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Abstract

A new family of integer-valued Cauchy-type distributions is introduced, the
Cauchy-Cacoullos family. The characteristic function is evaluated, showing
some interesting distributional properties, similar to the ordinary (continuous)
Cauchy scale family. The results are extendable to discrete Student-type distri-

butions with odd degrees of freedom.
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1 Introduction and summary

Some years ago, Cacoullos (Personal Communication), considering discretization
of well-known continuous distributions, introduced a (standard) discrete Cauchy
random variable (r.v.) X with probability mass function (p.m.f.)

B 1/m

P(X=k) = keZ 1
by the obvious substitution k € Z for z € R in the standard Cauchy density
/7
= . 2
fa) =5 weR )

Cacoullos immediately raised two natural questions:

(A) While it is expected to be very close to m, what is the exact value of the
normalizing constant 7 in (1)?

(B) While the characteristic function (ch.f.) of (2) is ¢(t) = e !, what is the
corresponding one, say ¢1, of (1)7?

We provide explicit answers in section 2. It is well-known that the (continuous)
Cauchy distribution appears naturally in statistics and probability. At this point it
should be noted though the standard Cauchy r.v. is customarily defined as the ratio
of two independent standard normal r.v.’s, or as the tangent of a randomly chosen
angle in [0, 27), it has recently been shown ([1], [6], [7]) that the ratio representation
still holds if (X,Y") follows any bivariate spherically symmetric distribution.

In [2], Cacoullos showed that if X = (X,...,X,) (p > 3) is spherically sym-
metrically distributed around zero then all polar angle tangent vectors follow a mul-
tivariate Cauchy; note that, e.g., Feller (1966) defines the symmetric bivariate and
trivariate Cauchy distributions directly through their densities — not as tangent vec-
tors.

In contrast to (2) and its location-scale extension, for which several applications
are known both in probability and statistics, for (1) we have been able to find
few results related to stochastic processes — see, e.g., [14], p. 383. However, the
asymptotic distribution of the sample means for (1), Theorem 4, may serve as a
starting point for applications; so appears to be the Cauchy-Cacoullos family defined
by (4). These considerations are, however, beyond the scope of the present note.

In section 3 we introduce a novel family of integer-valued distributions, the
Cauchy-Cacoullos family, sharing similar properties — see Definition 1 and Remark
2. In particular, any distribution in this family has a simple characteristic func-
tion that can be written down explicitly, Theorem 2, and the same is valid for the
discrete Student-type distributions of Remark 2. Basic inference properties for this
family are included in Theorem 3, while some distributional properties are discussed
in some detail in Section 4; see Theorems 4-6. We hope that the proposed simple
formulae will enlarge the applicability of discrete Cauchy distribution in the future.



2 The characteristic function

Since ¢1(t) = Ee*X = Ecos(tX) + iEsin(tX) (i denotes the imaginary unit)
and X is symmetrically distributed around the origin (hence, IE sin(¢tX) = 0), both
questions, (A), (B), will be answered if we manage to calculate in a closed form the
function g : R — R, defined by the Fourier series

[e.9]

cos(nt)
(t) := , teR. (3)
g nz:() 1+ n?

Therefore, the problem is to identify which function g is represented as a series
of cosines with Fourier coefficients as in (3). Clearly, g is periodic with period 2.
Thus, it suffices to restrict our attention to t-values in the interval —w < ¢ < 7. On
the other hand, since a cosine Fourier series corresponds to an even function, we may
further restrict the t-values into the interval 0 < ¢ < 7.

The key lemma is:

Lemma 1 For —27 <t < 2,

1 mcosh(m — [t])

9(t) = 2" 2 sinh(7)

We omit the proof because we shall show a more general result in Section 3, below.

Corollary 1 The normalizing constant mg is given by

7 cosh(m)

770:29(0)—1:Sinh(ﬂ_):7r<1+

627r

1) o~ 3.15334809493716 . .. .

