)
(b+1)θ

.

If a 6= 1, b = 1, the most general form of (p̃1, p̃2) is given by

(p̃1(x), p̃2(x)) = ((a−1)θ(x+ c),θx(x+ c)), where θ 6= 0, c ∈R.

Therefore, Step 3 yields (p1, p2) = ((a− 1)θ(1− x),θx(1− x)) and, thus, deg(pi) = i
(i = 1,2) and

q(x) =
x(1− x)

a+1
=

p2(x)
(a+1)θ

.

Finally, if a = b = 1 (standard uniform density, U(0,1) ≡ B(1,1)) then p̃1 ≡ 0 so that
(p1, p2) = (0,x(1− x)), deg(p1) < 0, deg(p2) = 2 and

q(x) =
x(1− x)

2
=

p2(x)
2

.

This subsumes all cases and completes the proof.

PROPOSITION 3.2. Assume that X ∼ f where the density f is differentiable with deriv-
ative f ′ in its (known) interval support (α,ω) and has finite (unknown) mean. Then, the
following are equivalent:

(A) f satisfies (3.1) for some (real) polynomials p1 (of degree at most one) and p2 6≡ 0
(of degree at most two) with p2(α) = 0 if α >−∞, p2(ω) = 0 if ω < ∞ and p2(x) 6=
0 for all x ∈ (α ,ω).

(B) X ∼ IP(µ ;q) for some q(x) = δx2 +βx + γ with {x : q(x) > 0}= (α,ω) and some
µ ∈ (α,ω).

Moreover, if (A) and (B) hold, then there exists a constant θ 6= 0 such that q(x) = θ p2(x),
x ∈R.

Proof. Assume first that (B) holds. Since f ∼ IP(µ ;q), (2.1) shows that f ′/ f = p̃1/p̃2
where p̃1 = µ − x− q′ and p̃2 = q. Putting the polynomials p̃1 = µ − x− q′ and p̃2 = q
in Step 0 of the above algorithm and using Proposition 3.1 we conclude that the resulting
polynomials p1 and p2 (of Step 3) satisfy the requirements of (A); also, q(x) = θ p2(x) for
some θ 6= 0.

Assume now that (A) holds. Using a suitable mapping Y = λX + c, λ 6= 0, c ∈R, we
can transform the interval (α,ω) into (α̃, ω̃), where (α̃, ω̃) is one of the intervals (0,1),
(0,∞) or (−∞,∞). The polynomials p1 and p2 are transformed to pY

1 (x) = λ p1(x−c
λ ) and
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pY
2 (x) = λ 2 p2(x−c

λ ), and the differential equation (3.1) yields f ′Y (x)/ fY (x) = pY
1 (x)/pY

2 (x),
α̃ < x < ω̃ , where fY is the density of Y and (α̃, ω̃) its support. Moreover, it is easy to
see that pY

1 and pY
2 satisfy the requirements of (A), i.e., pY

2 (α̃) = 0 if α̃ >−∞, pY
2 (ω̃) = 0

if ω̃ < ∞ and pY
2 (x) 6= 0 for all x ∈ (α̃ , ω̃). Clearly, in view of Proposition 2.1(vi), it

suffices to verify that Y is Integrated Pearson. Thus, from now on (and without any loss of
generality) we shall assume that (α,ω) is one of the intervals (0,1), (0,∞) or R.

If (α,ω) = (0,1) then the assumptions (A) show that p2(x) = θx(1− x) for some
θ 6= 0. Let p1(x) = a0 +a1x. Solving (3.1) we get

f (x) = Cxa0/θ (1− x)−(a0+a1)/θ , 0 < x < 1,

where, necessarily, 1+a0/θ > 0 and 1− (a0 +a1)/θ > 0. Thus,

(1+a0/θ)+(1− (a0 +a1)/θ) = (2θ −a1)/θ > 0,

so that 2θ − a1 6= 0. It follows that f ∼ B(a,b) with a = 1 + a0/θ , b = 1− (a0 + a1)/θ
and, therefore,

q(x) =
x(1− x)

a+b
=

x(1− x)
2−a1/θ

=
p2(x)

2θ −a1
.

Assume that (α,ω) = (0,∞). Then, assumptions (A) show that the possible forms of
p2 are either p2 = θx or p2 = θx2 or p2 = θx(x+c) for some θ 6= 0 and c > 0. If p2 = θx
set p1 = a0 +a1x and solve (3.1) to obtain

f (x) = Cxa0/θ exp(a1x/θ), x > 0,

where, necessarily, a0/θ >−1 and a1/θ < 0; thus, X ∼ Γ (a,λ ) with a = a0
θ −1 > 0 and

λ =−a1
θ > 0. Therefore, a1 6= 0 and

q(x) =
x
λ

=
p2(x)
−a1

.

If p2 = θx2, set p1 = a0 +a1x and solve (3.1) to obtain

f (x) = Cxa1/θ exp(−a0/(θx)), x > 0,

where, necessarily, a0/θ > 0 and a1/θ <−2; these conditions are necessary and sufficient
for

∫ ∞
0 f (x)dx and

∫ ∞
0 x f (x)dx to be finite. Therefore, f (x) = Cx−a−1e−λ/x, x > 0, where

a = −1− a1
θ > 1 and λ = a0

θ > 0. Observe now that f is of Reciprocal Gamma type
(type 5) and q(x) = x2

a−1 . Since a = −1− a1
θ > 1 it follows that −a1−2θ

θ > 0 and, finally,
a1 +2θ 6= 0. Thus,

q(x) =
x2

a−1
=

θx2

−a1−2θ
=

p2(x)
−a1−2θ

.

Assume now that p2 = θx(x + c), θ 6= 0, c > 0 and let p1 = a0 + a1x. Solving (3.1) we
obtain

f (x) = Cx
a0
cθ (x+ c)

a1c−a0
cθ , x > 0,
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where, necessarily, a0
cθ >−1 and a1

θ <−2; these conditions are necessary and sufficient for∫ ∞
0 f (x)dx and

∫ ∞
0 x f (x)dx to be finite. Now observe that f (x) = Cxb−1(x+c)−a−b (x > 0)

is of Snedecor-type (type 6) with a =−a1
θ −1 > 1 and b = 1+ a0

cθ > 0. From a1
θ <−2 we

get a1 +2θ 6= 0 and, thus, we conclude that (see Table 2.1)

q(x) =
x(x+ c)

a−1
=

x(x+ c)
−2−a1/θ

=
θx(x+ c)
−a1−2θ

=
p2(x)

−a1−2θ
.

Finally, assume that (α,ω) = R. In this case assumptions (A) imply that either p2 ≡
θ 6= 0 or p2 =±(θ(x−c)2 +λ ) with θ > 0, λ > 0 and c∈R. Assume first that p2 ≡ θ 6= 0
and let p1 = a0 +a1x. Then, it is easily seen from (3.1) that

f (x) = C exp
( a1

2θ
x2 +

a0

θ
x
)

, x ∈R.

This can represents a density if and only if a1
2θ < 0; in this case it is easily seen that

f ∼ N(µ ,σ2) with µ = −a0
a1

, σ =
√
− θ

a1
, and thus,

q(x)≡ σ2 =− θ
a1

=
p2(x)
−a1

.

For the last remaining case it suffices to consider

p2(x) = θ(x−c)2 +λ and p1(x) = a0 +a1(x−c) where θ > 0, λ > 0 and a0,a1,c∈R.

Also, using the transformation X 7→ X − c, the general case is simplified to p2 = θx2 +λ
and p1 = a0 +a1x. Now, the differential equation (3.1) has the general solution

f (x) = C(θx2 +λ )
a1
2θ exp

[
a0√
θλ

tan−1(x
√

θ/λ )
]
, x ∈R.

The necessary and sufficient condition for this f to represent a density with finite mean is
− a1

2θ −1 > 0 or, equivalently, a1 +2θ < 0. Therefore, setting

δ =
θ

−a1−2θ
> 0, γ =

λ
−a1−2θ

> 0 and µ =
a0

−a1−2θ
∈R

we see that this is a Student-type density (type 4); see Table 2.1. Consequently,

q(x) = δx2 + γ =
θx2 +λ
−a1−2θ

=
p2(x)

−a1−2θ
,

and the proof is complete.

Eventually, Proposition 3.2 says that for a particular choice of p2 to be correct it is
necessary and sufficient that p2 remains nonzero in (α,ω) and vanishes at all (if any)
finite endpoints of (α,ω).

If the mean µ is known, then another simple criterion for an ordinary Pearson variate
to belong to the Integrated Pearson family is provided by the following proposition.
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PROPOSITION 3.3. Let X be a random variable with density f and finite mean µ . Assume
that the set {x : f (x) > 0} is the (bounded or unbounded) interval J(X) = (α,ω) and that
f is differentiable in (α ,ω) with derivative f ′(x), α < x < ω . Then the following are
equivalent:

(A) X ∼ IP(µ ;q).

(B) The density f satisfies (3.1) and the polynomials p1 (p1 ≡ 0 is allowed) and p2 can
be chosen in such a way that (i) and (ii), below, hold:

(i) there exist a constant θ 6= 0 such that p1(x)+ p′2(x) = (µ− x)/θ , x ∈R, and

(ii) either limx↘α p2(x) f (x) = 0 or limx↗ω p2(x) f (x) = 0.

If (i) and (ii) are true then the polynomials p2 and q are related through q(x) = θ p2(x)
where θ 6= 0 is as in (i). Moreover, if (3.1) is satisfied in an unbounded interval (α,ω)
then (ii) is unnecessary since it is implied by (i).

Proof. If X ∼ IP(µ ;q) then we see from (2.1) that (3.1) is satisfied for the polynomials
p1(x) = µ−x−q′(x) and p2(x) = q(x). With this choice of p1, p2, Proposition 2.1 shows
that (i) (with θ = 1) is valid. Also, (ii) reduces to p2(x) f (x) = q(x) f (x)→ 0 as x ↗ ω
or x ↘ α ; this follows by an obvious application of dominated convergence since the
mean exists and, by assumption, p2(x) f (x) = q(x) f (x) =

∫ x
α(µ − t) f (t)dt – see (1.1).

Conversely, (3.1) and (i) imply that [θ p2(t) f (t)]′ = (µ − t) f (t), α < t < ω . Integrating
this equation over the interval [x,y]⊂ (α ,ω) we get

∫ y

x
(µ− t) f (t)dt = θ p2(y) f (y)−θ p2(x) f (x), α < x < y < ω. (3.2)

Now, let us take into account the first assumption in (ii), limx↘α p2(x) f (x) = 0. Taking
limits in (3.2) and using dominated convergence for the l.h.s. we conclude that

∫ y

α
(µ− t) f (t)dt = θ p2(y) f (y), α < y < ω;

that is, X ∼ IP(µ ;q) with q(x) = θ p2(x). Clearly we get the same conclusion if we use the
second assumption in (ii), limy↗ω p2(y) f (y) = 0, and evaluate the limits as y↗ω in (3.2);
in this case we get the identity

∫ ω
x (t − µ) f (t)dt = θ p2(x) f (x) = q(x) f (x), α < x < ω ,

which is equivalent to (1.1), since
∫ ω

α (µ− t) f (t)dt = 0.
It is clear that, in the presence of (i), both assumptions in (ii) are equivalent. In fact,

(3.2) shows that both limits limy↗ω p2(y) f (y) and limx↘α p2(x) f (x) exist (in R) and are
equal. Indeed,

θ p2(y) f (y) = θ p2(x) f (x)+
∫ y

x
(µ− t) f (t)dt, α < x < y < ω,

and the existence of the first moment implies that, as y↗ω , the r.h.s. has the well-defined
finite limit C(x) = θ p2(x) f (x)+

∫ ω
x (µ− t) f (t)dt; the l.h.s, however, is independent of x

and, certainly, the same is true for its limit, so that C(x)≡C. In other words,

θ p2(x) f (x) = C +
∫ ω

x
(t−µ) f (t)dt, α < x < ω,
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and since limx↘α
∫ ω

x (t−µ) f (t)dt =
∫ ω

α (t−µ) f (t)dt = 0 we conclude that

lim
x↘α

p2(x) f (x) = lim
y↗ω

p2(y) f (y) =
C
θ
∈R.

