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Abstract

Let X be an absolutely continuous (a.c.) random variable (r.v.) with finite vari-
ance σ2. Then, there exists a new r.v. X∗ (which can be viewed as a transform on
X) with a unimodal density, satisfying the extended Stein-type covariance identity

Cov[X, g(X)] = σ2 IE[g′(X∗)]

for any a.c. function g with derivative g′, provided that IE|g′(X∗)| < ∞. Properties
of X∗ are discussed and, also, the corresponding unified upper and lower bounds
for the variance of g(X) are derived.

AMS 1991 subject classifications. Primary 60E15; secondary 60E05.
Key words and phrases: Stein–type identity, variance bounds, transformation of random variables.

1 Introduction

The well-known Stein’s identity, [16], [17], for the standard normal r.v. Z is formulated
as follows. For every absolutely continuous (a.c.) function g with derivative g′ such that
IE |g′(Z)| < ∞,

IE[Zg(Z)] = IE[g′(Z)] (1.1)

(throughout this paper, the term ‘a.c.’=‘absolutely continuous’ will be used either to
describe an r.v. having a density with respect to Lebesgue measure on IR, or to denote
an ordinary a.c. function; in any case, the meaning will be clear from the context).
This identity has had many important applications in several areas of Probability and
Statistics; see for example [16], [12] and [13]. Several generalizations to other r.v.’s can
be found in [4], [5] and [12].
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Another interesting result from the point of view of upper variance bounds is the
inequality of Chernoff, [10],

Var[g(Z)] ≤ IE[(g′(Z))
2
] (1.2)

with equality iff (if and only if) g is linear. This and its multivariate normal analogue,
[8], motivated the generalizations to arbitrary discrete and continuous r.v.’s as well as
corresponding lower variance bounds, [1], [3].

An important role of the general covariance identity given in [4] (see (2.4), below) is
in the derivation of simple and elementary proofs of the Central Limit Theorem (see [6],
[7]). Other applications concerning the rate of convergence in the Local Limit Theorem
for sums of independent r.v.’s are given in [2].

However, all the preceding results (and, in particular, the validity of the generalized
covariance identity given in [4] and the variance bounds given in [3] and [4]) require an
interval support of the basic r.v. X, which is rather restrictive.

In the present paper we avoid the restriction of an interval support, introducing an
appropriate (smooth) transformation X∗, which is in fact a new r.v. corresponding to
X. The r.v. X∗ is always uniquely defined (provided that X is a.c. with finite variance),
having itself an absolutely continuous unimodal density. Thus, for any a.c. r.v. X with
finite second moment, there exists a new smooth r.v. X∗ with unimodal a.c. density
satisfying the generalized Stein covariance identity. This transformation behaves well to
convolutions of independent r.v.’s. Moreover, it appears in the upper and lower bounds
for the variance of any a.c. function g of X (and it is, in fact, the only r.v. with this
property; Theorem 3.1).

It should be noted that in a recent paper, independently of our results, Goldstein
and Reinert [11] used a similar approach (the so-called zero bias transformation), which,
in fact, is based on the same covariance identity when IE[X] = 0. They also fruitfully
applied this identity to estimate the rate of convergence in the CLT, obtaining an O(n−1)
bound for smooth functions (see Corollary 3.1 in [11]). Furthermore, they presented a
nice application for dependent samples. However, except of the definition, the results
of the present paper are completely different; our main interest is on unified variance
bounds and their connection with Stein’s identity. We are also interested on the behavior
of the inverse transform X∗ → X; in fact we show that, under general conditions, the
distribution of X∗ uniquely determines that of X (Theorems 2.1 and 3.2). Finally, we
also include some illustrative examples.

2 Properties of the transformation

Let X be an a.c. r.v. with density f , mean µ, variance σ2 and support S(X) (for the
sake of simplicity, we will always mean the support of an a.c. r.v. X with density f to
be the set S(X) = {x : f(x) > 0}). We simply define X∗ to be a random variable with
density f ∗, given by the relation

f ∗(x) =
1

σ2

∫ x

−∞
(µ− t)f(t) dt =

1

σ2

∫ ∞

x
(t− µ)f(t) dt. (2.1)
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Obviously the right hand sides of (2.1) are equal and thus, f ∗ is nonnegative. An
application of Tonelli’s Theorem shows that f ∗ integrates to 1, and therefore it is indeed
a probability density (c.f. [4], [6]). The following Lemma summarizes the properties of
X∗ and shows the generalized Stein’s identity (2.2).

