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Abstract

Three simple proofs of the classical CLT are presented. The proofs are
based on some basic properties of covariance kernels or w-functions in
conjunction with bounds for the total variation distance. Applications
to random sum CLT's are also given.
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1. Introduction

Consider a (real) absolutely continuous r.v. X with d.f. F, density f,
mean u, and finite variance o2. The (characterizing) covariance kernel w()
is defined for every z in the interval support of X by the relation
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w appears in the basic covariance identity (4], Lemma 3.1)
Cov[X, g(X)] = O'QE[UJ(X)Q/(X)], | (1.2)

provided that the (otherwise arbitrary) absolutely continuous function g sat-
isfies E|lw(X)g' (X)| < oo. Interestingly enough, the same w-function appears
both in the upper and lower bounds on the variance of g(X).

The purpose of the paper is to give elementary proofs of the CLT in the .
i.i.d. (univariate) case, by only using properties of the covariance kernel w.
It should be noted that these proofs are heavily dependent on some previous
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results ([4],[6], [7] and [3]). Furthermore, multivariate extensions have been
given by (9] and [5].

The first proof shows the weak convergence to the standard normal d.f.
® of the d.f. F, of the standardized partial sums

X+ Xa—np
= = .

The assumption used here is that the covariance kernel w of X (where X has
the same d.f. as X, X5, ...) has finite variance:

Var[w(X)] < oo. (1.3)

Sn

The second proof is stronger, since assumption (1.3) is unnecessary and,
at the same time, the conclusion is strengthened to

 o(Fn,®) =0, asn — co. (1.4)

In this paper, o(F, G) denotes the total variation distance between the d.f.’s
F and G (or the corresponding r.v.’s X and Y'), defined by

o(F,G) = s%p{IF(A) — G(A)|, A Borel}, (1.5)

where F(A) = P[X € A], G(A) = PlY € A].
In the third proof, the stronger assumption (1.3) is used in order to obtain

the bound

o(Fn, @) < ¢/, (1.6)
for some constant c¢ (see (2.10)), depending only upon the d.f of X.
Obviously (1.6) implies (1.4), and furthermore it gives a bound on the rate
of convergence.

It is worth noting that the last technique is also applicable to sums of
independent (not necessarily identically distributed) r.v.’s, as well as random
sums. The first case has been treated in [3], while the random sums are
discussed in Section 3. v

2. Three elementary proofs of CLT

Without loss of generality, take E[X;] = 0 and Var[X;] =1,7=1,2,..,,
and let F, be the d.f. of the standardized sum S, = (X; + -+ + X,)/v/7.
Suppose also that w, is the w-function (covariance kernel) of S,. Obviously,
w; is the w-function of S; = X;.

In Theorem 2 of [6], it was shown that for any r.v. ¥ with w-function wy,

Ewi(Y) > 1, (2.1)
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and equality characterizes the normal distribution. The stability of the pre-
ceding characterization was also proved in Theorem 3, namely,

Yn—E[}/n] d

E[w} (¥,)] — 1 implies
wy Var[Y;]

» N(0,1) as n — co.

It should be noted that the condition E[w% (¥,)] — 1 is equivalent to
Var[wy, (Ya)] — 0, since E{wy(Y)] = 1 for any r.v. Y. Thus, the proof
of the CLT requires showing that

Varw,(S,)] — 0, as n — oo. (2.2)

A proof of (2.2) under the assumption (1.3) was given in (6], Theorem 4,
by employing certain properties of the w-functions. A simpler proof is given
below.

Theorem 2.1 (c.f. [6]). Let X, X1, Xs,..., Xn,... be iid. and absolutely
continuous r.v.’s with E[X] = 0, E[X? =1 and E[w*(X)] < oo, where w is
the covariance kernel of X. Then, (2.2) holds.

For the proof we make use of the following Lemma (c.f. relation (3.3) of

[31)-
Lemma 2.1. Under the notations of Theorem 2.1, for 7 < n we have
Efw;(S;)wn(Sn)] = E[w3(Sn)].

Proof. Set 4; = Efw;(S;)wa(S,)]. From the basic covariance identity (1.2)
we get for arbitrary g

E[S;9(S;)] = Elw;(S;)4'(S;)].

