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Abstract

Three simpie proofs of the classical CLT are presented. The proofs are
based on some basic properties of covariance kernels olur-functions in
conjunction rvith bounds for the total variation distance. Applications
to random sum CLT's are also given.
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1. fntroduction 
- '

Consider a (real) absolutely continuous r.v. X rvith d.f. F, density f ,
mean p,, and finite variance o2. The (characterizing) covariance kernel t( )
is defined for every r in the interval suppori of. X by the relation

o2w(r) f (r) : [" 0, - t) f (t) dt - [* Q - p) f (t) dt;
J - c o  J z

?ll appears in the basic couariance identity ([4], Lemma 3.1)

CovlX, e(X)l - oz Elw(X)s' (X)1,

( t  1 \

( 1  2 )

provided that the (otherwise arbitrary) absolutely continuous function g sat-
isfies Elr(X)g' (X)l < m. Interestingiy enough. the same ur-function appears
both in the upper and iower bounds on the variance of g(X).

The purpose of the paper is to give elementary proofs of the CLT in the
i.i.d. (univariate) case, by only using properties of the covariance kernel'u.
It should be noted that these proofs are heavily dependent on some previous
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o f X ( w h e r e X h a s

( r  3)

is unnecessary and,

results (14],[6], [7] and i3]) Furthermore, multivariate extensions have been

given bv [g] and [5].
The fust proof shows the weak convergence io the standard normal d.f.

O of the d.f. Fn of the standardized partial sums

o  _ X 1 + " ' * X n - n P
D n :

T.he assumption used here is that the covariance kernel T.u

the same d.f. as Xr , Xz, . . .) has finite variance:

Var['u.'(X)] ( oo.

The second proof is stronger, since assumption (1 3)

at the same time, the conciusion is strengthened to

Q(Fn, O) * 0, as n -> co- ( i  4 )

In this paper, A(F,G) denotes the totai variation distance between the d.f.'s

(  1 . D /

F and G (or the corresponding r.v.'s X and Y), defined by

a(F, G) : sle{lF(A) - G(A)1, A Borel},

where F(A) : PIX € Al, G(A) - PIY e A).
In the third proof, the stronger assumption (1.3) is used in order to obtain

the bound

a(F^, O) S cl'fr,, ( t  A \

for some constant c (see (2.10)), depending only upon the d.f. of X .

Obviousiy (1.6) implies (1 4), and furthermore it gives a bound on the rate

of convergence.
It is worth noting that the last technique is also applicable to sums of

independent (not necessarily identically distributed) r.v.'s, as well as random

sums. The first case has been treated in [3], while the random sums are

discussed in Section 3.

2. Three elementary proofs of CLT

Without ioss of generality, take Elxjl - 0 and Varfxi] - !, i : 1,2,...,

and let F' be the d.f. of the standardized sum ,9," _ (Xt + " ' + X") l tfr'
Suppose also that wn is the tu-function (covariance kernel) of ^9". Obviouiy,
'u1 is the tl-function of ^91 - Xr.

In Theorem 2 of. [0], lt was shown that for any r.v. Y with tl-function wy ,

Elr?(Y)l > 1, (2.1)
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and equality characterizes the normal distribution.
ceding characterization was aiso proved in Theorem

L7

The stability of the pre-
3, namely,

Elr?^(y,)j * 1 impties W i* lv(O, 1) as n-+ co.
lv*lhl

It should be noted that the condition Elr\"(lr")l -' i is equivalent to
Varlwy^(Y")l  -+ 0, since Elrr( lr) j
of the CLT requires showing that

Yarlw,.(S")] + Q, as n ---+ co. (2 Z)

A proof of (2 2) under the assumption (1 3) was given in [6J, Theorem 4,
by employing certain properties of the tu-functions. A simplei proof is given
belorv.

Theorem 2 .1  (c . f .  16 ] )  Le t  X ,  X t ,X2, . . . ,  Xn , . . .  be  i , . i , .d , .  and,  abso lu te ly
continuous r.u.'s with Elxl - 0, Elxzl - 1 and Elrr(x)l ( co, wl,ere w is
th"e couariance kernel of X. Then, (Z Z) holds.

For the proof we make use of the follorving Lemma (c.f. relation (3.3) of
tsl)
Lemma 2.\. Under th,e notations of TheoreTn 2.1, for j Sn we haue

El, i 6 )r"(s")l - Elwl(s")l

Proof- Set Ai - E[wi(S)r"(S")]. From the basic covariance identity (1.2)
we get for arbitrary g

E[s 1 s@ 1)J : El,  i (si)g'(si)]

On the other hand, using the sanee identify,

E l S l s ( S ) l -  E ,8.)nrs,)]

l+E {E[si- t g(s) rxi]] + rE, {E lxi g6i) rsi-,r}

Hence,

Elri6i)g'(si)l : 
+E[pi-,(si-, )g,(si)] + 

]ep6,)g,(si)l 
. (2 3)

l (  l i - L ^
L\V i  

r j - t
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AppIy ing (2 .3 ) tog , ( r )= : , | l ) n ( , f f i , +1@'S i - ) ,whereSI - i :
(Xi*t + .'' + X") I'Fl for 7 I n and S,i : 0, we obtain

tfrt$)r.(s") lt;-,]
j - L - r f  / n  \  / . r  

|  1  I , : r [  / 1 r \  / o  r l o *  I: 
TE l*,-'(Si -')un(s") ls"-i ) * 

;E l*(Xi)r"(.s") ls"-i l
| - F L " ^  l ^ 1 .r rrus, uar,'ing expectations with respect to S"-, and using the fact that