Lemma 2.1 (i) f ∗ is a unimodal a.c. density with mode µ and maximal value

f ∗(µ) =
IE |X − µ|

2σ2
.

Furthermore, the function (f ∗(x))′/(µ − x) (defined almost everywhere) is non-
negative and integrable.

(ii) For each a.c. function g with IE |g′(X∗)| < ∞,

Cov[X, g(X)] = σ2 IE[g′(X∗)]. (2.2)

(iii) If the r.v. Y satisfies the identity

Cov[X, g(X)] = σ2 IE[g′(Y )]

for every a.c. g with IE |g′(Y )| < ∞, then Y
d
= X∗ (in the sense that Y and X∗

have the same distribution).

(iv) S(X∗) = (ess inf S(X), ess sup S(X)).

(v) For arbitrary scalars a 6= 0 and b,

(aX + b)∗ d
= aX∗ + b.

(vi) For independent a.c. r.v.’s X1, X2 with means µ1, µ2, variances σ2
1, σ2

2 and arbi-
trary scalars a1 and a2 with a1a2 6= 0,

(a1X1 + a2X2)
∗ d

= B(a1X
∗
1 + a2X2) + (1−B)(a1X1 + a2X

∗
2 ), (2.3)

where X1, X2, X∗
1 , X∗

2 and B are mutually independent with

IP[B = 1] =
a2

1σ
2
1

a2
1σ

2
1 + a2

2σ
2
2

= 1− IP[B = 0].

Proof: (i), (iv) and (v) are obvious. (ii) follows from the definition of X∗ using Fu-
bini’s theorem, since by the assumption that IE |g′(X∗)| < ∞, the nonnegative functions
g1(x, t) = |g′(x)|(µ − t)f(t)I(t < x) and g2(x, t) = |g′(x)|(t − µ)f(t)I(t > x) are inte-
grable over (−∞, µ]× (−∞, µ] and [µ,∞)× [µ,∞), respectively (see also Lemma 3.1 in
[4]). (iii) follows from (ii) and the fact that

IE[G(X∗)] = IE[G(Y )]
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for every bounded (measurable) function G. Regarding (vi), observe that for S =
a1X1 + a2X2 and g′ bounded, we have from (ii):

Cov[S, g(S)] = σ2 IE[g′(S∗)],

where σ2 = a2
1σ

2
1 + a2

2σ
2
2. On the other hand,

Cov[S, g(S)] = a1Cov[X1, g(S)] + a2Cov[X2, g(S)]

= a2
1σ

2
1 IE[g′(a1X

∗
1 + a2X2)] + a2

2σ
2
2 IE[g′(a1X1 + a2X

∗
2 )].

It follows that for any bounded function G,

IE[G(S∗)] =
a2

1σ
2
1

σ2
IE[G(a1X

∗
1 + a2X2)] +

a2
2σ

2
2

σ2
IE[G(a1X1 + a2X

∗
2 )]

= IE [G (B(a1X
∗
1 + a2X2) + (1−B)(a1X1 + a2X

∗
2 ))] ,

which completes the proof.

It should be noted that in the previous Lemma, and elsewhere in this paper, the term
‘unimodal’ is reserved to denote a function h : IR → IR with the property that there
exists some m ∈ IR such that h(x) is nondecreasing for x ≤ m and is nonincreasing for
x ≥ m; each m with this property is called a ‘mode’ of h. Of course, the assertion that
h is a unimodal and a.c. function implies that the mode(s) of h form a compact interval
[a, b] with −∞ < a ≤ b < ∞ (which, in the case a = b, reduces to single point).