It remains to verify that if (3.1) holds in an unbounded interval (α ,ω) and X has finite
first moment then (i) implies (ii). To this end assume that ω = ∞ so that J(X) = (α,∞)
with α ∈ [−∞,∞). It follows that f ′(x) = p1(x) f (x)/p2(x) does not change sign for large
enough x, and thus, f ′(x) < 0 for x > x0. Therefore, for x > max{2x0,0},

0 < x2 f (x) =
8
3

f (x)
∫ x

x/2
tdt <

8
3

∫ x

x/2
t f (t)dt <

8
3

∫ ∞

x/2
t f (t)dt → 0,

as x→∞, i.e. f (x) = o(x−2) as x→∞. Thus, p2(x) f (x)→ 0 as x→∞. The case α =−∞
is similar and the proof is complete.

4 Are the Rodrigues-type polynomials orthogonal in the ordinary
Pearson system?

Associated with any Pearson density f is a (unique) sequence of polynomials, defined by a
Rodrigues-type formula. Actually, these polynomials are by-products of the pair (p1, p2)
that appears in the nominator and the denominator of the differential equation (3.1); that
is, they have nothing to do either with f or with the interval (α,ω).

These considerations will become more clear if we slightly relax the form of differen-
tial equation (3.1) and permit more solutions, as follows:

DEFINITION 4.1. Let∅ 6= (α,ω)⊆R, and consider a pair of real polynomials (p1, p2) =
(a0 +a1x,b0 +b1x+b2x2) such that p2 6≡ 0 (i.e., |b0|+ |b1|+ |b2|> 0). The pair (p1, p2) is
called Pearson-compatible in (α,ω), or simply compatible, if there exists a differentiable
function f : (α,ω)→R, f 6≡ 0 ( f is not assumed nonnegative or integrable), such that the
following generalized Pearson differential equation is fulfilled:

p2(x) f ′(x) = p1(x) f (x), α < x < ω. (4.1)

In other words, (p1, p2) is compatible if (4.1) has non-trivial solutions for f .

It is easily seen that (p1, p2) is compatible whenever p2 has no roots in (α ,ω); in this
case, the general solution f is C∞(α ,ω) and can be chosen to be strictly positive in (α,ω).
The presence of a zero of p2 in (α ,ω), however, may results in incompatibility; e.g., in
the interval (α,ω) = (−2,2) the pair (p1, p2) = (4x,x2−1) is compatible, in contrast to
the pair (p1, p2) = (x,x2−1).

If (p1, p2) is compatible in (α,ω) then we can find the general solution as follows:
First we solve (4.1) separately in any open subinterval of (α,ω)∩{x : p2(x) 6= 0}; clearly,
there are at most three subintervals and, in the worst case, the three general solutions for
the distinct intervals (J1,J2,J3) = ((α,ρ1),(ρ1,ρ2),(ρ2,ω)) will be of the form fi = Ciegi
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for some gi ∈ C∞(Ji), i = 1,2,3, with Ci being arbitrary constants. Next, we match the
solutions and their first derivatives at the common endpoints of any two Ji; any such point
is, necessarily, a zero of p2. The compatibility of (p1, p2) guarantees that this procedure
will success in producing some solution f 6≡ 0 (in which case, | f | > 0 will be also a
non-trivial solution), but it may happen that fi ≡ 0 in some Ji. The following proposition
describes all possible cases for the support of f .

PROPOSITION 4.1. Assume that the function f : (α ,ω) → R, f 6≡ 0 (not necessarily
positive or integrable) is differentiable in (α,ω) and satisfies the differentiable equa-
tion (4.1) for some real polynomials p1(x) = a0 + a1x and p2(x) = b0 + b1x + b2x2 with
|b0|+ |b1|+ |b2|> 0. Then, the support of f , S( f ) := {x ∈ (α ,ω) : f (x) 6= 0}, is either of
the form (α̃, ω̃)⊆ (α,ω) with α 6 α̃ < ω̃ 6 ω , or of the form (α̃ ,ρ1)∪ (ρ2, ω̃)⊆ (α,ω)
with α 6 α̃ < ρ1 6 ρ2 < ω̃ 6 ω , or, finally, of the form (α ,ρ1)∪ (ρ1,ρ2)∪ (ρ2,ω), with
α < ρ1 < ρ2 < ω . Moreover, the boundary of S( f ) is contained in the set {α ,ω}∪{x ∈
(α ,ω) : p2(x) = 0}, that is, ∂S( f ) ⊆ {α,ω}∪{x ∈ (α,ω) : p2(x) = 0}. Finally, for any
solution f , f (ρ) = 0 (that is, ρ /∈ S( f )) whenever ρ is a zero of p2 which is not a zero of
p1.

COROLLARY 4.1. The differential equation (4.1) has a nontrivial and nonnegative solu-
tion if and only if the pair (p1, p2) is compatible in (α,ω). Moreover, assuming that
(p1, p2) is compatible in (α,ω), it follows that:

(a) any nonnegative solution is of the form | f | for some solution f ;

(b) the support S( f ) = {x ∈ (α ,ω) : f (x) 6= 0} of any nontrivial solution f of (4.1) is a
union of one, two or three disjoint open intervals of positive length, and the same is
true for any nonnegative and nontrivial solution;

(c) the boundary points of S( f ) = S(| f |) of any nontrivial solution f of (4.1) are either
roots of p2 or boundary points of (α,ω).

We now turn to the corresponding Rodrigues polynomials. It is well-known that
the (generalized) Pearson differential equation (4.1) produces a sequence of polynomi-
als {hk,k = 1,2, . . .}, defined by a Rodrigues-type formula, as follows:

THEOREM 4.1 (Hildebrandt (1931), p. 401; Beale (1941), pp. 99–100; Diaconis and
Zabell (1991), p. 295). Assume that a function f : (α ,ω)→ R (not necessarily positive
or integrable) does not vanish identically in (α ,ω) and satisfies the differential equa-
tion (4.1) for some polynomials p1(x) = a0 + a1x and p2(x) = b0 + b1x + b2x2, with
|b0|+ |b1|+ |b2| > 0. Then, the set {x ∈ (α ,ω) : f (x) 6= 0} contains some interval of
positive length and the function

hk(x) :=
1

f (x)
dk

dxk [pk
2(x) f (x)], x ∈ (α,ω)r{x : f (x) = 0}, k = 0,1,2, . . . (4.2)
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is a polynomial (more precisely, hk is the restriction in (α,ω)r{x : f (x) = 0} of a poly-
nomial h̃k :R→R) with

deg(hk) 6 k and lead(hk) =
2k

∏
j=k+1

(a1 + jb2), k = 0,1,2, . . . , (4.3)

where lead(hk) := limx→∞ h̃k(x)/xk denotes the coefficient of xk in hk(x).

Hildebrandt (1931) actually showed that the relation p2 f ′= p1 f implies that Dk[pk
2 f ] =

h̃k f , k = 0,1,2, . . ., where the polynomials h̃k (with deg(h̃k) 6 k) are defined inductively.
Each polynomial h̃k can be viewed as the value of a functional Rk that maps any pair
(p1, p2) to a real polynomial of degree at most k. The form of this functional is

(p1, p2) 7→Rk(p1, p2) := h̃k = ∑
r,i, j

Ca1,b2
k;ri j (p1)r(p′2)

i(p2) j

where the sum ranges over all integers r, i, j > 0 with r+ i+2 j 6 k, and the constant Ca1,b2
k;ri j

depends only on k,r, i, j, p′1 = a1 and p′′2 = 2b2. On the other hand it is clear that, given an
arbitrary pair (p1, p2) with p2 6≡ 0, we can fix an interval (α ,ω) containing no roots of p2.
With the help of a positive solution f of the differential equation (4.1) we can determine
hk(x), α < x < ω , using the Rodrigues-type formula (4.2). Obviously, this hk extends
uniquely to h̃k.

To give an idea about the nature of the polynomials in (4.2) we expand the first four:

h0 = 1;
h1 = p1 + p′2 = (a1 +2b2)x+(a0 +b1);

h2 = p2
1 +3p1 p′2 + p′1 p2 +2p2 p′′2 +2(p′2)

2

= (a1 +3b2)(a1 +4b2)x2 +2(a0 +2b1)(a1 +3b2)x
+(a0 +b1)(a0 +2b1)+b0(a1 +4b2);

h3 = p3
1 +6p2

1 p′2 +3p1 p′1 p2 +8p1 p2 p′′2 +11p1(p′2)
2 +7p′1 p2 p′2 +18p2 p′2 p′′2 +6(p′2)

3

= (a1 +4b2)(a1 +5b2)(a1 +6b2)x3 +3(a0 +3b1)(a1 +4b2)(a1 +5b2)x2

+3(a1 +4b2)[(a0 +2b1)(a0 +3b1)+b0(a1 +6b2)]x

+a3
0 +6a2

0b1 +a0[11b2
1 +b0(3a1 +16b2)]+b1[6b2

1 +b0(7a1 +36b2)].

Provided that the solution f of (4.1) is a probability density in (α,ω), the polynomials
hk are candidate to form an orthogonal system for f . Indeed, Hildebrandt (1931), pp.
404–405, showed that each hk satisfies a specific second order differential equation in
(α,ω). Using this differential equation Diaconis and Zabell (1991) proved that the hk
are eigenfunctions of a particular self-adjoint, second order Sturm-Liouville differential
equation; thus, their orthogonality with respect to the density f is a consequence of the
Sturm-Liouville theory. Specifically, it is shown in Theorem 1 of [9] (see p. 295) that each
polynomial hk satisfies the equation

[ f (x)p2(x)h′k(x)]
′ = k(a1 +(k +1)b2) f (x)hk(x), α < x < ω, k = 0,1,2, . . . . (4.4)
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An adaption of the Diaconis-Zabell approach to the present general case reveals that the
orthogonality is valid only when a number of regularity conditions is satisfied. It will
be proved here that these regularity conditions consist of an equivalent definition of the
Integrated Pearson system. In fact, it will be shown that the Rodrigues polynomials (4.2)
are orthogonal with respect to the corresponding density f if and only if this f belongs
to Integrated Pearson family, provided that we have chosen a correct p2 in the differential
equation (4.1), i.e. provided that p2 = q/θ for some θ 6= 0. We mention here that, even
for Integrated Pearson densities, a wrong choice of p2 results in non-orthogonality of the
Rodrigues polynomials; see, e.g., the polynomials hk = P2

k given in [9], p. 297, for the
Beta-type density f (x) = CxN , 0 < x < x0. In light of Proposition 3.2 (and Table 2.1), a
correct choice for this density is given by p2 = x(x0− x).

In order to discuss the orthogonality of hk we first show the following lemma.

LEMMA 4.1. Let f be a density satisfying (4.1) and for fixed k,m ∈ {0,1, . . .}, k 6= m,
consider the polynomials hk and hm, given by (4.2). Assume that

(a) The density f process a suitable number of moments so that
∫ ω

α |hk(t)hm(t)| f (t)dt < ∞;

(b) a1 +(k +m+1)b2 6= 0;

(c) lim
x↗ω

{p2(x) f (x)[h′k(x)hm(x)−hk(x)h′m(x)]}= lim
x↘α

{p2(x) f (x)[h′k(x)hm(x)−hk(x)h′m(x)]}.
Then, ∫ ω

α
hk(x)hm(x) f (x)dx = 0.