The formula for the ch.f., and is an immediate consequence of Lemma 1 and (3):

Theorem 1 The ch.f. of X is given by ¢1(t) = cosh(mw — |t|)/ cosh(w), =27 <t < 2,
and it is periodic with period 2w (see Fig. 1).
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Figure 1: The characteristic function ¢;(t) in the interval —27 <t < 4.



3 The Cauchy-Cacoullos family of discrete distributions

If we multiply a continuous Cauchy r.v. by a constant A > 0 we stay in the same
family of distributions — the Cauchy scale family. More precisely, if X is standard
Cauchy, the density of AX is given by

1
f(:z:):% r€eR, A>0.

A2+ 22’
However, this is no longer true for a discrete Cauchy X, since the support of AX
is not the set of integers. Motivated from this observation, we define a family of
discrete integer-valued distributions as follows:

Definition 1 The discrete Cauchy-Cacoullos family (CC, for short) contains the

p.m.f.’s
tanh()m) A

For completeness of the presentation, it is convenient to include the limiting case
A = 0, which corresponds to a degenerate r.v. at zero.

keZ, A>0. (4)

Although this family has several interesting properties, similar to the Cauchy, it does
not seem to have been studied elsewhere. Clearly, for A = 1 we get (1). At a first
glance, it is not entirely obvious to verify that the normalizing constant is as in (4).
This is a by-product of the following result.

Lemma 2 For —n <t<m and A >0,

cosh(Mt) = Asinh(Ar) { 22 " cos(nt) } '
T

)\2 +n2

Proof: We express the even function h(t) = cosh(\t) in a cosine Fourier series to get
h(t) ~ > 27, ay cos(nt). Simple calculations show that

T sinh ()
o) = % . COSh()\U)dU = T

and

1 (" 2 sinh(A
an = — /_7r cosh(Au) cos(nu)du = (—1)"77(/8\1211_’_(?1;?, n=1,2,....

Since h is differentiable in [—m, 7] with A(—=n) = h(w), the lemma is proved (and the
series converges uniformly to h). Q.E.D.

If we set A\=1and ¢t — ¢t — 7 in Lemma 2 we obtain Lemma 1 with g as in (3).



Corollary 2 We have

7T
Z )\2 + k2 Atanh(\r)’

k=—o00

and hence, (4) defines a p.m.f. for any A > 0.
Proof: Substitute ¢ = 7 in Lemma 2. Q.E.D.

As for the case A = 1, we can obtain the ch.f. of X ~ f) in a closed form.
Theorem 2 The ch.f. of Xy with p.m.f. fy € CC is given by

cosh (A(t — ))

o) = cosh(Ar)

0<t<2m,

and it is periodic with period 2mw. More precisely,

on(d cosh ()\ (t —2m| L] - 7r>>

= , —oo <t < o0,
cosh(A) > >

where |x| denotes the integer part of x.

Proof: As is well-known, all integer-valued r.v.’s have periodic ch.f.’s, with period
2m. The particular r.v. is symmetrically distributed around zero, and thus, its ch.f.
is real and even, so that ¢, (t) = IE cos(tX)). To calculate this, we may restrict our
attention in the interval 0 < ¢ < 27. Then, since —7 < ¢t — 7 < 7 and cos(nt) =

(=1)"cos(n(t — m)),

Atanh(Ar) —
g = MO [y 5 ) etl —o |
n=1

Atanh(A7) 7 cosh(A(t — 7))
T Asinh(Am) 7

where the second equality follows from Lemma 2. Q.E.D.

Statistical inference for the parameter A is facilitated from the fact that the
p-m.f.’s and the ch.f.’s in CC have tractable forms.

Theorem 3 Consider a random sample X1,..., X, ~ f) € CC with A > 0 unknown.
(i) The minimal sufficient statistic is T = (Y1,...,Yy), with Y1 <Yy < --- <Y,
being the order statistics of | X1],...,|Xn|.

(ii) The Fisher Information (of a single observation) is

1 T AT 1

3w where w(}) = cosh(Am)2  sinh(2A7) (5)

N =552 Ty




(iii) The MLE n of \ is unique; it is given as the unique solution in [0,00) of the

equation
n

79 1 X? 1
sinh(27\) T z; A2+ X2 2 (6)

(iv) The MLE is consistent and asymptotically efficient,
Jn (Xn - )\) 4 N(0,1/I(0),
where % denotes weak convergence.