The known identity of [4], (2.4) below, requiring an interval support of X, follows
immediately from (2.2). Indeed, when S(X) is a (finite or infinite) interval, S(X) can
always be taken to be open, and then S(X) = S(X∗). Thus, for the nonnegative function
w(x) = f ∗(x)/f(x) (defined on S(X)), (2.2) becomes

Cov[X, g(X)] = σ2 IE[w(X)g′(X)]. (2.4)

The identity (2.2) remains valid for any non-decreasing (or non-increasing) a.c. func-
tion g, even in the case where IE[g′(X∗)] = ∞ (or −∞ if g is non-increasing), as
it follows by an application of Tonelli’s (instead of Fubini’s) theorem. In this case,
IE[(X−µ)(g(X)−g(µ))] = ∞ (or −∞). If, however, IE |g′(X∗)| = ∞ and g is arbitrary,
it may happen that IE |(X − µ)(g(X)− g(µ))| < ∞, as the following example shows.

Example 1 Assume that X has density f(x) = (3/8) min{1, x−4}, −∞ < x < ∞ and

g(x) =
∞∑

n=1

(2n− 1)(|x| − a2n−2)I (a2n−2 ≤ |x| < a2n−1)

+
∞∑

n=1

2n(a2n − |x|)I (a2n−1 ≤ |x| < a2n) ,

where a0 = 0 and an = 1 + 1/2 + · · · + 1/n for n ≥ 1. It follows that 0 ≤ g(x) ≤ 1
and g(−x) = g(x) for all x. Moreover, g is a.c. with derivative g′(x) (outside the
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set {0,±a1,±a2, . . .}) satisfying |g′(x)| ≥ |x| ≥ |g(x)| = g(x) for almost all x. Since
IE[X] = 0, IE |X| = 3/4, Var[X] = 1 and S(X) = (−∞,∞), we conclude that X∗ has
the density f ∗(x) = (3/16) [(2− x2)I(|x| ≤ 1) + x−2I(|x| > 1)] supported by the entire
real line, and IE |g′(X∗)| ≥ IE |X∗| = ∞, while IE |Xg(X)| ≤ IE |X| = 3/4.

We have shown in Lemma 2.1(iii) that X∗ is the only r.v. satisfying the identity (2.2),
and thus, an equivalent definition of X∗ could be given via the covariance identity; the
latter approach is due to Goldstein and Reinert ([11], Definition 1.1), who proved that
such a transformation is uniquely defined by this identity. Moreover, their approach
extends to r.v.’s that are not necessarily a.c., e.g., for the symmetric Bernoulli r.v. X
taking the values ±1 with probability 1/2, X∗ is uniformly distributed over the interval
(−1, 1). Our approach, however, is restricted to a.c. r.v.’s; for this reason, the analytic
definition (2.1) is possible and, moreover, the density f ∗ itself turns out to be an a.c.
unimodal function.

Our results also go to the opposite direction; the following Theorem shows that, in
general, the distribution of X∗ uniquely determines that of X.

Theorem 2.1 Assume that the r.v. Y has a unimodal a.c. density h.

(i) If the mode m of h is unique (i.e., h(x) < h(m) for all x 6= m), there exists an

r.v. Xm such that X∗
m

d
= Y iff the function h′(x)/(m− x) is integrable. Moreover,

X∗
1

d
= Y and X∗

2
d
= Y implies X1

d
= X2 (and thus, Xm is unique).

(ii) If {x : x is a mode of h} = [a, b] with a < b, then for each µ ∈ (a, b), there always

exists a unique r.v. Xµ such that IE[Xµ] = µ and X∗
µ

d
= Y . Moreover, for µ = a or

µ = b, there exists an r.v. Xµ such that IE[Xµ] = µ and X∗
µ

d
= Y iff the function

h′(x)/(µ − x) is integrable. Finally, if X∗
1

d
= Y , X∗

2
d
= Y and IE[X1] = IE[X2],

then X1
d
= X2.

Proof: (i) If X is an r.v. with mean µ variance σ2 and density f such that X∗ d
= Y ,

it follows from Lemma 2.1(i) that µ must be a mode of f ∗ = h and that h′(x)/(µ− x)
is integrable. Thus, µ = m and h′(x)/(m − x) is integrable. Assume now that the
function h′(x)/(m−x) (defined almost everywhere) is integrable. Observe that it is also
nonnegative (because m is the mode of h) and define the r.v. Xm with density

fm(x) =
h′(x)

c(m− x)
, where c =

∫ ∞

−∞
h′(x)

m− x
dx > 0.