[We shall show that, under (a) and (b), both limits in (c) exist (in R), but it is not guaran-
teed that they are equal; in fact, their difference equals to (k−m)(a1 +(k + m + 1)b2)×∫ ω

α hk(t)hm(t) f (t)dt.]

Proof. Multiply both hands of (4.4) by hm, interchange the roles of k and m and subtract
the resulting equations to get

λhk(t)hm(t) f (t) = hm(t)[ f (t)p2(t)h′k(t)]
′−hk(t)[ f (t)p2(t)h′m(t)]′, α < t < ω, (4.5)

where λ = (k−m)(a1 +(k+m+1)b2) 6= 0, by (b). Now, it is easy to verify the Lagrange
identity:

{[
f (t)p2(t)h′k(t)

]
hm(t)− [

f (t)p2(t)h′m(t)
]
hk(t)

}′
= hm(t)[ f (t)p2(t)h′k(t)]

′−hk(t)[ f (t)p2(t)h′m(t)]′.
(4.6)

Thus, integrating (4.5) over [x,y]⊆ (α ,ω), and in view of (4.6), we conclude that

∫ y

x
hk(t)hm(t) f (t)dt =

1
λ

p2(y) f (y)[h′k(y)hm(y)−hk(y)h′m(y)]

− 1
λ

p2(x) f (x)[h′k(x)hm(x)−hk(x)h′m(x)].



INTEGRATED PEARSON FAMILY AND RODRIGUES POLYNOMIALS 23

Therefore, taking limits as x ↘ α and y ↗ ω and using (a) and (c) we get the result.
Working as in the proof of Proposition 3.3 it is easily seen that both limits in (c) exist in
R, whenever (a) and (b) hold. In fact, it is true that under (a),

(k−m)(a1 +(k +m+1)b2)
∫ ω

α
hk(t)hm(t) f (t)dt

= lim
y↗ω

{p2(y) f (y)[h′k(y)hm(y)−hk(y)h′m(y)]}
− lim

x↘α
{p2(x) f (x)[h′k(x)hm(x)−hk(x)h′m(x)]}.

(4.7)

The following result is an immediate consequence of Lemma 4.1.

THEOREM 4.2. Let f be a density in (α,ω) which satisfies (4.1). For some (fixed) n ∈
{1,2, . . .} consider the set Hn := {h0,h1, . . . ,hn}, formed by the first n+1 polynomials in
(4.2). Then the set Hn is an orthogonal system (containing only non-zero elements) with
respect to f if and only if the following conditions are satisfied:

(i) The density f process 2n−1 finite moments;

(ii) ∏2n
j=2(a1 + jb2) 6= 0;

(iii) limx↗ω x j p2(x) f (x) = limx↘α x j p2(x) f (x) for each j ∈ {0,1, . . . ,2n−2}.

Proof. Let X ∼ f and assume first that (i)–(iii) are satisfied. Condition (ii) shows, in
view of (4.3), that deg(hk) = k for all k ∈ {0,1, . . . ,n}. Fix k,m ∈ {0,1, . . . ,n} with
m 6= k. Since E|X |2n−1 < ∞ by (i), it follows that E|hk(X)hm(X)| < ∞, i.e. the integral∫ ω

α hk(x)hm(x) f (x)dx is (well-defined and) finite. Finally, since h′khm−hkh′m is a polyno-
mial of degree k+m−1 (observe that lead(h′khm−hkh′m) = (k−m)lead(hk)lead(hm) 6= 0),
(iii) ensures that assumption (c) of Lemma 4.1 is also fulfilled and, hence,

∫ ω

α
hk(x)hm(x) f (x)dx = 0.

Conversely, assume that the set Hn = {h0,h1, . . . ,hn} is orthogonal with respect to
f ; that is, E|hk(X)hm(X)| = ∫ ω

α |hk(x)hm(x)| f (x)dx < ∞ for all k,m ∈ {0,1, . . . ,n} with
m 6= k, and

∫ ω
α hk(x)hm(x) f (x)dx = 0. It follows that, necessarily, deg(hk) = k for all

k = 1,2, . . . ,n; for if k is the smallest integer in {1,2, . . . ,n} for which lead(hk) = 0 then
we can write hk(x) = ∑k−1

j=0 c jh j(x) for some constants c j, and this implies that

h2
k(x) f (x) =

∣∣∣∣∣
k−1

∑
j=0

c jh j(x)hk(x)

∣∣∣∣∣ f (x) 6
k−1

∑
j=0
|c j| |h j(x)hk(x)| f (x).

Subsequently, the inequality

∫ ω

α
h2

k(x) f (x)dx 6
k−1

∑
j=0
|c j|

∫ ω

α
|hk(x)h j(x)| f (x)dx < ∞
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shows that hk ∈ L2
f (α,ω) and, finally,

∫ ω

α
h2

k(x) f (x)dx =
k−1

∑
j=0

c j

∫ ω

α
hk(x)h j(x) f (x)dx = 0,

by the orthogonality assumption. Since hk is continuous (a polynomial) and f is positive
in a subinterval of (α,ω) with positive length, it follows that hk ≡ 0, which contradicts
the assumption that Hn contains only non-zero elements. Therefore, ∏n

k=0 lead(hk) 6= 0,
and (4.3) yields (ii). Obviously, E|hn(X)hn−1(X)|< ∞ is equivalent to E|X |2n−1 < ∞ and
(i) follows. Since gk,m = h′khm− hkh′m is a polynomial of degree exactly k + m− 1 (for
k 6= m), we can form a linearly independent set

{g0,g1, . . . ,g2n−2} ⊆ {gk,m : k,m = 0,1, . . . ,n, k 6= m},
with deg(g j) = j for each j. Applying (4.7) inductively to g0,g1, . . . ,g2n−2 we get (iii).

EXAMPLE 4.1. It may happen that hk ≡ 0 for all k > 1. For instance consider the den-
sity f (x) = C/x, 1 < x < 2; this density satisfies (4.1) with (p1, p2) = (−1,x). Although∫ 2

1 hkhm f = 0 for m 6= k, the trivial system Hn = {1,0, . . . ,0} is not considered as orthog-
onal in this case. Condition (ii) of Theorem 4.2 eliminates such trivial cases.

EXAMPLE 4.2. The density f (x) = 3
2x2, −1 < x < 1, satisfies (4.1) in (α ,ω) = (−1,1).

The choice (p1, p2) = (2,x) leads to constant polynomials, hk ≡ (k+2)!/2. A set {hk,hm}
can never be orthogonal; this explains that condition (b) of Lemma 4.1 is necessary. On the
other hand, the choice (p1, p2) = (2x,x2) yields the polynomials hk = ckxk with ck = (2k+
2)!/(k +2)!. The limits in Lemma 4.1(c) are 3

2ckcm(k−m) and 3
2ckcm(k−m)(−1)k+m+1;

they are equal if and only if k +m is odd, in which case hk and hm are, obviously, orthog-
onal. Clearly, any set containing three (or more) polynomials cannot be an orthogonal
set.

REMARK 4.1. While the density f of Example 4.2 satisfies the (generalized) Pearson
differential equation (4.1) and has finite moments of any order, the system {h0,h1,h2}
fails to be orthogonal. The same is true for the Pearson density

f (x) =
C√

1+ x2
, −∞ < α < x < ω < ∞.

Now (p1, p2) = (−x,1 + x2) and {h0,h1,h2} = {1,x,3 + 6x2} so that h0h2 > 3 and the
system {h0,h1,h2} cannot be orthogonal (with respect to any measure). Does this happen
because these f lie outside the Integrated Pearson family? In other words, it is natural to
state the following question:

If a density f has finite moments up to order 2n−1 (for some fixed n > 2) and
satisfies (4.1), and if the system {h0,h1, . . . ,hn} of the first n + 1 Rodrigues
polynomials is orthogonal with respect to f , does it follow that this f belongs
to the Integrated Pearson family?
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The answer is in the affirmative. In particular, the following result holds.

THEOREM 4.3. Assume that a differentiable density f with S( f ) = {x : f (x) > 0} ⊆
(α,ω) has finite third moment and satisfies (4.1). Let h0 ≡ 1,h1,h2 be the first three
Rodrigues polynomials given by (4.2), consider the system H2 = {h0,h1,h2} and assume
that H2 is non-trivial, i.e., h1 6≡ 0 and h2 6≡ 0. If the system H2 is orthogonal with respect
to f then there exists a subinterval (α ′,ω ′)⊆ (α ,ω), a quadratic polynomial

q(x) = δx2 +βx+ γ , with {x : q(x) > 0}= (α ′,ω ′),

and a number µ ∈ (α ′,ω ′) such that f ∼ IP(µ ;q)≡ IP(µ ;δ ,β ,γ). Moreover, there exists
a constant θ 6= 0 such that q(x) = θ p2(x), x ∈R.

Proof. In view of Theorem 4.2 and the fact that f has finite third moment, the orthogonal-
ity assumption is equivalent to

(a1 +2b2)(a1 +3b2)(a1 +4b2) 6= 0 (4.8)

and
L j(α) = L j(ω), j = 0,1,2, (4.9)

where
L j(α) := lim

x↘α
x j p2(x) f (x), L j(ω) := lim

x↗ω
x j p2(x) f (x). (4.10)

To simplify cases we can apply an affine transformation x 7→ λx + c (λ 6= 0, c ∈ R) to f .
By considering f̃ (x) = 1

|λ | f (x−c
λ ) in place of f it is easily seen that (4.1) is satisfied in the

translated interval (α̃, ω̃) for p̃1(x) = λ p1(x−c
λ ) and p̃2(x) = λ 2 p2(x−c

λ ); since ã1 = a1

and b̃2 = b2, (4.8) remains unchanged. Obviously f has finite third moment if and only
if f̃ does. Moreover, it is easily seen from (4.2) that the translated polynomials h̃k are
related to hk by h̃k(x) = λ khk(x−c

λ ); thus, lead(h̃k) = lead(hk) and, in particular, the system
H2 is non-trivial if and only if the same is true for the system H̃2 := {h̃0, h̃1, h̃2}. The
orthogonality of the system H̃2 with respect to f̃ is equivalent to the orthogonality of the
system H2 with respect to f ; indeed,

∫ ω̃

α̃
h̃k(x)h̃m(x) f̃ (x)dx = λ k+m

∫ ω

α
hk(x)hm(x) f (x)dx.

It remains to verify that (4.9) are equivalent to L̃ j(α̃)= L̃ j(ω̃) ( j = 0,1,2), where L̃ j(α̃) :=
limx↘α̃ x j p̃2(x) f̃ (x), L̃ j(ω̃) := limx↗ω̃ x j p̃2(x) f̃ (x). To this end, it suffices to observe the
relations

j

∑
i=0

(
j
i

)
λ i+1c j−iLi(α) =

{
L̃ j(α̃), if λ > 0,

−L̃ j(ω̃), if λ < 0,

j

∑
i=0

(
j
i

)
λ i+1c j−iLi(ω) =

{
L̃ j(ω̃), if λ > 0,

−L̃ j(α̃), if λ < 0.
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Thus, it is easily seen that L j(α) = L j(ω) ( j = 0,1,2) if and only if L̃ j(α̃) = L̃ j(ω̃)
( j = 0,1,2).

It is clear from the above considerations, and in view of Proposition 2.1(vi), that we can
freely apply any affine transformation, either to the polynomial p2 or to the density f and
its support (α,ω); under such transformations, the conclusions as well as the assumptions
of our theorem remain unchanged.