On the other hand, using the same identity,

E[Sjg(S)] = E [(\/jjzsj—l + \/}XJ) Q(Sj)}

71 1
\/ —]—E {E(S;-19(55) 1X;]} + \/;E {E[X;9(51) 15211}

= %‘1}3 [wi-1(S;-1)9'(S;)] + JEE [w(X;)9'(S5)]-

Hence,

Blus (55 (5)) = TS E g S5-)d ()] + SE ()] (29
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Applying (2.3) to ¢'(z) = wn (,/j/na: ++/(n=7)/n S,‘;_]-), where S, _, =

(Xje1 + -+ X,)/v/n—7] for j <nand S5 =0, we obtain

E [uw;(S;)wn(55) | Si-s]

= ];1 [wj_1<5j—1>wn(5n) S;‘j] '

J
Thus, taking expectations with respect to S;_; and using the fact that

E{w(Xj)wn(Sn)] = E[wl(sl)wn(sn)]

for each 7, we conclude that jA; = (j — 1)A;-1 + A;. This implies that
A, =--- = A, and the proof is complete. : |

Si,] %E [w(X;)un(S)

Proof of Theorem 2.1. Set g, = Var [w,(S5,)]. It follows from Lemma 2.1
that _

O = Ons1 = Ewi(Sn)] = Bwh1(Sns1)] = Elwn(Sn) = wns1(Snsn)]”

Therefore, o, decreases and hence it converges since ¢; < oo by the assump-

tions. Thus,
On — O02n = E[w2n(52n) - wn(Sn)]2 — 0.

Consequently,

Elwan(S2n) — wn(Sn)]2 Elwan(S2n) — E[wZn(S%){Sn”z

E {VaI[wgn(Sgn)ISn]} — 0.
Furthermore, if S& = (Xp41 + -+ - + X2n)/y/1, We have |
Elwzn(S2n) — Elwan(S24)]Sx])?
= B (B ([uan(S2) — Blusa(52)IS:]15:) )
>F {E2 ([wan(San) = Elw2n(S2n)[Sl] |S;)}
= E[E[w:n(52)S3) — 1
=k [E[wZn(SZn)lSn] - 1}2
= Var {E[’wgn(SQH)lSn]} — 0.

Hence, 02, = Var {E[won(S2,)|Sa]} + E {Var{wsn(S2,)|5.]} — 0 by the
above arguments, which completes the proof. |

v

The second proof of CLT is based on the bound (see (7], Theorem 1.1)

o(F, ®) < 2E|wx(X) = 1| < 24/ Var[wx (X)], (2.4)
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where X is any standardized r.v. with d.f. F. In fact, the factor 2 in (2.4)
can be replaced by 3/2, as shown in the following

Lemma 2.2. [f X has mean zero, variance one, density f and d.f. F,

o(F, @) < (3/2) Elwx(X) — 1] < (3/2)y/ Var[wx (X)) (2.3)

Proof. For an arbitrary Borel set A, consider the function ¥4(z), z € R,
defined by (see [7], [2], and references therein)

Wa(z) = exp(z?/2) / (I(t € A) — B(A)) exp(—t2/2) dt.

-0

Applying the basic covariance identity (1.2) with ¢ = 94 and Ausing rela-
tion (1.3) of [7], we get

F(A) = 8(4) = E{g(X) - Xv(X)}
= E{L(0[ - wx(X)]}
= E{I(X € A1 - wx(X)]} + E{Xa(X)[L - wx(X)]}.

Observe that for Ag = {z € R: wx(z) < 1},

E{I(X € Al —ux(X)} = [ [1-wx(z)]dF() (2.6)

< - ux@ler) = 2 Elux(X) -1

Moreover,

E{X¢a(X)1 —wx(X)]} < E[XYa(X)[|1 - wx(X)]
< Bl - wx (X)), (2.7)

since for each z and A,
|z94(z)| < (Iz]/0(2)) min{®(z),1 - &(z)} < 1.

Now, the first inequality in (2.5) follows from (2.7) and (2.7), in view of
the fact that
sup | F'(4) — ®(A4)] = sup[F'(4) — 2(4)]

and the second one is obvious since E[wx(X)] = 1. n

We now state the following CLT (for a proof see {7], Theorem 5.1).
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Theorem 2.2 (CPU [7]). Let X, X1, Xs,..., Xn,... be t.i.d. and absolutely
continuous T.v.’s with mean zero and variance one. Then, under the notations
of Theorem 2.1,

Elw,(S,) -1 —0. (2.8)

Note that (2.8), combined with (2.5), implies a strengthened CLT (L, con-
vergence of the densities). However, w(X) need not have finite variance,
since (2.8) is an immediate consequence of the (weak) law of large numbers
applied to Wy = (w(X1) + --- +w(X,))/n (see CPU [7] for more details).

The third elementary proof of the CLT is based on the following lemma,
which may be of some interest in itself.