Since lim±∞ h(x) = 0 (because h is a unimodal density), we have IE[m − Xm] = 0.
Applying Tonelli’s Theorem we have

∫ m

−∞
(m− x)h′(x) dx =

∫ m

−∞

∫ m

x
h′(x) du dx =

∫ m

−∞
h(u) du,
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and similarly, ∫ ∞

m
(x−m)(−h′(x)) dx =

∫ ∞

m
h(u) du,

yielding Var[Xm] = 1/c. Therefore, X∗
m

d
= Y . We now show that Xm is unique. Indeed,

if X∗ d
= Y for an r.v. X with mean µ, variance σ2 and density f , it follows from Lemma

2.1(i) that µ must be a mode of f ∗ = h and therefore µ = m. Hence,

f(x) =
σ2h′(x)

m− x
= cσ2fm(x)

for almost all x, and thus X
d
= Xm.

(ii) Since h is constant in [a, b], h′ ≡ 0 in (a, b). Hence, for all µ ∈ (a, b),

∫ ∞

−∞
h′(x)

µ− x
dx =

∫ a

−∞
h′(x)

µ− x
dx +

∫ ∞

b

−h′(x)

x− µ
dx ≤ h(a)

µ− a
+

h(b)

b− µ
< ∞.

Consider the r.v. Xµ with density

fµ(x) =
h′(x)

cµ(µ− x)
, where cµ =

∫ ∞

−∞
h′(x)

µ− x
dx.

Then IE[Xµ] = µ, Var[Xµ] = 1/cµ, and therefore X∗
µ

d
= Y . It is easy to see that if

X∗ d
= Y and IE[X] = µ for some r.v. X with density f and variance σ2, then X

d
= Xµ.

Indeed, it follows from (2.1) and Lemma 2.1(i) that

f(x) =
σ2h′(x)

µ− x
= cµσ

2fµ(x)

for almost all x. Therefore, since the mean of any r.v. X satisfying X∗ d
= Y must be a

mode of h, either IE[X] = µ ∈ (a, b) (and thus X
d
= Xµ) or IE[X] = a (and h′(x)/(a−x)

is integrable) or IE[X] = b (and h′(x)/(b− x) is integrable).

The following example shows that all the cases described by Theorem 2.1 are possible.

Example 2 (i) Assume that Y has the unimodal a.c. density

h(x) =
1

3
(min {2− |x|, 1})+

with derivative h′(x) = −(1/3)sign(x)I(1 < |x| < 2) for almost all x. Then, for all
µ ∈ (−1, 1), the r.v. Xµ with density

fµ(x) = (3cµ|x− µ|)−1 I(1 < |x| < 2), where cµ =
1

3
log

[
4− µ2

1− µ2

]
,

satisfies IE[Xµ] = µ and X∗
µ

d
= Y . Moreover, h′(x)/(µ− x) is not integrable for µ = ±1.
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(ii) Assume that Y has the unimodal a.c. density

h(x) =
6

19
(min {x + 2, 1} I(−2 < x < 1) + x(2− x)I(1 ≤ x < 2)) .

Then, for any µ ∈ (−1, 1], the r.v. Xµ with density

fµ(x) =
6

19cµ|x− µ| (I(−2 < x < −1) + 2(x− 1)I(1 < x < 2)) ,

where cµ = (6/19) (2 + log [(µ + 2)/(µ + 1)]− 2(1− µ) log [(2− µ)/(1− µ)]), satisfies

IE[Xµ] = µ and X∗
µ

d
= Y , while h′(x)/(−1 − x) is not integrable. Similarly, for the r.v.

W = −Y with density h(−x), there exists an r.v. Rµ such that IE[Rµ] = µ and R∗
µ

d
= W

iff µ ∈ [−1, 1).

(iii) For the r.v. Y with density

h(x) =
3

10
(|x|(2− |x|)I(1 < |x| < 2) + I(|x| ≤ 1)) ,

there exists an r.v. Xµ such that IE[Xµ] = µ and X∗
µ

d
= Y for any mode µ ∈ [−1, 1].