The rest of the proof is easy but tedious since we just have to examine all possible
non-equivalent cases by solving the differential equation (4.1) in each case. We shall try
to give a somewhat complete approach as follows:

Assume first that deg(p2) = 2 and that its discriminant, ∆, is strictly negative. Ap-
plying an affine transformation and dividing both p1 and p2 by lead(p2) 6= 0 we may
assume that p2 = x2 + b0 for some b0 > 0. If p1 ≡ 0 then, necessarily, (α,ω) is finite
and f ∼U(α ,ω); but in this case, h2(x) = 6x2 + 4b0 > 4b0 > 0 cannot be orthogonal to
h0 ≡ 1. If deg(p1) = 0, that is, p1 ≡ a0 6= 0, then the density

f (x) = C exp
(

a0

b0
tan−1

(
x√
b0

))

is bounded away from zero, so that (α ,ω) must be again finite. Then, the assumed or-
thogonality of H2 fails because (4.9) shows that α = ω . Finally, assume that deg(p1) = 1
i.e. p1 = a0 +a1x with a1 6= 0. In this case, a1 6∈ {−2,−3,−4} because of (4.8). Since

f (x) = C(x2 +b0)
a1
2 exp

(
a0

b0
tan−1

(
x√
b0

))
,

it follows that either (α,ω) is finite or, otherwise, a1 <−4 (for the third moment to exists).
If (α ,ω) is finite, the assumed orthogonality fails because (4.9) shows that α = ω . If
α > −∞, ω = ∞ then the assumed orthogonality fails again from (4.9) since L0(α) > 0,
L0(∞) = 0. The case α = −∞, ω < ∞ is similar to the previous one (we can also make
the transformation x 7→ −x). Therefore, the unique case where H2 is indeed orthogonal is
when (α,ω) =R. Then,

Eh1(X) = (a1 +2b2)µ +(a0 +2b1) = 0 implies that µ =
a0

−2−a1

(note that b2 = 1, b1 = 0) and, hence, p1 + p′2 = (−2−a1)(µ−x). In view of Proposition
3.3 we see that

f ∼ IP(µ;q) with µ =
a0

−2−a1
and q(x) =

x2 +b0

−2−a1
=

p2(x)
−2−a1

.

Next, assume that deg(p2) = 2 and ∆ = 0. Applying an affine transformation and
dividing both p1 and p2 by lead(p2) 6= 0 we may further assume that p2 = x2. If p1 ≡ 0
then, necessarily, (α,ω) is finite and f ∼ U(α,ω); but in this case, h2(x) = 12x2 > 0
cannot be orthogonal to h0 ≡ 1. Let deg(p1) = 0, that is, p1 ≡ a0 6= 0. With the map
x 7→ −x, if necessary, we may further translate the density to have either the form

f (x) = Ce−
a0
x , 0 6 α < x < ω < ∞,
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or the form

f (x) =
{

C1e−
a0
x , 0 < x < ω < ∞,

0, −∞ 6 α < x 6 0,

where, necessarily, a0 > 0 in the second case. In both cases the assumed orthogonality
fails because of (4.9). Finally, assume that deg(p1) = 1 i.e. p1 = a0 + a1x with a1 6= 0.
In this case, a1 6∈ {−2,−3,−4} because of (4.8). With the map x 7→ −x, if necessary, we
may further translate the density to have either the form

f (x) = Cxa1e−
a0
x , 0 6 α < x < ω 6 ∞,

or the form

f (x) =
{

C1xa1e−
a0
x , 0 < x < ω 6 ∞,

0, −∞ 6 α < x 6 0,

where, necessarily, a0 > 0 in the second case. If ω < ∞ then, due to (4.9), the assumed
orthogonality fails for both cases. If ω = ∞ and α > 0 then we must take a1 <−4 for the
finiteness of the third moment (note that in this case, a0 ∈R can be arbitrary since α > 0),
but the orthogonality fails because of (4.9), since L0(α) > 0, L0(∞) = 0. In the last case
where α 6 0 and ω = ∞ (thus, a0 > 0 and a1 <−4) the orthogonality is indeed satisfied.
This is so because it is easy to verify both (4.9) and (4.8). On the other hand, since we
have assumed that Eh1(X) = (a1 +2b2)µ +(a0 +b1) = 0, it follows that µ = a0

−a2−2 (note
that b2 = 1, b1 = 0) and p1 + p′2 = (−2− a1)(µ − x). In view of Proposition 3.3, this
density belongs to the Integrated Pearson system with

µ =
a0

−a2−2
and q(x) =

p2(x)
−2−a1

=
x2

−2−a1
.

Moreover, observe that its support, (α ′,ω) = (0,∞) ⊆ (α ,ω), is different than (α,ω),
whenever α < 0.

Next, assume that deg(p2) = 2 and ∆ > 0. Applying an affine transformation and
dividing both p1 and p2 by lead(p2) 6= 0 we may further assume that p2 = x(1− x).
Solving the differential equation (4.1) for arbitrary p1 and for all x ∈ Rr {0,1} we see
that the general solution has the form

f (x) =





C1(−x)A(1− x)B, if x < 0,
C2xA(1− x)B, if 0 < x < 1,
C3xA(x−1)B, if x > 1,

where A and B are arbitrary parameters and C1,C2,C3 > 0 are arbitrary constants, not all
zero. The restrictions on A and B depend on the interval (α ,ω) that we consider and
the positivity or vanishing of each branch; they have to be chosen in such a way that the
resulting function is differentiable and integrable in (α,ω). For example, if [0,1]⊆ (α,ω)
and C1,C2,C3 > 0 then, in order that f is (continuous and) differentiable at the points 0
and 1, we must take A > 1 and B > 1; but then it is necessary for (α,ω) to be bounded,
since, otherwise, the resulting f could not be integrable. The several possibilities can be
classified according to the number of roots of p2 that fall into (α,ω), as follows:
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(1) Let {0,1} ∩ (α,ω) = ∅. Then, either (α,ω) ⊆ (0,1) or (α,ω) ⊆ (−∞,0) or
(α,ω)⊆ (1,∞). For the first case we observe that (4.9) fails whenever α > 0 or ω < 1; if
(α,ω) = (0,1) then A > −1, B > −1, p1 = A− (A + B)x and the orthogonality assump-
tion yields Eh1(X) = (a1 + 2b2)µ +(a0 + b1) = −(A + B + 2)µ +(A + 1) = 0. Hence,
p1+ p′2 = A+1−(A+B+2)x = (A+B+2)(µ−x) and p2(x) f (x) =CxA+1(1−x)B+1→ 0
as x↗ 1; thus, Proposition 3.3 shows that f ∼ IP(µ ;q) with

µ =
A+1

A+B+2
and q(x) =

p2(x)
A+B+2

.

Using the map x 7→ −x for the second case and the map x 7→ x−1 for the third case it
is seen that both cases are reduced to (α ,ω)⊆ (0,∞) and translate p2 to p2 =−x(x+1);
equivalently, we can take p2 = x(x +1). Moreover, the general solution in this case takes
the form

f (x) = Cxθ (x+1)λ , 0 6 α < x < ω 6 ∞.

If ω < ∞ or α > 0 it is easily seen that (4.9) fails. In the remaining case where (α,ω) =
(0,∞) we must have θ >−1 (for integrability close to zero) and θ +λ <−4 (for finiteness
of the third moment). Since p1 = a0 +a1x = θ +(θ +λ )x, p2 = b0 +b1x+b2x2 = x+ x2

and h1 = (a1 + 2b2)x + (a0 + b1) = (θ + λ + 2)x + (θ + 1), the assumed orthogonality
yields Eh1(X) = (θ + λ + 2)µ + θ + 1 = 0; thus, p1 + p′2 = (θ + λ + 2)x + (θ + 1) =
−(θ +λ +2)(µ− x) and Proposition 3.3 shows that

f ∼ IP(µ;q) with µ =
θ +1

−(θ +λ +2)
and q(x) =

p2(x)
−(θ +λ +2)

.

(2) Let {0,1}∩ (α ,ω) = {1} or {0,1}∩ (α,ω) = {0}, that is, 0 6 α < 1 < ω 6 ∞ or
−∞ 6 α < 0 < ω 6 1. Clearly the map x 7→ 1−x translates the second case to the first one
and leaves p2 unchanged; thus, it suffices to consider only the first case. If 0 < α < 1 <
ω < ∞ it is easily seen that (4.9) fails for all choices of (C2,C3) ∈ {(+,+),(+,0),(0,+)},
where (C2,C3) = (+,0) means C2 > 0, C3 = 0, etc. If α = 0 and 1 < ω < ∞ then (4.9)
fails for all choices of (C2,C3) ∈ {(+,+),(0,+)}, while it is satisfied when C2 > 0 and
C3 = 0. Similarly, if 0 < α < 1 and ω = ∞ then (4.9) fails for all choices of (C2,C3) ∈
{(+,+),(+,0)}, while it is satisfied when C2 = 0 and C3 > 0. Finally, if α = 0 and ω = ∞
then (4.9) is satisfied for all choices of (C2,C3) ∈ {(0,+),(+,0)}, while C2 > 0, C3 > 0 is
not a permissible choice because f is not integrable. Therefore, the two distinct situations
where orthogonality can be verified are given by

f1(x) =
{

C2xA(1− x)B, 0 < x < 1,
0, 1 6 x < ω,

and f2(x) =
{

0, α < x 6 1,
C3xA(x−1)B, 1 < x < ∞,

where C2 > 0, A > −1, B > 1 and 1 < ω 6 ∞ for f1; C3 > 0, B > 1, A + B < −4 and
0 6 α < 1 for f2. Now it is easily seen that both f1 and f2 belong to the Integrated
Pearson family. Specifically, Proposition 3.3 shows that f1 ∼ IP(µ;q) with

µ =
A+1

A+B+2
and q(x) =

p2(x)
A+B+2

=
x(1− x)

A+B+2
, (4.11)
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while f2 ∼ IP(µ;q) with

µ =
A+1

A+B+2
= 1+

B+1
−A−B−2

and q(x) =
p2(x)

A+B+2
=

x(x−1)
−A−B−2

. (4.12)

(3) Let {0,1} ⊆ (α,ω), that is, −∞ 6 α < 0 < 1 < ω 6 ∞. We have to study the
following cases: (3a): α = −∞, ω = ∞; (3b): −∞ < α < 0, ω = ∞; (3b′): α = −∞,
1 < ω < ∞; (3c): −∞ < α < 0, 1 < ω < ∞. Clearly the map x 7→ 1− x translates the case
(3b′) to (3b) and leaves p2 unchanged; thus, it suffices to consider only the cases (3a), (3b)
and (3c).

Assume first (3a). If (C1,C2,C3) ∈ {(+,+,+),(+,0,+),(0,+,+)} (where, e.g.,
(C1,C2,C3) = (+,0,+) means C1 > 0, C2 = 0, C3 > 0 etc.) it follows that A > 1 and B > 1
and, thus, f fails to be integrable (at a neighborhood of +∞). The case (C1,C2,C3) =
(+,+,0) is equivalent to (C1,C2,C3) = (0,+,+) (by the map x 7→ 1− x) and, again, f
fails to be integrable. By the same map, the cases (+,0,0) and (0,0,+) are also equiva-
lent. Assuming, e.g., (C1,C2,C3) = (0,0,+) it is easily seen that B > 1, A + B < −4 are
necessary and sufficient for f being integrable, differentiable at 0 and 1 and with finite
third moment. In this case both (4.9) and (4.8) are satisfied so that the system {h0,h1,h2}
is indeed orthogonal. Finally, if we assume that (C1,C2,C3) = (0,+,0) then, necessarily,
A > 1, B > 1 (for differentiability of f at 0 and 1) and it follows that the system {h0,h1,h2}
is indeed orthogonal, since both (4.9) and (4.8) are satisfied.