Lemma 2.3 (CPP (3], Lemma 2.1.) Let X, Y be two independent and stan-
dardized absolutely continuous r.v.’s and consider the r.v. S = aX +0Y, where
a, b are real constants such that a> +b* = 1. Then

Var[ws(S)] < a*Var[wx (X)] + b*Var{wy (Y)],
where wx, Wy, Ws, are the w-functions of X, Y, S, respectively.
As an immediate consequence of the above lemma we have the following

Theorem 2.3. If X, X, X2,...,Xn,... are as in Theorem 2.1, then
o(Fn, ®) < c/Vm, (2.9)

where the constant ¢ can be taken as

¢ = (3/2)/Var[w(X)). (2.10)

Proof. If we apply Lemma 2.3 to S, = +/(n — 1)/nSa1 +/1/n X5, we get

/n—1\? 1
on < On-1 1 =301,
n n

where o, = Var[w,(S,)]. Thus, by induction on n, we conclude that o, <
o1/n, and (2.9) follows from (2.5). . |

3. Applications to Random Sums

In this section, we give some applications of the above results to random
sums (i.e., when the sample size n is no longer constant, but is a discrete
nonnegative integer-valued random variable IV, independent of the sequence
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{X:}). It is proved that under appropriate conditions (in fact, when N is
likely to be large), the CLT continues to hold for the standardized sums of
N iid. standardized r.v.’s. It should be noted however, that here the term
‘standardized’ sums has a somewhat different meaning in the sense that

1
VN

(where Sy = 0 by definition) need not have variance one.
We first prove the following auxiliary result:

Sy = (Xi4 -+ Xy), (3.1)

Lemma 3.1. Suppose X, X,,...,X;,... are t.i.d. T.v.’s as in Theorem 2.1.
Then, for any nonnegative integer-valued r.v. N, independent of {X,},

o(Fn,®) < PI[N<m]+c¢/vm+1, m=01,..., (3.2)
where Fi is the d.f. of Sy and ¢ can be taken as in Theorem 2.3.

Proof. For an arbitrary Borel set A we have, by (2.9),

|P[Sy € A] — ®(4)] < Z P[N =n]|P[Sy € A|N =n| — &(4)|
n=0
< ZP[IV:n]-}- Z CP[1V=n]/\/E,
n=0_ n=m+1l
and the proof is complete. |

Using the above Lemma, we can easily establish the following:

Theorem 3.1. Let {X;} satisfy the assumptions of Lemma 3.1 and suppose
that the nonnegative integer-valued r.v.’s N, in probability tend to infinity, in
the sense that for any m > 0, P[N, > m] — 1 asn — co. Then,

o(Fp,®) — 0, asn — oo, (3.3)
where F,, s the d.f. of Sn,.

Proof. It follows from Lemma 3.1 that for any ¢ > 0 (arbitrarily small) and
m > 0 (arbitrarily large),

o(Fn,®) <e+c/vVm+1 when n > ng(e,m)

and the assertion follows from the arbitrariness of m and e. ]
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Corollary 3.1. If N,/an, — © in probability, where © 1is an arbitrary positive

r.v. and Gn, — 00,
o(F,, ®) — 0, as n — co. (3.4)

Proof. It is easy to verify the conditions of Theorem 3.1. -

Remark 3.1. Similar conditions imposed on {N,} can also be found in [1];
Theorem 17.2, p. 147 and [8], p. 258, where the sums are scaled by /@, = V7
instead of /N, and © equals one. Billingsley considers the general case of
{N,} not necessarily independent of {X;}. He notes that the assumption
that N, in probability tends to infinity does not suffice alone for the conver-
gence in distribution of £}, to @. For a counterexample see [1], pp. 143-144.
It is therefore a crucial assumption that the sequences {N,} and {X;} are
independent.

Remark 3.2. The restriction here to r.v.’s having w-functions with finite vari-
ance makes it possible not only to relax the condition on {N.}, but also
to obtain estimates for the rate of convergence. In fact, the following theo-
rem provides uniform estimates for the rate of convergence, under somewhat
stronger conditions imposed on {Nn}.

Theorem 3.2. Let the sequences {X;}, {an} and {Nn} be asin Corollary 3.1,
and suppose that !

sup{ﬁ;E ]—:3—@‘}=0<oo,

where © is a positive r.v. such that P[© > 4] =1 for some d > 0. Then,
o(F,, @) < O(az'?), asn — oo. (3.5)

Proof. By using Markov’s inequality, it is easily verified that

Ny 2C

an 0y/an

<

§
> 2
@'—2

P[2N, < a,] <P l;

Applying Lemma 3.1 with m = [dan/2], we get
2C/6 + cV/2/V$
Van

and the proof is complete. n

o(Fn, ®) <

1Thanks are due to the referee for pointing out the insufficiency of an earlier condition
for concluding (3.5); also that the proof of the CLT via w-functions, in the case of a
noninterval support, is not straightforward, and hence omitted.
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