Proof: Let x = (21,...,2,) and y = (y1,...,Yyn) be two vectors in Z". Then, the
likelihood ratio is given by

L(x;\)  pr A2 +y?
B 21;[1 A2+ 22’

and it has the same form as in the continuous Cauchy scale-family. Obviously, this

ratio is independent of A > 0 if and only if the ordered squared values of x and y are

identical, and this verifies (i). Now, a straightforward computation yields the score

function

0 1 2w 2
Shid) =538 Ak =3+ Gnemy) ~ et
Let X\ ~ f\. Using Remarks 1, 2 below, it is seen that IEES(X);A\) = 0 and
ES(X);\)? = I(\) with I(\) as in (5). Note that I(\) = —]Eaa—;zlog fa(Xy), since
the regularity conditions are obviously fulfilled; both formulae require computation
of the series Zn(AQ +n?)7%, s = 1,2,3. Moreover, one can easily verify that the
log-likelihood is given by

0 2n A 1 1 22
—logL(x: N = — | — — = + — s SR 7
ax 8 (x; A) A (sinh(27r)\) 2t h ; A2 + xf) @

For fixed x € Z", the positive function u()\) := wA/sinh(27A)+n =1 Y0 | 22 /(A2 +2?)
decreases to zero as A — oo and has a limit u(04) > 1/2 (it equals to 1/2 iff x = 0).
Since u is strictly decreasing and continuous, the likelihood is first increasing and
then decreasing, reaching its global maximum at Ao, where u(X\g) = 1/2. This shows
that the MLE is the unique solution of (6), it equals to 0 iff X = 0, and it is otherwise
positive. Finally, in order to prove (iv), fix A = A\g and ¢ € (0, \g), and assume that
A varies in the interval (Ao — ¢, Ag + ¢). Then, % log fa(k) = A(X) + B(\, k) where

3+ cosh(4Aw) 2 3k% — N2
AN) = 43 280N L 2 BOAk) = AN
W =4 s e BOR) = Ay



The function A is decreasing and positive, so that |A(X\)| < A(Ag — ¢). Moreover,

3k2 + 32 12(X\o + ¢) 12(Xo + ¢)

B(\k 4\ < :

BOBI < AT 755 < (o= o2 + 27 = o — o)

It follows that we can find a finite constant M = M (\g, ¢) such that |88—; log fa (k)| <
M uniformly in k € Z, A € (Ag—c, Ag+c¢), and the result follows by applying Theorem
3.10 in [11]. Q.E.D.

Unfortunately, the MLE does not admit a closed form and, hence, numerical
procedures should be employed. On the other hand, we can construct closed-form
consistent estimators, due to the fact that the ch.f. admits a simple form. For exam-
ple, ¢ (m) = 1/ cosh(Ar) = 3, say, equals to the difference IP (X even)— P (X odd).
This can be consistently and unbiasedly estimated by Bn =n! Z?:l(—l)Xi, and a
trivial application of the CLT leads to \/E(Bn - 0B) LS N(0,1 — 8%), while the SLLN
shows that Bn is eventually positive w.p. 1. Applying the delta-method (see [16])

with g(8) = 7! (1og(1 V1= 5 - 1og(,8)), so that g(8) = A, we obtain
Vvn (g(B\n) — /\) LN N(O, cosh(ﬂ/\)2/7r2>.

However, compared to the MLE, the closed-form estimator g(ﬁn) is by far less ef-
ficient. Thus, it is natural to seek for closed-form highly efficient estimators, and
this may be possible as in the continuous case. In the continuous case it is shown
that the asymptotic relative efficiency of the geometric mean of the absolute values
of the observations is 8/72 ~ 81%, and in [10] a more efficient closed-form estimate
is proposed. Also, highly efficient estimators that are based on the ch.f. may be
obtained by adapting the methodology of [9] to the present discrete case. However,
such results are beyond the scope of the present note. Note that the Fisher informa-
tion in the continuous Cauchy scale family equals to 1/(2A?) (compare to (5)), and
the likelihood equation is as in (7), with the absence of the term 7A/sinh(27\).