3 Application to variance bounds

Upper bounds for the variance of a function g(X) of a normal r.v. X in terms of g′

are known as the inequality of Chernoff [10] (see also [8] and [18]). Upper and lower
variance bounds of g(X) for an arbitrary r.v. X were considered in [1] and [3] (see also
[4]–[7] and references therein). Both upper and lower variance bounds may be obtained
as by-products of the Cauchy-Schwarz inequality. The following Lemma summarizes
and unifies these bounds in terms of the r.v. X∗; in effect, (3.1) is a Chernoff-type, [8],
upper bound; (3.2) is a Cacoullos-type, [14], [15], lower bound as obtained in [1] and
[3], in terms of a function w (see also (3.4) below).

Lemma 3.1 Let X be an a.c. r.v. with mean µ and variance σ2. Then, for every a.c.
function g with derivative g′, we have the following bounds.

(i)
IE[(g(X)− g(µ))2] ≤ σ2 IE[(g′(X∗))2], (3.1)

with equality iff either IE[g2(X)] = ∞ or

g(x)− g(µ) =

{
a1(x− µ) if x ≤ µ,
a2(x− µ) if x ≥ µ,

for some constants a1, a2 and for all x ∈ S(X∗).

7



(ii) If IE |g′(X∗)| < ∞,
Var[g(X)] ≥ σ2 IE2[g′(X∗)], (3.2)

with equality iff IP[g(X) = aX + b] = 1 for some constants a and b.

Proof: (i) Let f be a density of X. We then have

σ2 IE[(g′(X∗))2]

=
∫ µ

−∞
(g′(x))

2
∫ x

−∞
(µ− t)f(t) dt dx +

∫ ∞

µ
(g′(x))

2
∫ ∞

x
(t− µ)f(t) dt dx

=
∫ µ

−∞
f(t)(µ− t)

∫ µ

t
(g′(x))

2
dx dt +

∫ ∞

µ
f(t)(t− µ)

∫ t

µ
(g′(x))

2
dx dt

≥
∫ µ

−∞
f(t) (g(µ)− g(t))2 dt +

∫ ∞

µ
f(t) (g(t)− g(µ))2 dt

= IE[(g(X)− g(µ))2],

from Tonelli’s theorem and the Cauchy-Schwarz inequality for integrals. Observe that
if IE[g2(X)] = ∞, the equality holds in a trivial way (∞ = ∞); otherwise, the equality
holds iff there exist constants a1 and a2 such that g′(x) = a1 + (a2 − a1)I(x ≥ µ) for
almost all x ∈ S(X∗), which completes the proof.

(ii) We have from (2.2),

σ4 IE2[g′(X∗)] = Cov2[X, g(X)] ≤ σ2Var[g(X)]

by the Cauchy-Schwarz inequality for r.v.’s, and the proof is complete.

Corollary 3.1 For every a.c. function g,

Var[g(X)] ≤ σ2 IE[(g′(X∗))2], (3.3)

with equality iff either IE[g2(X)] = ∞ or g is linear on S(X∗).

Note that (3.2) continues to hold for any non-decreasing (non-increasing) a.c. func-
tion g, even in the case where IE[g′(X∗)] = ±∞ (in this case, IE[g2(X)] = ∞). Moreover,
since IP[X ∈ S(X∗)] = 1 (because the measure produced by X is absolutely continuous
with respect to that produced by X∗), equality in (3.3) implies the equality in (3.2).
The converse is not always true, as the following example shows.

Example 3 Let X be uniformly distributed over (−2,−1) ∪ (1, 2) and

g(x) = xI(|x| > 1) + x3I(|x| ≤ 1).

