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Let X be an absolutely continuous random variable from the integrated Pearson family and assume that X

has finite moments of any order. Using some properties of the associated orthonormal polynomial system,
we provide a class of strengthened Chernoff-type variance bounds.
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1. Introduction

Let Z be a standard normal random variable and g : R → R any absolutely continuous function
with derivative g′ such that E(g′(X))2 < ∞. Chernoff [14], using Hermite polynomials, proved
that

Varg(Z) ≤ E
(
g′(Z)

)2; (1.1)

see, also, Nash [20] and Brascamp and Lieb [9]. In (1.1), the equality holds if and only if g is
a polynomial of degree at most one – a linear function. This inequality plays an important role
in the isoperimetric problem, as well as to several areas in probability and statistics. It has been
extended and generalized by many authors, including [1,8,10,11,13,17–19,21–25]. On the other
hand, Cacoullos [10] showed the inequality

Varg(Z) ≥ E
2g′(Z), (1.2)

in which the equality again holds if and only if g is linear.
In this article, we provide improvements on Chernoff’s bound. In particular, an application of

the main result (Theorem 3.1, n = 1) to Z yields the inequality

Varg(Z) ≤ 1
2E

2g′(Z) + 1
2E

(
g′(Z)

)2
, (1.3)

in which the equality holds if and only if g is a polynomial of degree at most two. In view of
(1.2), it is clear that the upper bound in (1.3) improves the one given in (1.1) and, in fact, it is
strictly better, unless g is linear. The difference in right-hand sides (1.1) minus (1.3) is equal to
1
2 Varg′(Z), indicating the magnitude of this improvement.

Similar bounds are valid for all distributions that will be studied in the sequel, namely, the
Beta, Gamma and Normal. The main result applies to any Pearson (more precisely, integrated
Pearson) random variable possessing moments of any order. Hence, Theorem 3.1 also improves
the bounds for Beta random variables, given by [24,25]. The integrated Pearson distributions are
defined as follows, see [1–3,18]:
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Definition 1.1 (Integrated Pearson family). Let X be an absolutely continuous random variable
with density f and finite mean μ = EX. We say that X (or its density f ) belongs to the integrated
Pearson family if there exists a quadratic polynomial q(x) = δx2 + βx + γ with δ,β, γ ∈ R,
|δ| + |β| + |γ | > 0, such that∫ x

−∞
(μ − t)f (t)dt = q(x)f (x) for all x ∈ R. (1.4)

This fact will be denoted by

X ∼ IP(μ;q) or f ∼ IP(μ;q) or, more explicitly, X or f ∼ IP(μ; δ,β, γ ). (1.5)

In the sequel, whenever we claim that X or f ∼ IP(μ; δ,β, γ ), it will be understood that
the density f has been chosen in C∞(α,ω) and is vanishing outside (α,ω), where (α,ω) :=
(ess inf(X), ess sup(X)) is the interval support of X; see [2], Proposition 2.1. Consider an arbi-
trary real polynomial q with deg(q) ≤ 2 such that the set S+(q) := {x :q(x) > 0} is nonempty. It
can be shown that for any μ ∈ S+(q) (i.e., with q(μ) > 0), there exists a unique (up to equality
in distribution) random variable X with mean μ such that its density f satisfies (1.4); see [2],
Section 2.

Many commonly used continuous distributions are members of the integrated Pearson family,
for example, Normal, Beta, Gamma and Negative Gamma. This list also includes Pareto (with
density f (x) = a(x + 1)−a−1, x > 0, and parameter a > 1), Reciprocal Gamma (with density
f (x) = λax−a−1e−λ/x/�(a), x > 0, and parameters a > 1 and λ > 0), Fn,m (with m > 2) and
tn (with n > 1) distributions, their location-scale families and their negatives – see Table 2.1 in
[2] for a complete description. The proof of the main result is based on specific properties of
the associated orthogonal polynomials that can be found in [2]. For easy reference, all required
results are reviewed in Appendix.

2. Preliminaries

The following definition will be used in the sequel.

Definition 2.1 (Cf. [1], page 3629). Assume that X ∼ IP(μ;q) and denote by q(x) = δx2 +
βx + γ its quadratic polynomial. Let (α,ω) be the support of X and fix an integer n ∈ {1,2, . . .}.
We shall denote by Hn(X) the class of functions g : (α,ω) → R satisfying the following two
properties:

H1: For each k ∈ {0,1, . . . , n − 1}, g(k) (with g(0) = g) is an absolutely continuous function
with a.s. derivative g(k+1). That is, g ∈ Cn−1(α,ω) and the function g(n−1) : (α,ω) → R,
with

g(n−1)(x) := dn−1g(x)

dxn−1
, α < x < ω,
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is absolutely continuous in (α,ω) with a.s. derivative g(n) such that

g(n−1)(y) − g(n−1)(x) =
∫ y

x

g(n)(t)dt for every compact interval [x, y] ⊆ (α,ω).