Remark 1 The series in Corollary 2 is of some interest in itself, because of the
computation of the sum Y > (A? + n?)~! in a closed form. Then, e.g., taking
limits as A \, 0, we arrive at the famous Euler sum, ) >, n~? = 72/6. Moreover,
differentiating term by term with respect to A we can evaluate the series

> 1
> ot

From this, taking limits as A \, 0, we arrive at the sum for {(4), that is, > 7, n~t =
74/90; clearly, this process can be continued to evaluate all ((2s) values, as well as
the series 20 (A2 +n?) "%, s =1,2,....



Remark 2 Differentiating m times with respect to A? the series in Lemma 2, it is
possible to introduce and investigate discrete Student-type families with v = 2m + 1
degrees of freedom, that is, p.m.f.’s of the form

fy;A(k) =

Cu\

iy RE€Z v=135., A0, (8)

admitting closed-form ch.f.’s ¢,.5(t) and explicit normalizing constants c,.r. How-
ever, the situation becomes quite complicated for even values of v.

4 Some distributional properties of the CC family

We observe that the ch.f. ¢, (¢) is not differentiable at the points ¢t = 2k7, k € Z (c.f.
Fig. 1). It is known that a random variable Y] satisfies a weak law of large numbers,
that is,
Y+ 4 Y,
N n
if and only if its ch.f., ¢y;, is differentiable at ¢ = 0; then, ¢}, (0) = ic where i is the
imaginary unit (the problem was treated by A. Zygmund and E.J.G. Pitman, and
it is closely connected to Khintchine’s weak law of large numbers; see Feller 1966,
p. 528 and van der Vaart 1998, p. 15). Hence, the distributions of the CC family do
not satisfy the weak law of large numbers, since their ch.f.’s are not differentiable
at ¢ = 0. Therefore, it is of some interest to study the asymptotic behavior of the
sample means from a CC random variable with p.m.f. as in (4). Recall the well-known
continuous counterpart, which says that X, is the same Cauchy for all n (Cauchy
r.v.’s are stable).

We have the following result.

Y,: — some constant ¢, in probability,

Theorem 4 If X1, Xo,... are independent identically distributed random variables
with p.m.f. as in (4) then
X, % Mtanh(\r) Z,

where Z is standard (continuous) Cauchy with density (2).

Proof: Fix t > 0. Theorem 2 shows that the ch.f. of X, is given by

ba(t/n)" = (cosh (A(w—t/n))) s %

cosh(A)

Using this, it is easy to verily (e.g., by taking logarithms) that ¢)(t/n)* — e~
t > 0, where ¢ = Atanh(A7). Finally, from the fact that ¢, is even, it follows that
dx(t/n)™ — e~ for all t € R, which is the ch.f. of ¢Z, and the result follows from
the continuity theorem of characteristic functions. Q.E.D.

Unlike the usual Cauchy scale family, the CC family is not convolution closed;
however, it is “almost” closed. More precisely, the following result holds.



Theorem 5 For independent r.v.’s X, Y in CC with X ~ fy, andY ~ f\,, the ch.f.
of X +Y is given by

a()\l + )\2)
20(A1)a(A2)

a(|Az — A1)

Ox1y(t) = 20(A)a(A2)

Parae(t) + Pro-ni|(t), tER,
where ¢o(t) = 1 is the ch.f. of the degenerate r.v. Xo with P(Xo = 0) = 1, and
a(X) == cosh(Am), A > 0. Consequently, X +Y is a mizture of two r.v.’s that are

members of CC family,

o a(Ar+A9) a(|da — A1)
P(X+Y =k) = mfA1+Az(k) + mf\,\rm(k)a ke Z
Proof: Set (0 + ) alPe— M)

P=%a00)at)’ 17 2a)a(h)
Obviously, p > 0 and ¢ > 0. Also, using the formula

cosh(z) cosh(y) = %cosh(:c +y)+ % cosh(y — ) (9)

it is easily seen that p + ¢ = 1. Restricting our attention to the interval 0 <t < 27,
we have

cosh(A1(t — 7)) cosh(Ae(t — 7))

a(Ar)a(Az)
and a final application of (9) to the numerator, taking into account Theorem 2,
completes the proof. Q.E.D.