Then µ = 0, σ2 = 7/3 and X∗ has the density f ∗(x) = (3/28) (min{4− x2, 3})+
. It

follows that Var[g(X)] = IE[(g(X) − g(µ))2] = σ2 and σ2 IE2[g′(X∗)] = Var[g(X)] <
σ2 IE[(g′(X∗))2] = 53/15. This shows that g is ‘linear’ with respect to the measure
produced by X, and it is ‘non-linear’ with respect to the measure produced by X∗.
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This example hinges on the fact that S(X) fails to be an interval. If, however, S(X)
is a (finite or infinite) interval, the known upper and lower bounds for the variance of
g(X) take the form (see [3], [4])

σ2 IE2[w(X)g′(X)] ≤ Var[g(X)] ≤ σ2 IE[w(X)(g′(X))2], (3.4)

for some nonnegative function w defined on S(X) (in fact, w = f ∗/f), where both
equalities hold iff g is linear on S(X), provided that IE[w(X)(g′(X))2] < ∞.

The following result shows the equivalence between the variance bounds and the
covariance identity.

Theorem 3.1 Assume that for the a.c. r.v. X with finite variance σ2, the r.v. Y satisfies
one of the following.

(i) For every a.c. function g with derivative g′,

Var[g(X)] ≤ σ2 IE[(g′(Y ))2].

(ii) For every a.c. function g with derivative g′ such that IE |g′(Y )| < ∞,

Var[g(X)] ≥ σ2 IE2[g′(Y )].

Then Y
d
= X∗.

Proof: Assume that (i) holds. Let h′ be any (measurable) bounded function and consider
the a.c. function g(x) = x + λh(x), where λ is an arbitrary constant and h an indefinite
integral of h′. It follows that g is a.c. with bounded derivative g′ = 1 + λh′. Thus,
Var[g(X)] < ∞, Var[h(X)] < ∞ and

Var[g(X)] = σ2 + λ2Var[h(X)] + 2λCov[X, h(X)]

≤ σ2
(
1 + λ2 IE[(h′(Y ))2] + 2λIE[h′(Y )]

)
.

Therefore, by using standard arguments (see [4]), the quadratic θλ2 + 2δλ (where θ =
σ2 IE[(h′(Y ))2]− Var[h(X)] ≥ 0, δ = σ2 IE[h′(Y )]− Cov[X, h(X)]) is nonnegative for all
λ, and thus δ = 0. Hence, taking into account (2.2) we conclude that for any bounded
function H,

IE[H(Y )] = IE[H(X∗)]

and the result follows. The same arguments apply to (ii).

Finally, by using similar arguments and the results of Theorem 2.1, a converse of
Theorem 3.1 and Lemma 2.1(iii) can be easily established:

Theorem 3.2 Let Y be an arbitrary r.v. Then, Y has a unimodal a.c. density h such
that the function h′(x)/(m− x) is integrable for some mode m of h iff there exists some
a.c. r.v. X with finite second moment such that any one of the following holds.
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(i) For every a.c. function g with derivative g′ such that IE |g′(Y )| < ∞,

Cov[X, g(X)] = Var[X]IE[g′(Y )].

(ii) For every a.c. function g with derivative g′,

Var[g(X)] ≤ Var[X]IE[(g′(Y ))2].

(iii) For every a.c. function g with derivative g′ such that IE |g′(Y )| < ∞,

Var[g(X)] ≥ Var[X]IE2[g′(Y )].

(iv) X∗ d
= Y .

Furthermore, X is unique iff the mode of h is unique.

Theorems 3.1 and 3.2 characterize the r.v.’s X and Y which admit Poincaré type
inequalities or differential inequalities (c.f. [9], [18]). It should be noted that in the
preceding inequalities the constant equals Var[X], and this implies that the equality
is attained for ‘linear’ g. There are, however, other kinds of Poincaré type inequalities
where the constant does not equal Var[X]. The following example is relative to this
subject.

Example 4 Let X be uniformly distributed over (0, 1) and Y have the density h(x) =
(3/4)(1− x2)I(|x| < 1). It follows that for every a.c. function g,

Var[g(X)] ≤ 1

12
IE[(g′(X∗))2] =

1

2

∫ 1

0
x(1− x)(g′(x))2 dx ≤ cIE[(g′(Y ))2],

for some constant c ≤ 1/3, since (1/2)x(1−x)I(0 < x < 1) ≤ (1/3)h(x) for x ∈ (−1, 1).
On the other hand, an application to the function g(x) = x2 shows that c ≥ 1/9 >
1/12 = Var[X].
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