Elu(X i)r"(S")l  
-  E[rr (S' )r, ,  ( . t")]

for each 7, we conclude that jAi _ U - L)Ai-r - Ar. This implies that

At : ' ' ' _ A," and the proof is complete. r

Proof of Theorem 2.L. Set o,, - Var[r"(S")] It follows from Lemma 2.1

that

on-on* r -  E l r ' " (9 " ) ]  -  E [ r | * r (S , * r ) ]  :  E l r^ (S" )  -u rn+L(s"* t ) ] t -

Therefore,, on decreases and hence it converges since ot 4 oo by the assump-

tions. Thus,
on - o2n : Elrr^(Sr") - u)n(S")]2 -' 0.

Consequently,

Elrrn(Sr,) - rt,^(.9")] 2 > El*r^(Sr*) - Elrr, (Sr,) 1.9,"]]'
_ E ivarfw2n(i2) lS"]) * o.

Furthermore, if .9; : (Xn*r. * "'+ Xz,")ltfr', we have

lrrn(Sr') - Elrrn(Sr") lS"]]'
- E {n (l*r,(sr.) - Elrr*(sz,)l,s, l l t  lsi)}

> E {r' (lrr*(Sr,) - Elrr'(Sr) ls"ll ls; )}
- ElEl*r^(Sr,)ls; l  - 1lt
-- ElElrr^(Sr,)l^9"1 - 1l'
: Var {Elrr"(Sr")ls"]} -, o.

Hence, o2n : Var {El*r"(Sr")ls"]} + E {Yarlw2"(,S2")ls"]} -> 0 by the
above arguments, which completes the proof. r

The second proof of CLT is based on the

a(F,o)  < 2Elwy(X)  -  t l  S

bound (see [z],Theorem 1. 1)

(2 4)2llvarlwx(X)1,
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where X is any standardized r.v. with d.f. F. In fact, the factor 2 in
can be repiaced by 312, as shown in the foilowing

Lemma 2.2. If X has mel,n zero, uariance one, density f and d.f. F,

a(F,o) S Ql2)El**(x) - 1l S Gl2)1fYarlw"(x)l

19

(2 4)

(2  5 )

C PProof.
defined

For an arbitrary Borel set A, consider the fr:nction $e(r), r
by (see [7] , [2], and references therein)

,l,a(") - exp(r'lz) 
I:*Qft € A) - o(A))exp( -f 12) dt.

A p p l y i n g t h e b a s i c c o v a r i a n c e i d e n i i t y ( i 2 ) w i t h g
tion (1.3) of i7],  we get

F(A) -  o(A)

Observe that for 46 - {r € E : wx(r) S 1},

E{I(X e A) l r  -  , * (X) l )  :  [^ l t  
-  r* (" ) ]d,F(r)  (2.6)

., f.r.

r 1

lvloreover.

E{xr!o(X)[1 - r"(x)] i  S Elxrbe(x)l l i  - ,*(x) l

since for each s and A.

l r rbo(" ) l  S ( l r l lp@))min{o(" ) ,1-  o(r ) i  <  1.

Now, the first inequality i" (2.5) follows from (2.7) and (2.7), iL
the fact that

sXn lF(A) - o(A)l - sup[F(A) - o(A)],

and the second one is obvious since El**(X)] - 1.

vierv of

t

lVe now state the following CLT (for a proof see [7], Theorem 5.1).
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Theorern  2 .2  fCPU i7 ] )  Le t  X ,X t ,Xz , . . . ,  Xn , . . .  be  i . i , . d .  and  abso lu te ly
continuous r.u.'s witlt, mean zero and uariance one. Then, under the notations
of Th,eorern 2.1,

E l * " ( E )  - 1 1  + 0

Note that (2 8), combined with (2 5), implies a strengthened CLT (tr1 con-

vergence of the densities). However, w(X) need not have finite variance,

since (2 8) is an immediate consequence of the (rveak) iaw of large numbers

app l ied  toQ -  (w(Xt )  + . .  . *w(X^) )1"  (see  CPU [7 ]  fo r  more  de ta i l s ) .

The third elementary proof of the CLT is based on the following lemma,

which may be of some interest in itself

Lemma 2.3 (CPP [3], Lemma2.L.) Let X, Y be two independent and stan'

dardized absolutely cont'inuous r.u.'s and consider tlte r.u. S : aX+bY, wltere

a, b are real constants such that a2 + b2 - L. Then

Var[tr5(S)] < atYarlw x(X)l + baVarl*, (Y)1,

wlt,ere u)x, 'tJ)y, 'us, are the w-funct'ions of X, Y, S, respectiuely.