Px vy (t) = oa, (B)Pa,(t) =

Remark 3 If X, Y are i.i.d. from f then, since «(0) = 1 and fo(k) = I(k = 0), we

get
1 tanh (A7)

2(:03h()m)2+ 2Am

k=0,
P(X+Y =k =
tanh(A7) 2\
™ (2M\)2 + k2’
This formula quantifies the fact that the p.m.f. of X 4+ Y lies outside CC, but it is

close, in some sense, to foy; in fact, the ratio fxiy(k)/for(k) does not vary with
keZ".

keZ".

A ch.f. ¢ (or the corresponding r.v. X) is called infinitely divisible (i.d.) if for
each n, we can find a ch.f. ¢,, such that ¢! = ¢; equivalently, if X , +---+ X, , has
the same distribution as X, where Xy ,,..., X, , are i.i.d. with ch.f. ¢,,. Properties
of this kind are included in what is called ”arithmetic of probability laws” ([12], [13]),



and a vast bibliography exists, see, e.g., [5], [3], [8], [12], [13], [15], and references
therein.

Since the notion of i.d. is related to limit theorems of sums of independent r.v.’s,
it would be useful to know whether the CC family is i.d. This is indeed the case, and
it follows immediately from a result of Polya, because the ch.f. ¢, is even, log-convex
in [0,27] and 27 periodic, see [8], [13]. In fact, ¢ is a ch.f. for all A > 0 and o > 0.

As is well known, the notion of self-decomposability, as well as that of stability,
do not apply to discrete r.v.’s. Recall that X is stable if, for each n, we can find
constants a,, > 0 and 3, € R such that X and (X7 + --- + X))/, — B, have the
same distribution, where X1, ..., X, arei.i.d. copies X. Obviously, the class of stable
distributions is a proper subset of i.d. distributions. Due to a fundamental result of
Lévy, stable distributions are very important because their class contains exactly all
possible limits of (properly) normalized sums of i.i.d. r.v.’s. Every stable distribution
has a ch.f. that can be expressed in a closed form, and the corresponding r.v. is
absolutely continuous. The subclass of symmetric stable ch.f.’s, after a location-
scale transformation, can be written as S = {¢o(t) = e ", 0 < o < 2}. Only the
densities that correspond to a = 1/2 (Lévy), a = 1 (Cauchy) and a = 2 (Normal),
have known explicit forms.

It is natural to ask whether the CC family contains discrete stable distributions,
in the sense of [15]. However, the definitions in [15] are designed for non-negative
integer-valued r.v.s, and are based on probability generating functions; it is not
obvious how to extend these results to the CC case. The following definition provides
a different approach that seems to be natural for our case.

Definition 2 Let A be a set of indices, consider a parametric family F = {¢x, A € A}
of discrete, integer-valued, ch.f.’s, and let 7’ be the corresponding family of random
variables. Then, F is called discrete stable (DSF) if for each ¢y € F, we can find a
sequence of indices {\, }2°; C A such that ®%. — ¢x. Equivalently, if every random
variable in F’ is the weak limit of sums of i.i.d. r.v.’s from F.

The usual Poisson family is DSF, as well as the Negative Binomial. In order for
such a model to be useful in practice, the family F should not contain ”too many”
ch.f’s. Also, it is plausible to consider those DSF’s that satisfy some kind of dis-
crete attraction, in the sense that (non-normalized) sums of several i.i.d. discrete
r.v.’s converge weakly to one of the members of the DSF. It is clear that the Com-
pound Poisson that is produced by a fixed discrete ch.f. ¢, namely, F = {¢s(t) =
AWH-D N > 0}, is such a useful DSF model. On the other hand, the complete
Compound Poisson model (allowing any % in the exponent) seems to be too wide.
Regarding the CC family we have the following result.