Next, assume (3b). If (C1,C2,C3) ∈ {(+,+,+),(+,0,+),(0,+,+)} it follows that
A > 1 and B > 1 and, thus, f fails to be integrable. If (C1,C2,C3) = (+,+,0) then A > 1,
B > 1 and (4.9) fails. Also, if (C1,C2,C3) = (+,0,0) then B > 1 and (4.9) again fails.
Assuming (C1,C2,C3) = (0,0,+) it is easily seen that B > 1, A + B < −4 are necessary
and sufficient for f being integrable, differentiable at 0 and 1 and with finite third moment.
In this case both (4.9) and (4.8) are satisfied so that the system {h0,h1,h2} is indeed
orthogonal. Finally, if we assume that (C1,C2,C3) = (0,+,0) then, necessarily, A > 1,
B > 1 (for differentiability of f at 0 and 1) and it follows that the system {h0,h1,h2} is
indeed orthogonal, since both (4.9) and (4.8) are satisfied.

Finally, assume (3c). If (C1,C2,C3)∈ {(+,+,+),(+,0,+),(0,+,+),(+,+,0)} it fol-
lows that A > 1 and B > 1 and (4.9) fails. By the map x 7→ 1− x it is easily seen that the
cases (+,0,0) and (0,0,+) are equivalent. Assuming, e.g., (C1,C2,C3) = (0,0,+) it is
easily seen that B > 1 is necessary and sufficient for f being integrable, differentiable at
0 and 1 and with finite third moment; but then, (4.9) fails. Finally, if we assume that
(C1,C2,C3) = (0,+,0) then, necessarily, A > 1, B > 1 (for differentiability of f at 0 and
1) and it follows that the system {h0,h1,h2} is indeed orthogonal, since both (4.9) and
(4.8) are satisfied.

Therefore, the two distinct situations where orthogonality can be verified are given by

f1(x) =





0, α < x 6 0,
C2xA(1− x)B, 0 < x < 1,
0, 1 6 x < ω,

and f2(x) =
{

0, α < x 6 1,
C3xA(x−1)B, 1 < x < ∞,

where C2 > 0, A > 1, B > 1 and−∞ 6 α < 0, 1 < ω 6 ∞ for f1; C3 > 0, B > 1, A+B <−4
and −∞ 6 α < 0 for f2. Now it is easily seen that both f1 and f2 belong to the Integrated
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Pearson family. Specifically, Proposition 3.3 shows that f1 ∼ IP(µ ;q) with µ and q as in
(4.11), while f2 ∼ IP(µ;q) with µ and q as in (4.12).

Next, assume that deg(p2) = 1 and, without loss of generality (by using an affine map)
we shall further assume that p2 = x. If p1 = a0 +a1x, the general solution of (4.1) is

f (x) =
{

C1xa0ea1x if x < 0,
C2xa0ea1x if x > 0,

where a0 and a1 are arbitrary parameters and C1,C2 > 0 are arbitrary constants, not both
zero. The restrictions on a0 and a1 depend on the interval (α ,ω) that we consider and
the positivity or vanishing of each branch; they have to be chosen in such a way that the
resulting function is differentiable and integrable in (α ,ω). Assuming that 0 < α < ω < ∞
we readily see that any values of a0,a1 ∈R are admissible but (4.9) fails. If 0 < α < ω = ∞
then either a1 = 0 and a0 <−3 (for finiteness of the third moment) or a1 < 0 and a0 ∈R.
In the first case both (4.9) and (4.8) are violated: the limits are unequal although

∫ ∞

α
hk(x)hm(x) f (x)dx = 0 for k 6= m, k,m ∈ {0,1,2},

because h1 = h2 ≡ 0. In the second case, (4.9) fails. If α = 0 < ω < ∞ then a0 > −1
and a1 ∈ R; it follows that (4.9) fails. Finally, if α = 0 and ω = ∞ then a0 > −1 and
a1 < 0. In this case both (4.9) and (4.8) are satisfied and the system {h0,h1,h2} is, indeed,
orthogonal. Also we see that Eh1(X) = a1µ +a0 +1 = 0 so that p1 + p′2 = a1x+a0 +1 =
−a1(µ− x). Now, from Proposition 3.3 it follows that

f ∼ IP(µ ;q) with µ =
a0 +1
−a1

and q(x) =
x
−a1

=
p2(x)
−a1

. (4.13)

By the map x 7→ −x we can transform the cases −∞ 6 α < ω 6 0 to the previous ones,
since p2 = x is transformed to p2 = −x. It remains to investigate the cases −∞ 6 α <
0 < ω 6 ∞; then, necessarily, a0 > 1. Assuming that −∞ < α < 0 < ω < ∞ it is easily
seen that (4.9) fails for all choices of (C1,C2) ∈ {(+,+),(+,0),(0,+)}. Assuming that
α =−∞, ω = ∞ we see that for f to be integrable it is necessary and sufficient that a1 < 0
if C2 > 0 and a1 > 0 if C1 > 0; therefore, if (C1,C2) = (+,+) then f is not integrable. The
case (C1,C2) = (+,0) is transformed (by x 7→ −x) to (C1,C2) = (0,+). In the last case we
can see that a0 > 1 and a1 < 0 are necessary and sufficient for f to be differentiable (in
(α,ω) =R) and to have finite third moment. As before we can easily check that both (4.9)
and (4.8) are satisfied, that {h0,h1,h2} is orthogonal and that f ∼ IP(µ;q) with µ and q
as in (4.13). The map x 7→ −x shows that the last two cases, α = −∞, 0 < ω < ∞, and
−∞ < α < 0, ω = ∞, are equivalent. By considering the second one we see that a0 > 1
and a1 < 0 are necessary and sufficient for f to be differentiable (in (α,∞)) and to have
finite third moment. However, if (C1,C2) ∈ {(+,+),(+,0)} it is easily seen that (4.9) is
violated because the limits as x↘ α are nonzero. In the remaining case (C1,C2) = (0,+)
we can easily check, as before, that both (4.9) and (4.8) are satisfied, that {h0,h1,h2} is
orthogonal and that f ∼ IP(µ ;q) with µ and q as in (4.13).
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Finally, assume that deg(p2) = 0 or, equivalently, p2 ≡ 1. Then, if p1 = a0 + a1x, it
follows that

f (x) = C exp(a0x+a1x2/2), α < x < ω.

If the support (α ,ω) is bounded then it is easily seen that (4.9) fails. The cases −∞ <
α < ω = ∞ and −∞ = α < ω < ∞ are, obviously, equivalent (by the map x 7→ −x, which
leaves p2 unchanged). Assuming that −∞ < α < ω = ∞ we see that either a1 = 0, a0 < 0
or a1 < 0, a0 ∈R; in the first case both (4.9) and (4.8) fail, while (4.9) fails in the second
one. Finally, in the last remaining case where (α ,ω) =R we see that, necessarily, a1 < 0.
Then, for any value of a0 ∈ R we check that both (4.9) and (4.8) are satisfied so that
{h0,h1,h2} is, indeed, orthogonal. Observe that, by assumption, Eh1(X) = a1µ +a0 = 0;
thus, p1 + p′2 = a0 +a1x =−a1(µ− x). Proposition 3.3 shows that f ∼ IP(µ ;q) with

µ =
a0

−a1
and q(x) =

p2(x)
−a1

=
1
−a1

; in fact, f ∼ N
(
a0/(−a1),(1/

√−a1)2) .

This subsumes all possible cases and completes the proof.

5 Orthogonality of the Rodrigues-type polynomials and of their deriv-
atives within the Integrated Pearson family

Assume that f is the density of a random variable X ∼ IP(µ;q) ≡ IP(µ;δ ,β ,γ) with
support (α,ω). From Theorem 4.1 it follows that the function

Pk(x) :=
(−1)k

f (x)
dk

dxk [qk(x) f (x)], α < x < ω, k = 0,1,2, . . . (5.1)

is a polynomial with

deg(Pk) 6 k and lead(Pk) =
2k−2

∏
j=k−1

(1− jδ ) := ck(δ ), k = 0,1,2, . . . . (5.2)

Obviously c0(δ ) := 1, i.e. an empty product should be treated as one.
The polynomials Pk are special cases of the polynomials hk defined by (4.2); in fact,

Pk = (−1)khk. They are particularly important because under natural moment conditions
they are, indeed, orthogonal with respect to the density f ; see, e.g., [9] (pp. 295–296), [14],
[21], [3]. The orthogonality follows immediately from Theorems 4.2 and 4.3. Moreover,
the polynomials Pk and their derivatives satisfy a number of useful properties that will be
reviewed here. The first three are

P0(x) = 1,

P1(x) = x−µ ,

P2(x) = (1−δ )(1−2δ )x2−2(1−δ )(µ +β )x+ µ2 +β µ− (1−2δ )γ .

(5.3)

An alternative simple proof of the orthogonality of the polynomials defined by (5.1)
can be derived by means of the following covariance identity, which extends Stein’s iden-
tity for the Normal distribution and has independent interest in itself.
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THEOREM 5.1 ([3], pp. 515–516). Let X ∼ IP(µ;δ ,β ,γ) ≡ IP(µ ;q) with density f and
support (α,ω). Assume that X has 2k finite moments for some fixed k ∈ {1,2, . . .}. Let
g : (α,ω)→R be any function such that g ∈Ck−1(α,ω), and assume that the function

g(k−1)(x) :=
dk−1

dxk−1 g(x)

is absolutely continuous in (α,ω) with a.s. derivative g(k). If Eqk(X)|g(k)(X)| < ∞ then
E|Pk(X)g(X)|< ∞ and the following covariance identity holds:

EPk(X)g(X) = Eqk(X)g(k)(X). (5.4)

It should be noted that when we claim that h : (α ,ω) → R is an absolutely continuous
function with a.s. derivative h′ we mean that there exists a Borel measurable function
h′ : (α ,ω)→ R such that h′ is integrable in every finite subinterval [x,y] of (α ,ω) such
that ∫ y

x
h′(t)dt = h(y)−h(x) for all [x,y]⊆ (α,ω).

COROLLARY 5.1 ([3], p. 516). Let X ∼ IP(µ ;δ ,β ,γ) ≡ IP(µ ;q). Assume that for some
n ∈ {1,2, . . .}, E|X |2n < ∞ or, equivalently, δ < 1

2n−1 . Then

E[Pk(X)Pm(X)] = δk,mk!Eqk(X)
2k−2

∏
j=k−1

(1− jδ ) = δk,mk!ck(δ )Eqk(X),

k,m ∈ {0,1, . . . ,n},
(5.5)

where δk,m is Kronecker’s delta and where an empty product should be treated as one.

It should be noted that the orthogonality of Pk and Pm, k 6= m, k,m ∈ {0,1, . . . ,n}, re-
mains valid even if δ ∈ [ 1

2n−1 , 1
2n−2); in this case, however, Pn 6∈ L2(R,X) since lead(Pn) >

0 andE|X |2n = ∞. On the other hand, in view of Corollary 2.2, the assumptionE|X |2n < ∞
is equivalent to the condition δ < 1

2n−1 . Therefore, for each k ∈ {0,1, . . . ,n} and for
all j ∈ {k− 1, . . . ,2k− 2}, 1− jδ > 0 because {k− 1, . . . ,2k− 2} ⊆ {0,1, . . . ,2n− 2}.
Thus, ck(δ ) > 0. Since P[q(X) > 0] = 1, deg(q) 6 2 and E|X |2n < ∞ we conclude that
0 <Eqk(X) < ∞ for all k∈{0,1, . . . ,n}. It follows that the set {φ0,φ1, . . . ,φn}⊂ L2(R,X),
where

φk(x) :=
Pk(x)(

k!ck(δ )Eqk(X)
)1/2 =

(−1)k

f (x)
dk

dxk [qk(x) f (x)]
(

k!Eqk(X)∏2k−2
j=k−1(1− jδ )

)1/2 , k = 0,1, . . . ,n, (5.6)

is an orthonormal basis of all polynomials with degree at most n. Moreover, (5.2) shows
that the leading coefficient is given by

lead(φk) := dk(µ ;q) =

(
∏2k−2

j=k−1(1− jδ )

k!Eqk(X)

)1/2

=
(

ck(δ )
k!Eqk(X)

)1/2

> 0, k = 0,1, . . . ,n.