As an immediate consequence of the above lem-a we have the following

Theorern 2.3. If X, Xr, Xz, . . . , Xn, are as in Theorem 2. 1 , th,en

a(F,, O) < c1.,fr,, (2 e)

where the constant c can be taken as

c -  (312) (2 .  10)

(2 8)

Proof. If we appiy Lemma 2.3 to si,, - tl@S,.-r + \MX,,, we get

/ n -  1 \ 2
o n {  t ,  

"  
/  

o n - t *

where a,, - Var[u"(^9")]. Thus, by induction
otln, and (2 9) follows from (2 5)

3. Applications to Random Sums

In this section, w€ give some applications of the above results to random

sums (i..., when the sample size n is no longer constant, but is a discrete

noruIegative integer-valued random variable ̂ l/, independent of the sequence

I
o - r t

T1,o

on 7?, we conclude that on

I

Varlr(X)]
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{Xt]') It is proved that under appropriate conditions (itr fact, when l/ is
likely to be large), the CLT continues to hold for the standardized. sums of
/V i.i.d. standardized r.v.'s. It should be noted however, that here the term
'standardized' sums has a somewhat different meaning in the sense that

2L

oo

l P [ s '  eA ] -o (A ) l
Y

1
S v :  c ( X ,  + . . . + X v )  ,

V / v

L

n--0

- nllPls" € Alrv - n] - o(,a)l
oo

r fn t +  )
t /-J

n=m*L

(3  1 )

(',vhere So : 0 by definition) need not have variance one.
We first prove the following auxiliary result:

Lemma 3 .1 .  Suppose  X ,X t , . . . ,  X t , . . .  a re  i . i . d .  r . t r . ' s  as  i n  Theo rem L .1 .
Then, for any nonnegatiue integer-ualued r.u. N, independent of {Xr},

p(Fv, O) < P[lr < m) + cl T T L  : 0 ,  1 ,  .  .  .  , (3  2 )

wh,ere Fy is the d.f. of Sr,r and c can be taken as in Theorem 2.3.

Proof. For an arbitrary Borel set A we have, by (2.9),

cPlrt - nll'fr,

and the proof is complete.

Using the above Le-ma, rve can easily establish the following:

Theorem 3.1. Let {X;} satisfg tl'te assumptions of Lemma 3.1 and suppose
that the nonnegatiue integer-aalued r.u.'s IY,. in probability tend to infinity, in
the sense that for anyff i)  0, p[.nf" > m] -+ I asn + co. Then,

a(F", O) * 0, o,s n -> 
"o;

r

(3  3)

where Fn is the d.f . of S rr^

Proof. It follows from Lem:na 3.1 that for any e > 0 (arbitrariiy small) and
m ) 0 (arbitrarily large),

a(F^,O) < e-c. l^ , f f i  when n)ns(e,m)

Iand the assertion follows from the arbitrariness of ne and e .
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Corollary 3.1. If N"la", + O
r .u.  and an + 6,

T. Cacoullos, //. Papadatos and V, Papatlt'anasiou

in probabili.ty, where O is an arbitrary positiue

Proof. It is easy to verify the conditions of Theorem 3'1'

- o i  >
t -

Remark 5.1. Similar cond.itions imposed on {l/"} can also be found in tt]r

Theorem 17.2,,p.147 and [8],  p. 258,where the sums are scaled by y@: fr '

instead. of .,N, and. O equals one. Billingsiey considers the general case of

ili") not necessariiy independent of iX;). He notes that the assumption

that l/, in probability tends to infinity does not suffice alone for the conver-

gence in d.istribution of. Fn to O. For a counterexample see [t], pp - I43-L44-

It is therefore a cruciai assumption that the sequences {l/"} and {X,} are

independent.

Remark S.g. The restriction here to r.v.'s having u-fi:nctions with finite vari-

ance makes it possible not only to relax the conCtion on iN"i, but also

to obtain estimltes for the rate of convergence. In fact, the following theo-

rem provides i:niform estimates for the rate of convergence, under somewhat

stronger conditions imposed on {AL}.

Theorem 3.2. Lettlte sequences {x;), {o,} and {N"} be as'in corollarg 3.1,

and suppose tlt'at L

(  , -  - l / q  _  O l ) ,  :  C  . -m ,tlP t {a" o lA t)
where Q is a pos,itiue r.u. such, tl'tat Plo > d] : L far sorne 6 > 0 . Th,en,

a(F,,  O) < O(o, ' / ' ) ,  as n -> oo'  (3 5)

Proof. By is easily verified that

2C< - .
ar/an

Applying Lemma 3.1 with TrL: l6a"l2), we get

using Markov's inequaiitY, it

[r \rt
P I 2 I I ^ S 6 a , l < P l l ;'  

l l e n

A(F", O) * 0, as n -> co. (3 4)

T

earlier condition
in the case of a

d l
- l
o l
L J

2C l6 + ,,fi|fi
a(F^, O) <

and the proof is comPlete. I

lThanks are due to the

for conciuding (3.5); also
noninterval support, is not

referee for pointing out the

that the proof of the CLT

straightforward, and hence

insufficiency of an
via u.r-functions,

omitted.
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