Theorem 6 The CC family is not DSF. To be more specific, suppose {¢x, }o>; C CC
where Ay, > 0 is an arbitrary sequence, and ¢y, is as in Theorem 2. Then, (i) and
(ii) below are equivalent.
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(i) There is a point to € (0,27) such that lim,, ¢y, (to)" =6 > 0.
(ii) It holds N, = 0/v/n + o(1//n), where 6 = (—21log §)'/2(to(2m — t9))~ /2 > 0.

If (i) or (ii) is satisfied then ¢y, (1) — ¥(t) := exp(—02t(27 — t)/2) uniformly in
t, 0 <t < 2m, and the limiting ch.f. b (extended to be 2m-periodic) is an infinitely
divisible ch.f.

Before proving Theorem 6, we provide some remarks. The limiting ch.f. ¢ is
a Compound Poisson one. Indeed, the exponent can be written as A(¢1(t) — 1),
where 11 (t) = 1 — 0%t(m —t/2)/X and, e.g., A > 7202 /2 (we shall see below that the
minimum value of A for which v is a ch.f. is A\g = 7262/3). Then, it follows that
the even, 27m-periodic function ¢ is nonnegative, decreasing and convex in [0, ],
and so, by Polya’s sufficiency criterion (see [8]) it is a ch.f. of an integer-valued
r.v. Clearly, the parametric family produced by all possible limits from CC, namely,
F = {ha(t) = e MF=H X >0, t € [0,2n]}, forms a DSF according to Definition
2. By applying the inversion formula for ch.f.’s of integer-valued r.v.’s, namely,

™
P(X =k)= / e Mox(t)dt, keZ,
it is recognized that the p.m.f.’s in F do not admit closed forms. Indeed, if Y) ~ 1
then the preceding formula reduces to

s

1 ™
P(Yy\=k) = / cos(kt)e M Vqt ke 7,
0

and this integral cannot be computed in terms of elementary functions (unless A = 0).
Moreover, if we make use of the preceding formula with ¢; instead of ¥, we can easily
obtain the p.m.f. of the r.v. W with ch.f. ¢;. Setting for convenience ¢ = 6%/ one
finds P(W = 0) = 1 — en?/3 (so that ¢ < 3/7% and, hence, A > 6?72/3) and
P(W = k) = ¢/k® k € Z*. According to Theorem 6, these remarks provide a
detailed description of the class of the limiting distributions of sums of i.i.d. r.v.’s
from CC.

The following lemma will be used in the proof of Theorem 6.

Lemma 3 (i) Let {5,}72, C (0, 1], assume that 5} — 5 € (0,1] and set B = —log f3.
Then, B, =1— B/n+o(1/n).

(ii) Fiz xo € [0,1), and define the function f(y) := cosh(xoy)/cosh(y), y > 0.
Suppose that {ay,}02 C [0,00) and that f(a,)" — 6 € (0,1]. Then, o = a/y/n +
o(1/y/n), where a = \/(—2logd)/(1 — x3).

Proof: (i) Despite the fact that (i) is known, we provide a very quick proof here.

The inequality y < —log(l —y) < y/(1—y) (0 <y < 1), applied y = 1 — 3, yields
Bn(—nlog B,) < n(l — B,) < —nlogf,, and since the upper bound implies that

11



Brn — 1, both bounds converge to B.