(5.7)
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Let X be any random variable with E|X |2n < ∞ and assume that the support of X is not
concentrated on a finite subset of R. It is well known that we can always construct an
orthonormal set of real polynomials up to order n. This construction is based on the first
2n moments of X and is a by-product of the Gram-Schmidt orthonormalization process,
applied to the linearly independent system {1,x,x2, . . . ,xn} ⊂ L2(R,X). The orthonormal
polynomials are then uniquely defined, apart from the fact that we can multiply each
polynomial by ±1. It follows that the standardized Rodrigues polynomials φk of (5.6) are
the unique orthonormal polynomials that can be defined for a density f ∼ IP(µ ;δ ,β ,γ),
provided that lead(φk) > 0. Therefore, it is useful to express the L2-norm of each Pk in
terms of the parameters δ ,β ,γ and µ and, in view of (5.5) and (5.6), it remains to obtain
an expression for Eqk(X). To this end, we first recall a definition from [20]; cf. [10].

DEFINITION 5.1. Let X ∼ f and assume that X has support J(X) = (α,ω) and belongs to
the integrated Pearson family, that is, f ∼ IP(µ;q)≡ IP(µ;δ ,β ,γ). Furthermore, assume
that EX2 < ∞ (i.e. δ < 1). Then we define X∗ to be the random variable with density f ∗
given by

f ∗(x) :=
q(x) f (x)
Eq(X)

, α < x < ω. (5.8)

Since P1 = x−µ , setting k = 1 in the covariance identity (5.4) we get (see [7], [20])

E[(X −µ)g(X)] = Cov [X ,g(X)] = E[q(X)g′(X)]. (5.9)

This identity is valid for all absolutely continuous functions g : (α,ω) → R with a.s.
derivative g′ such that Eq(X)|g′(X)| < ∞. Thus, applying (5.9) to the identity function
g(x) = x it is easily seen that Eq(X) = VarX = σ2, so that (cf. [10])

X∗ ∼ f ∗(x) =
1

σ2 q(x) f (x), α < x < ω.

The following lemma shows that X∗ is integrated Pearson whenever X is integrated Pear-
son and has finite third moment.

LEMMA 5.1. If X ∼ IP(µ ;δ ,β ,γ)≡ IP(µ ;q) with support J(X) = (α,ω) and E|X |3 < ∞
then X∗ ∼ IP(µ∗;q∗) with the same support J(X∗) = J(X) = (α ,ω),

µ∗ =
µ +β
1−2δ

, and q∗(x) =
q(x)

1−2δ
, α < x < ω. (5.10)

Proof. From Corollary 2.2 it follows that the assumptionE|X |3 < ∞ is equivalent to δ < 1
2 .

Let X∗ ∼ f ∗(x) = q(x) f (x)/Eq(X) = q(x) f (x)/σ2, α < x < ω , where σ2 is the variance
of X . Then, it follows that

µ∗ = EX∗ =
E[Xq(X)]

σ2 .

Define P1(x) = x− µ and P2(x) = (x− µ)2 − (x− µ)q′(x)− (1− 2δ )q(x). We have
EP1(X)= 0 andEP2(X)= σ2−Cov [X ,q′(X)]−(1−2δ )Eq(X). Applying the covariance
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identity (5.9) to g(x)= x and to g(x)= q′(x) we see thatEP2(X)= 2δσ2−E[q(X)q′′(X)]=
2δσ2−2δEq(X) = 0. Also,

E[P1(X)P2(X)] = E(X −µ)3−E[(X −µ)2q′(X)]− (1−2δ )E[(X −µ)q(X)]
= Cov [X ,(X −µ)2]− Cov [X ,(X−µ)q′(X)]− (1−2δ )Cov [X ,q(X)]

and, once again, (5.9) shows that E[P1(X)P2(X)] = 0. Now observe that

x =
(

1
2(1−δ )(1−2δ )

P2(x)+
µ +β
1−2δ

P1(x)
)′

= g′(x), say,

so that

EXq(X) = Eq(X)g′(X) = Cov [X ,g(X)] = E(X−µ)g(X) = EP1(X)g(X)

=
1

2(1−δ )(1−2δ )
EP1(X)P2(X)+

µ +β
1−2δ

EP2
1 (X)

= 0+
µ +β
1−2δ

E(X−µ)2 =
µ +β
1−2δ

σ2.

It follows that µ∗ = E[Xq(X)]/σ2 = (µ +β )/(1−2δ ).
It remains to show that q∗(x) = q(x)/(1− 2δ ) is the quadratic polynomial of X∗, i.e.

that ∫ x

−∞
(µ∗− t) f ∗(t)dt =

1
1−2δ

q(x) f ∗(x), x ∈R.

Equivalently, it suffices to verify the identity
∫ x

−∞
{µ +β − (1−2δ )t}q(t) f (t)dt = q2(x) f (x), x ∈R. (5.11)

Since f (x) = 0 for x /∈ (α ,ω) it follows that the l.h.s. of (5.11) equals to zero for x 6 α (if
α >−∞). Also, if ω < ∞ and x > ω then the l.h.s. of (5.11) is equal to (µ +β )Eq(X)−
(1−2δ )EXq(X) = (µ +β )σ2− (1−2δ ) µ+β

1−2δ σ2 = 0. Thus, (5.11) takes the form 0 = 0
whenever x /∈ (α,ω). For x ∈ (α,ω) it is easily seen that
(

q2(x) f (x)−
∫ x

−∞
{µ +β − (1−2δ )t}q(t) f (t)dt

)′

= (q(x) ·q(x) f (x))′−{µ +β − (1−2δ )x}q(x) f (x)
= q′(x)q(x) f (x)+q(x)(µ− x) f (x)−q(x) f (x){µ +β − (1−2δ )x}
= q(x) f (x) [q′(x)+(µ− x)− (µ +β )+(1−2δ )x] = q(x) f (x) [q′(x)−2δx−β ] = 0.

Thus, there exists a constant c ∈R such that
∫ x

−∞
{µ +β − (1−2δ )t}q(t) f (t)dt = q2(x) f (x)+ c, α < x < ω. (5.12)

Now observe that limx↗ω
∫ x
−∞{µ + β − (1− 2δ )t}q(t) f (t)dt = limx↗ω q2(x) f (x) = 0.

Indeed, the first limit follows from dominated convergence and the fact that Eq(X) =
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σ2 and E[Xq(X)] = (µ + β )σ2/(1− 2δ ), while the second one is obvious when ω < ∞
because q(ω) = 0 and q(x) f (x)→ E(µ −X) = 0 as x↗ ω . Finally, if ω = ∞ we have
q(x) f (x) = o(x−2) as x→ ∞ because E|X |3 < ∞ and for large enough x,

x2q(x) f (x) = x2
∫ ∞

x
(t−µ) f (t)dt 6

∫ ∞

x
t2(t−µ) f (t)dt → 0, as x→ ∞,

by dominated convergence. This shows that limx↗ω q2(x) f (x) = 0 in all cases. Therefore,
taking limits as x↗ ω in (5.12) we conclude that c = 0 and (5.11) follows.

THEOREM 5.2. Let X be a random variable with density f ∼ IP(µ;q) ≡ IP(µ ;δ ,β ,γ),
supported in J(X) = (α,ω). Furthermore, assume that E|X |2n+1 < ∞ (i.e. δ < 1

2n) for
some fixed n ∈ {0,1, . . .}. Define the random variable Xk with density fk given by

fk(x) :=
qk(x) f (x)
Eqk(X)

, α < x < ω, k = 0,1, . . . ,n. (5.13)

Then, fk ∼ IP(µk;qk) with (the same) support J(Xk) = J(X) = (α,ω),

µk =
µ + kβ
1−2kδ

, and qk(x) =
q(x)

1−2kδ
, α < x < ω, k = 0,1, . . . ,n. (5.14)

Moreover, X0 = X , X1 = X∗0 = X∗, X2 = X∗1 and, in general, Xk = X∗k−1 for k ∈ {1, . . . ,n}.

Proof. For k = 0 the assertion is obvious while for k = 1 (and thus, n > 1) the assertion
follows from Lemma 5.1 sinceE|X |3 < ∞ and, by definition, f1 = f ∗, µ1 = µ∗ and q1 = q∗.
Assume now that the assertion has been proved for some k ∈ {1, . . . ,n−1}. Then,

E|Xk|3 =
Eqk(X)|X |3
Eqk(X)

< ∞,

because E|X |2k+3 < ∞ since k 6 n−1. Therefore, we can apply Lemma 5.1 to the random
variable Xk ∼ IP(µk;qk)≡ IP(µk;δk,βk,γk) obtaining X∗k ∼ IP(µ∗k ;q∗k)≡ IP(µ∗k ;δ ∗k ,β ∗k ,γ∗k )
where

µ∗k =
µk +βk

1−2δk
=

µ+kβ
1−2kδ + β

1−2kδ

1−2 δ
1−2kδ

=
µ +(k +1)β
1−2(k +1)δ

= µk+1

and

q∗k(x) =
qk(x)

1−2δk
=

q(x)
1−2kδ

1−2 δ
1−2kδ

=
q(x)

1−2(k +1)δ
= qk+1(x), α < x < ω.

On the other hand, since Eq(Xk) = Eqk+1(X)
Eqk(X) and X∗k ∼ f ∗k we get

f ∗k (x)=
qk(x) fk(x)
Eqk(Xk)

=
q(x)

1−2kδ
qk(x) f (x)
Eqk(X)

Eq(Xk)
1−2kδ

=
qk+1(x) f (x)
Eqk(X)
Eqk+1(X)
Eqk(X)

=
qk+1(x) f (x)
Eqk+1(X)

= fk+1(x), α < x < ω,

that is, X∗k = Xk+1 ∼ fk+1 ∼ IP(µk+1;qk+1), and the proof is complete.
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COROLLARY 5.2. If X ∼ IP(µ;q) and E|X |2n+2 < ∞ (equivalently, if δ < 1
2n+1) then for

each k ∈ {0,1, . . . ,n},

σ2
k := VarXk = Eqk(Xk) =

q( µ+kβ
1−2kδ )

1− (2k +1)δ
, (5.15)

where qk(x) = δkx2 +βkx+ γk and Xk are as in Theorem 5.2. In particular, if δ < 1 then

σ2 := VarX = Eq(X) =
q(µ)
1−δ

. (5.16)

Proof. First observe that for any k ∈ {0,1, . . . ,n}, E|Xk|2 < ∞ (and thus, Eqk(Xk) < ∞)
since δk = δ

1−2kδ < 1 because δ < 1
2n+1 6 1

2k+1 . Note that it suffices to show only (5.16).
Indeed, since Xk ∼ IP(µk;qk) it follows from (5.9) (applied to the random variable Xk and
to the function g(x) = x) that σ2

k = VarXk =Eqk(Xk). On the other hand, if we manage to
show that VarX = q(µ)

1−δ for any X ∼ IP(µ ;q) with δ < 1 then, by (5.16) applied to Xk, we
get

VarXk =
qk(µk)
1−δk

.

Since

µk =
µ + kβ
1−2kδ

, qk(x) =
q(x)

1−2kδ
and δk =

δ
1−2kδ

< 1,

(5.16) yields the identity (5.15) as follows:

Eqk(Xk) = VarXk =
qk(µk)
1−δk

=
q(µk)

1−2kδ

1− δ
1−2kδ

=
q(µk)

1− (2k +1)δ
=

q( µ+kβ
1−2kδ )

1− (2k +1)δ
.

It remains to verify that VarX = σ2 = q(µ)
1−δ whenever X ∼ IP(µ;q) and δ < 1. To this end,

write
q(X) = q(µ)+q′(µ)(X−µ)+δ (X−µ)2

and take expectations to get σ2 = q(µ)+δσ2, which is equivalent to (5.16).