(ii) The sequence na? is bounded. Indeed, assuming the contrary, it follows that
for any M > 0 (arbitrarily large) we can find a subsequence nj such that o, >
M/ /ny, for all k. Since it is easily checked that f'(y) < 0 for y > 0, the positive
continuous function f is strictly decreasing, with f(0) = 1, f(co) = 0 (recall that
0 < mg < 1). Therefore, f(an, )™ < f(M/ynr)"™ — exp (— M*(1 — 20)?/2), as
k — oo. Thus, liminf f(ay,)" < exp (—M?(1—20)?/2), and since M > 0 is arbitrary,
liminf f(a,)™ — 0. This contradicts the hypothesis f(a,)" — d > 0, and verifies
that the sequence na? is, indeed, bounded. Hence, o, — 0. By applying a Taylor
development to the function f it can be checked that for y > 0, sufficiently close to
zero,

1

1 1
15— a3)y? < fly) <1-— (1= z)y” + oy 25)(5—xd)y!, 0<y<e

Substituting y = «a,, (which tends to zero) we obtain the inequality

An(1 = f(an)) < napy < An(1 — f(an)) + Baj(nay), n > no,
with A = 2/(1—23), B = (5—23)/12. Since f(a,)" — § € (0,1] (and 0 < f(ay,) < 1),
it follows from part (i) that n(1 — f(a,)) — —logd, and the preceding inequality
shows that na? — (—log§)A, completing the proof. Q.E.D.

Proof of Theorem 6: Assume first that (ii) holds, that is, A, = 8/y/n + o(1/y/n)
for some 6 > 0. It is straightforward to verify that ¢, (¢)" converges pointwise to
1 (t) as given, and from the fact that ¢ is continuous at the origin, the convergence
is uniform at compacts, and in particular, in [0,27]. Obviously, (i) is satisfied for
(any choice of) tg € (0,27) with § = v(tg) = exp(—6%to(2m — to)/2) > 0.

Assume now that (i) holds, i.e., suppose that for a fixed to € (0,27), ¢y, (to)" —
0 > 0. Due to symmetry (¢y,(t) = ¢, (27 — t)), we can further assume that
0 <ty <m Seta, =7\, 19 = 1 —to/m € [0,1), and consider the function
f(y) = cosh(zoy)/cosh(y), y > 0, as in Lemma 3. Then, ¢, (t9) = f(ay), and
by assumption, f(a,)™ — d > 0 (certainly, § < 1). Hence, from Lemma 3(ii) we
conclude that na? — (—2logé)/(1 — x2), that is, nA2 — (—2logd)/(to(27 — to)),
which verifies (ii). Q.E.D.

It is of some interest to observe that, according to Theorem 6, the limiting ch.f.
exists if we can merely show the convergence ¢y, (to)” — ¢ > 0 for a single nontrivial
point ty (i.e., to # 2km). Then, 1(t) is uniquely determined from the pair (tg,9),
Also, the limiting distribution is degenerate at zero if and only if 6 = 1 (which is
corresponds to § = 0 in Theorem 6(ii)).

Another related problem concerns the extended CC class, defined as the family
of ch.f’s CCT := {¢*: ¢ € CC, a > 0}. Since every ¢ € CC is 27w-periodic, decreases
in [0, 7] and is log-convex in [0,27], the same is true for all ch.f.’s in CCT. Hence,
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CC™" is a family of i.d. ch.f.’s. This family is similar to the (continuous) Cauchy scale
family. Cramér [3] showed that all stable centered distributions with exponent o < 2
are not factor closed. This means that, e.g., the ch.f. of the standard Cauchy, eIt
can be written as ¢1¢2, with ¢; (i = 1,2) lying outside the class of Cauchy ch.f.’s.
So, it is fairly expected that the same is true for CCT. Indeed, it can be proved that
this is the case, and, as a concrete example, we provide the following 2m-periodic

¢i’s:

B 1/2 4 1/50
bi(t) = <cosh(t 7r)> ( 1+ )4) C0<t<om

cosh(m) 1+ (t—m
B 1/2 4y 1/50
i ()Y v

It can be checked that both functions are positive, decreasing in [0, 7], and convex
(¢1 is log-convex) in [0, 27] and hence, their 27-periodic extensions (which are even
functions) are ch.f.’s, see [13]. Obviously, these ch.f.’s lie outside CC™, and, trivially,
their product equals to the standard discrete Cauchy ch.f. of Theorem 1.

Acknowledgements. I would like to thank an anonymous referee who moti-
vated several of the results that are presented in Section 4, regarding infinite divisi-
bility and stability in the discrete case.
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