COROLLARY 5.3. If X ∼ IP(µ ;q) and E|X |2n < ∞ for some n > 1 (i.e. δ < 1
2n−1) then for

each k ∈ {1, . . . ,n},

Ak = Ak(µ ;q) := Eqk(X) =
∏k−1

j=0(1−2 jδ )

∏k−1
j=0(1− (2 j +1)δ )

k−1

∏
j=0

q
(

µ + jβ
1−2 jδ

)
. (5.17)

Proof. Observe that

(1−2 jδ )Eq j(X j) = Eq(X j) =
A j+1

A j
, j = 0,1, . . . ,n−1,

where A0 := 1, q0 = q, X0 = X . Multiplying these relations for j = 0,1, . . . ,k−1 and using
(5.15) we get (5.17).
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REMARK 5.1. (a) It is important to note that the identity (5.4) enables a convenient calcu-
lation of the Fourier coefficients of any smooth enough function g with Varg(X) < ∞ (i.e.,
g ∈ L2(R,X)). Indeed, if X ∼ IP(µ ;δ ,β ,γ) ≡ IP(µ ;q) and E|X |2n < ∞ then the Fourier
coefficients ck = Eφk(X)g(X) are given by c0 = Eg(X) and

ck =
Eqk(X)g(k)(X)

(k!ck(δ )Ak(µ;q))1/2 , k = 1,2, . . . ,n, (5.18)

where ck(δ ) and Ak(µ ;q) are given by (5.2) and (5.17), respectively, provided that g is
smooth enough so that Eqk(X)|g(k)(X)|< ∞ for k ∈ {1,2, . . . ,n}.

(b) Obviously, if X ∼ IP(µ ;δ ,β ,γ) and δ 6 0 (i.e. if X is of Normal, Gamma or Beta-type)
then E|X |n < ∞ for all n. Moreover, since there exist an ε > 0 such that EetX < ∞ for |t|<
ε it follows that the corresponding polynomials {φk}∞

k=0, given by (5.6), form a complete
orthonormal system in L2(R;X); see, e.g., [24], [6], [3]. Therefore, for smooth enough
g with Varg(X) < ∞ and Eqk(X)|g(k)(X)| < ∞ for all k > 1, the Fourier coefficients are
given by

ck = Eφk(X)g(X) =
Eqk(X)g(k)(X)

(k!ck(δ )Ak(µ ;q))1/2 , k = 0,1,2, . . . , (5.19)

and the variance of g can be calculated as (see [3], Theorem 5.1, pp. 522–523)

Varg(X) =
∞

∑
k=1

E2qk(X)g(k)(X)
k!ck(δ )Ak(µ ;q)

. (5.20)

Furthermore, the completeness of the Rodrigues polynomials (when X ∼ IP(µ;δ ,β ,γ)
and δ 6 0) enables one to write ([3], Theorem 5.2, p. 523)

Cov [g1(X),g2(X)] =
∞

∑
k=1

E[qk(X)g(k)
1 (X)]E[qk(X)g(k)

2 (X)]
k!ck(δ )Ak(µ;q)

, (5.21)

provided that for i = 1,2, gi ∈ L2(R,X) and Eqk(X)|g(k)
i (X)| < ∞ for all k > 1. The im-

portant thing in (5.20) and (5.21) is that we do not need explicit forms for the polynomials;
in view of (5.2) and (5.17), everything is calculated from the four numbers (µ ;δ ,β ,γ) and
the derivatives of g or gi (i = 1,2). In particular, for the first three types of Table 2.1, (5.20)
yields the formulae

Varg(X) =
∞

∑
k=1

σ2k

k!
E2g(k)(X), if X ∼ N(µ ,σ2), (5.22)

Varg(X) =
∞

∑
k=1

Γ (a)
k!Γ (a+ k)

E2Xkg(k)(X), if X ∼ Γ (a,λ ), (5.23)

Varg(X) =
∞

∑
k=1

(a+b+2k−1)Γ (a)Γ (b)Γ (a+b+ k−1)
k!Γ (a+b)Γ (a+ k)Γ (b+ k)

E2Xk(1−X)kg(k)(X), (5.24)

if X ∼ B(a,b).
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Turn now to the orthogonal polynomial system {Pk; k = 0,1, . . . ,n}, of (5.1), obtained
for a random variable X ∼ IP(µ ;δ ,β ,γ) with support J(X) = (α,ω) and E|X |2n < ∞
for some n > 2, i.e. with δ < 1

2n−1 . By Lemma 5.1 the random variable X∗ = X1 ∼
IP(µ1;q1)≡ IP(µ1;δ1,β1,γ1) with

µ1 =
µ +β
1−2δ

and q1(x) =
q(x)

1−2δ

and has support (α,ω). Since δ < 1
2n−1 is equivalent to δ1 = δ

1−2δ < 1
2n−3 we conclude

thatE|X1|2n−2 < ∞ and, in particular, VarX1 < ∞. Therefore, we can define the orthogonal
polynomial system

{Pk,1; k = 0,1, . . . ,n−1},
by applying (5.1) to the density f1 and to the quadratic polynomial q1 of X1, that is (recall
that f1(x) = q(x) f (x)/Eq(X))

Pk,1(x) :=
(−1)k

f1(x)
dk

dxk [qk
1(x) f1(x)] =

(−1)k

(1−2δ )kq(x) f (x)
dk

dxk [qk+1(x) f (x)],

α < x < ω, k = 0,1, . . .,n−1.

(5.25)

Clearly the system {Pk,1; k = 0,1, . . . ,n−1} is orthogonal with respect to X1, but the im-
portant observation is that we can reobtain it by differentiating the polynomials Pk (which
are orthogonal with respect to X). In fact, the following lemma holds.

LEMMA 5.2. If X ∼ IP(µ ;q) and E|X |2n < ∞ for some n > 1 then the polynomials Pk of
(5.1) and Pk,1 of (5.25) are related through

P′k+1(x) = Ck(δ )Pk,1(x), k = 0,1, . . . ,n−1,

where Ck(δ ) := (k +1)(1− kδ )(1−2δ )k.
(5.26)

Proof. First we show that the polynomials P′k+1 are orthogonal with respect to X1. Indeed,
deg(P′k+1) = k (for k = 0,1, . . . ,n−1) and for k,m ∈ {0,1, . . . ,n−1} with k < m we have

EP′k+1(X1)P′m+1(X1) =
1

σ2

∫ ω

α
P′m+1(x)P

′
k+1(x)q(x) f (x)dx

=
1

σ2

{
Pm+1(x)P′k+1(x)q(x) f (x)

∣∣∣
ω

α

−
∫ ω

α
Pm+1(x)[P′k+1(x)q(x) f (x)]′dx

}
.

Now observe that, in view of Lemma 2.1,

Pm+1(x)P′k+1(x)q(x) f (x)
∣∣ω
α = 0,

because Pm+1P′k+1 is a polynomial of degree m+k+1 6 2n−2 andE|X |2n < ∞. Moreover,

[P′k+1(x)q(x) f (x)]′ = P′′k+1(x)q(x) f (x)+P′k+1(x)(µ− x) f (x) = Hk+1(x) f (x),
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where Hk+1(x) = P′′k+1(x)q(x) + (µ − x)P′k+1(x) is a polynomial in x of degree at most
k +1 < m+1. Therefore,

EP′k+1(X1)P′m+1(X1) =− 1
σ2EPm+1(X)Hk+1(X) = 0,

since Pm+1 is orthogonal (with respect to X) to any polynomial of degree lower than m+1.
Note that the same orthogonality conditions are also valid for {Pk,1}n−1

k=0, that is,

EPk,1(X1)Pm,1(X1) = 0 for k,m ∈ {0,1, . . . ,n−1} with k 6= m.

Since deg(P′k+1) = deg(Pk,1) = k, k = 0,1, . . . ,n− 1, the uniqueness of the orthogonal
polynomial system implies that there exist constants Ck 6= 0 such that P′k+1(x) = CkPk,1(x).
Equating the leading coefficients we obtain lead(P′k+1) = Cklead(Pk,1), that is (see (5.2)),

Ck =
lead(P′k+1)
lead(Pk,1)

=
(k +1)lead(Pk+1)

lead(Pk,1)
=

(k +1)ck+1(δ )
ck(δ1)

=
(k +1)∏2k

j=k(1− jδ )

∏2k−2
j=k−1(1− jδ1)

=
(k +1)∏2k

j=k(1− jδ )

∏2k−2
j=k−1(1− j δ

1−2δ )
=

(k +1)(1−2δ )k ∏2k
j=k(1− jδ )

∏2k
j=k+1(1− jδ )

= (k +1)(1− kδ )(1−2δ )k.

REMARK 5.2. We note that the recurrence (5.26) is contained in Beale (1937), eq. (2), p.
207. Actually, Beale’s recurrence (which is stated in a much different notation) is valid
for the polynomials hk of (4.2) and for all k > 0; thus, orthogonality is not, at all, needed
for deriving it. Specifically, if p1 = a0 + a1x, p2 = b0 + b1x + b2x2, and if hk are the
polynomials in (4.2) and hk,1 are the polynomials given by

hk,1(x) :=
1

p2(x) f (x)
dk

dxk [pk+1
2 (x) f (x)],

then, with Beale’s notation, hk+1(x) = Pk+1(k + 1,x) and hk,1(x) = Pk(k + 1,x); see also
[12], p. 401. Therefore, Beale’s identity is equivalent to (cf. [4], eq. (2), p. 207)

h′k+1(x) = (k +1)[a1 +(k +2)b2]hk,1(x). (5.27)

On the other hand, the current definition of Pk and Pk,1 can be translated to Beale’s notation
as follows: Since X ∼ IP(µ ;δ ,β ,γ)≡ IP(µ ;q) we have from Proposition 2.1 that f ′/ f =
p1/p2 with p2 = q and p1 = µ − x− q′, that is, a0 = µ − β , a1 = −(1 + 2δ ), b0 = γ ,
b1 = β and b2 = δ . Furthermore,

Pk+1(x)=
(−1)k+1

f (x)
dk+1

dxk+1 [qk+1(x) f (x)]=
(−1)k+1

f (x)
dk+1

dxk+1 [pk+1
2 (x) f (x)]= (−1)k+1hk+1(x)

and

Pk,1(x)=
(−1)k

f1(x)
dk

dxk [qk
1(x) f1(x)]=

(−1)k

q(x) f (x)
dk

dxk

[
qk(x)

(1−2δ )k q(x) f (x)
]

=
(−1)k

(1−2δ )k hk,1(x).
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Thus, hk+1 = (−1)k+1Pk+1, hk,1 = (−1)k(1−2δ )kPk,1 and (5.27) yields

(−1)k+1P′k+1 = (k +1)[−(1+2δ )+(k +2)δ ](−1)k(1−2δ )kPk,1.

That is, P′k+1 = (k +1)[(1+2δ )− (k +2)δ ](1−2δ )kPk,1 = (k +1)(1− kδ )(1−2δ )kPk,1,
which shows that (5.26) holds for all k ∈ {0,1, . . .}.

Applying Lemma 5.2 inductively it is easy to verify the following result.

THEOREM 5.3. If X ∼ IP(µ ;δ ,β ,γ) with support J(X) = (α ,ω) and E|X |2n < ∞ for
some n > 1 (i.e. δ < 1

2n−1 ) then

P(m)
k+m(x) = C(m)

k (δ )Pk,m(x), m = 1,2, . . . ,n, k = 0,1, . . . ,n−m, (5.28)

where

C(m)
k (δ ) :=

(k +m)!
k!

(1−2mδ )k
k+2m−2

∏
j=k+m−1

(1− jδ ). (5.29)

Here, Pk are the polynomials given by (5.1) associated with f , and Pk,m are the corre-
sponding Rodrigues polynomials of (5.1), associated with the density fm(x) = qm(x) f (x)

Eqm(X) ,
α < x < ω , of the random variable Xm ∼ IP(µm;qm) of Theorem 5.2, i.e.,

Pk,m(x) :=
(−1)k

fm(x)
dk

dxk [qk
m(x) fm(x)] =

(−1)k

(1−2mδ )kqm(x) f (x)
dk

dxk [qk+m(x) f (x)],

α < x < ω, k = 0,1, . . . ,n−m.

(5.30)

Proof. Apply first Lemma 5.2 to get

P′k+m = P′(k+m−1)+1 = (k +m)(1− (k +m−1)δ )(1−2δ )k+m−1Pk+m−1,1.

Now, since Pk+m−1,1 are the Rodrigues polynomials of f1 we can apply again Lemma 5.2
to X1 with δ1 = δ

1−2δ . It follows that

P′k+m−1,1 = P′(k+m−2)+1,1 = (k +m−1)(1− (k +m−2)δ1)(1−2δ1)k+m−2Pk+m−2,2.

Combining the above equations we see that

P′′k+m = (k +m)(1− (k +m−1)δ )(1−2δ )k+m−1P′k+m−1,1

= (k +m)(k +m−1)(1− (k +m−1)δ )(1− (k +m−2)δ1)

× (1−2δ )k+m−1(1−2δ1)k+m−2Pk+m−2,2.

By the same argument it follows that for any j ∈ {0,1, . . . ,m−1},

P′k+m− j, j = P′(k+m− j−1)+1,1 = (k +m− j)(1− (k +m− j−1)δ j)(1−2δ j)k+m− j−1Pk+m− j−1, j+1,
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where δ j = δ/(1−2 jδ ). Thus, we can easily show, using (finite) induction on s, that for
any s ∈ {1,2, . . . ,m},

P(s)
k+m =

{(
s−1

∏
j=0

(k +m− j)

)(
s−1

∏
j=0

(1− (k +m− j−1)δ j)

)(
s−1

∏
j=0

(1−2δ j)k+m− j−1

)}
Pk+m−s,s.

Setting s = m it follows that (5.28) is satisfied with

C(m)
k (δ ) =

(
m−1

∏
j=0

(k +m− j)

)(
m−1

∏
j=0

(1− (k +m− j−1)δ j)

)(
m−1

∏
j=0

(1−2δ j)k+m− j−1

)
.

Now it suffices to observe that ∏m−1
j=0 (k +m− j) = (k+m)!

k! , that

m−1

∏
j=0

(1− (k +m− j−1)δ j) =
m−1

∏
j=0

(
1− (k +m− j−1)

δ
1−2 jδ

)

=
∏m−1

j=0 (1− (k +m+ j−1)δ )

∏m−1
j=0 (1−2 jδ )

=
∏k+2m−2

j=k+m−1(1− jδ )

∏m−1
j=0 (1−2 jδ )

,

and that

m−1

∏
j=0

(1−2δ j)k+m− j−1 =
m−1

∏
j=0

(
1−2

δ
1−2 jδ

)k+m− j−1

=
m−1

∏
j=0

(
1−2( j +1)δ

1−2 jδ

)k+m− j−1

=
∏m−1

j=0 (1−2( j +1)δ )k+m− j−1

∏m−1
j=0 (1−2 jδ )k+m− j−1

=
∏m

j=1(1−2 jδ )k+m− j

∏m−1
j=1 (1−2 jδ )k+m− j−1

= (1−2mδ )k ∏m−1
j=1 (1−2 jδ )k+m− j

∏m−1
j=1 (1−2 jδ )k+m− j−1

= (1−2mδ )k
m−1

∏
j=1

(1−2 jδ ).

REMARK 5.3. (a) An alternative calculation of the constant Ck = C(m)
k (δ ) can be given as

follows. Lemma 5.2 guarantees that P(m)
k+m(x) = CkPk,m(x) for some constant Ck. Arguing

as in the proof of Lemma 5.2 we see that Ck can be derived from the corresponding leading
coefficients. Indeed, since lead(P(m)

k+m) = Cklead(Pk,m), we get, in view of (5.2), that

Ck =
lead(P(m)

k+m)
lead(Pk,m)

=
(k+m)!

k! lead(Pk+m)
lead(Pk,m)

=
(k+m)!

k! ck+m(δ )
ck(δm)

=
(k+m)!

k! ∏2k+2m−2
j=k+m−1(1− jδ )

∏2k−2
j=k−1(1− jδm)

=
(k+m)!

k! ∏2k+2m−2
j=k+m−1(1− jδ )

∏2k−2
j=k−1(1− j δ

1−2mδ )
=

(k+m)!
k! (1−2mδ )k ∏2k+2m−2

j=k+m−1(1− jδ )

∏2k+2m−2
j=k+2m−1(1− jδ )

=
(k +m)!

k!
(1−2mδ )k

k+2m−2

∏
j=k+m−1

(1− jδ ).
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(b) We note that the recurrence (5.28) is contained in Beale (1937), eq. (4), p. 207, al-
though it is stated in a quite different notation there. Specifically, if p1 = a0 + a1x,
p2 = b0 + b1x + b2x2, and if hk are the polynomials in (4.2) and hk,m are the polynomials
given by

hk,m(x) :=
1

pm
2 (x) f (x)

dk

dxk [pk+m
2 (x) f (x)],

then, with Beale’s notation, hk+m(x) = Pk+m(k +m,x) and hk,m(x) = Pk(k +m,x). There-
fore, putting q→ m, k → k +m, n→ k +m−1, N′→−(1+2δ ) and D′′→ 2δ in eq. (4)
of [4], we get

h(m)
k+m(x) =

(
m−1

∏
i=0

(k +m− i)((k +m+ i−1)δ −1)

)
hk,m(x)

= (−1)m (k +m)!
k!

(
k+2m−2

∏
j=k+m−1

(1− jδ )

)
hk,m(x), k = 0,1,2, . . . .

(5.31)

On the other hand it is easy to see that Pk+m(x) = (−1)k+mhk+m(x) and, with p2 = q,

Pk,m(x)=
(−1)k

fm(x)
dk

dxk [qk
m(x) fm(x)]=

(−1)k

pm
2 (x) f (x)

dk

dxk

[
pk

2(x)
(1−2mδ )k pm

2 (x) f (x)
]

=
(−1)khk,m(x)
(1−2mδ )k .

Thus, hk+m = (−1)k+mPk+m, hk,m = (−1)k(1−2mδ )kPk,m, and (5.31) becomes

(−1)k+mP(m)
k+m =(−1)m (k +m)!

k!

(
k+2m−2

∏
j=k+m−1

(1− jδ )

)
(−1)k(1−2mδ )kPk,m, k = 0,1, . . . ;

equivalently, P(m)
k+m = (k+m)!

k! (1−2mδ )k
(

∏k+2m−2
j=k+m−1(1− jδ )

)
Pk,m, which shows that (5.28)

holds for all k ∈ {0,1, . . .}.

(c) Krall [16], [17] characterizes the Pearson system from the fact that the derivatives of
orthogonal polynomials are orthogonal polynomials.

We can now adapt the preceding results to the corresponding orthonormal polynomial
systems. Notice that the following corollary contains the main interest regarding Fourier
expansions within the Pearson family and, to our knowledge, it is not stated elsewhere in
the present simple, unified, explicit form.

COROLLARY 5.4. Let X ∼ IP(µ;δ ,β ,γ)≡ IP(µ ;q) with support (α,ω), and assume that
E|X |2n < ∞ for some fixed n > 1 (equivalently, δ < 1

2n−1). Let {φk}n
k=0 be the orthonormal

polynomials associated with X (with lead(φk) > 0 for all k; see (5.6), (5.7)), fix a number
m ∈ {0,1, . . . ,n}, and consider the corresponding orthonormal polynomials {φk,m}n−m

k=0 ,
with lead(φk,m) > 0, associated with

Xm ∼ fm(x) =
qm(x) f (x)
Eqm(X)

, α < x < ω.
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Then there exist constants ν(m)
k = ν(m)

k (µ ;q) > 0 such that

φ (m)
k+m(x) = ν(m)

k φk,m(x), α < x < ω, k = 0,1, . . . ,n−m. (5.32)

Specifically, the constants ν(m)
k have the explicit form

ν(m)
k = ν(m)

k (µ ;q) :=





(k+m)!
k! ∏k+2m−2

j=k+m−1(1− jδ )

Am(µ ;q)





1/2

, (5.33)

where Am(µ ;q) = Eqm(X) is given by (5.17). In particular, setting σ2 = VarX we have

φ ′k+1(x)=

√
(k +1)(1− kδ )

σ
φk,1(x)=

√
(k +1)(1−δ )(1− kδ )

q(µ)
φk,1(x), k = 0,1, . . . ,n−1.

(5.34)

Proof. Observe that

φk+m(x) =
Pk+m(x)√
E|Pk+m(X)|2 and φk,m(x) =

Pk,m(x)√
E|Pk,m(Xm)|2 , α < x < ω,

where Pk+m and Pk,m are as in Theorem 5.3. Since

P(m)
k+m(x) = C(m)

k (δ )Pk,m(x), α < x < ω,

we conclude that there exists a constant ν(m)
k such that φ (m)

k+m(x) = ν(m)
k φk,m(x). Hence,

ν(m)
k =

lead(φ (m)
k+m)

lead(φk,m)
=

(k+m)!
k! lead(φk+m)
lead(φk,m)

=

(k+m)!
k!

lead(Pk+m)√
E|Pk+m(X)|2

lead(Pk,m)√
E|Pk,m(Xm)|2

=
(k +m)! lead(Pk+m)

√
E|Pk,m(Xm)|2

k! lead(Pk,m)
√
E|Pk+m(X)|2 =

(k +m)! ck+m(δ )
√
E|Pk,m(Xm)|2

k! ck(δm)
√
E|Pk+m(X)|2 ,

where, by (5.2), ck+m(δ ) = ∏2k+2m−2
j=k+m−1(1− jδ ) and

ck(δm) =
2k−2

∏
j=k−1

(1− jδm) =
2k−2

∏
j=k−1

(1− j
δ

1−2mδ
)

=
∏2k−2

j=k−1(1− (2m+ j)δ )

(1−2mδ )k =
∏2k+2m−2

j=k+2m−1(1− jδ )

(1−2mδ )k .

From (5.5) we see that E|Pk+m(X)|2 = (k +m)!ck+m(δ )Eqk+m(X) and

E|Pk,m(Xm)|2 = k!ck(δm)Eqk
m(Xm) = k!ck(δm)

Eqk
m(X)qm(X)
Eqm(X)

=
k!ck(δm)Eqk+m(X)
(1−2mδ )kEqm(X)

.
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Combining the preceding relations we obtain

ν(m)
k =

(k +m)! ck+m(δ )
√
E|Pk,m(Xm)|2

k! ck(δm)
√
E|Pk+m(X)|2 =

(k +m)! ck+m(δ )
√

k!ck(δm)Eqk+m(X)
(1−2mδ )kEqm(X)

k! ck(δm)
√

(k +m)!ck+m(δ )Eqk+m(X)

=
(k +m)! ck+m(δ )

√
k!ck(δm)Eqk+m(X)

k! ck(δm)
√

(k +m)!ck+m(δ )Eqk+m(X)(1−2mδ )kEqm(X)

=

√
(k +m)!ck+m(δ )√

k!ck(δm)(1−2mδ )kEqm(X)
=

√
(k +m)!

k!Eqm(X)

√
ck+m(δ )

ck(δm)(1−2mδ )k

=

√
(k +m)!

k!Eqm(X)

√√√√√
∏2k+2m−2

j=k+m−1(1− jδ )

∏2k+2m−2
j=k+2m−1(1− jδ )

(1−2mδ )k (1−2mδ )k
=

√√√√ (k +m)!
k!Eqm(X)

k+2m−2

∏
j=k+m−1

(1− jδ ),

and the proof is complete.
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