H2: Eqn(X)(g(n)(X))2 < ∞.

Also, we denote by H0(X) and H∞(X) the following classes of functions:

H0(X) := L2(R,X) ≡ {
g : (α,ω) → R,Borel measurable, such that Varg(X) < ∞};

H∞(X) :=
∞⋂

n=0

Hn(X) = {
g ∈ C∞(α,ω) : Eqn(X)

(
g(n)(X)

)2
< ∞ for all n = 0,1, . . .

}
.

It is clear that E
2qn(X)|g(n)(X)| ≤ Eqn(X)Eqn(X)(g(n)(X))2 < ∞, provided E|X|2n < ∞

(equivalently, δ < 1/(2n − 1); see Lemma A.1). On the other hand, under suitable moment con-
ditions on X, the assumption H2 implies that Eqi(X)(g(i)(X))2 < ∞ for all i ∈ {0,1, . . . , n}. In
particular, if all moments exist (equivalently, if δ ≤ 0), then

L2(R,X) = H0(X) ⊇ H1(X) ⊇ H2(X) ⊇ · · · ⊇ H∞(X),

that is, Hn(X) = ⋂n
i=0 Hi (X) for all n. In order to verify this fact we first show a lemma.

Lemma 2.1. If X ∼ IP(μ;q) with support (α,ω) and g : (α,ω) → R is an absolutely continuous
function with a.s. derivative g′ such that Eq(X)(g′(X))2 < ∞ then Eg2(X) < ∞.

Proof. Observe that g2(X) ≤ 2g2(μ) + 2(g(X) − g(μ))2. Since μ ∈ (α,ω),

E
(
g(X) − g(μ)

)2 =
∫ μ

α

f (x)

(∫ μ

x

g′(t)dt

)2

dx +
∫ ω

μ

f (x)

(∫ x

μ

g′(t)dt

)2

dx

≤
∫ μ

α

f (x)(μ − x)

∫ μ

x

(
g′(t)

)2 dt dx +
∫ ω

μ

f (x)(x − μ)

∫ x

μ

(
g′(t)

)2 dt dx

= Eq(X)
(
g′(X)

)2
,

by the Cauchy–Schwarz inequality and Tonelli’s theorem; cf. Lemma 3.1 in [22]. �

Corollary 2.1. If X ∼ IP(μ;q), E|X|2n−1 < ∞ and g ∈ Hn(X) for some fixed n ∈ {1,2, . . .}
then Eqi(X)(g(i)(X))2 < ∞ for all i ∈ {0,1, . . . , n}. In particular, Varg(X) < ∞, that is, g ∈
L2(R,X).

Proof. According to Theorem A.3, the assumptions on X enable us to define the random vari-
ables Xk with densities

fk(x) = qk(x)f (x)

Eqk(X)
, α < x < ω,k = 0,1, . . . , n − 1,
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where (α,ω) is the support of X (and of each Xk). If q(x) = δx2 + βx + γ is the quadratic of
X, then Xk ∼ IP(μk;qk) with mean μk and quadratic qk given by

μk = μ + kβ

1 − 2kδ
, qk(x) = δx2 + βx + γ

1 − 2kδ
= δkx

2 + βkx + γk, k = 0,1, . . . , n − 1.

Set g̃ = g(n−1), μ̃ = μn−1, q̃ = qn−1, X̃ = Xn−1 and observe that X̃ ∼ IP(μ̃; q̃) and

Eq̃(X̃)
(
g̃′(X̃)

)2 = Eqn(X)(g(n)(X))2

(1 − (2n − 2)δ)Eqn−1(X)
< ∞,

because g ∈ Hn(X) so that the numerator is finite. [In view of Lemma A.1, E|X|2n−1 < ∞
implies the inequality (2n−2)δ < 1; moreover, deg(qn−1) ≤ 2n−2 shows that 0 < Eqn−1(X) <

∞.] An application of Lemma 2.1 to g̃, X̃ shows that Eg̃2(X̃) < ∞, and thus,

Eqn−1(X)
(
g(n−1)(X)

)2 = Eg̃2(X̃)Eqn−1(X) < ∞.

Hence, g ∈ Hn−1(X). Continuing inductively the result follows. �

Turn now to the case where X ∼ IP(μ; δ,β, γ ) with δ ≤ 0. It follows that all moments ex-
ist and, moreover, the moment generating function of X is finite in a neighborhood of zero
(see [2], Table 2.1, types 1–3). Then, it is well known that the orthonormalized polynomial sys-
tem {φk}∞k=0, given by (A.6) (with n = ∞), is complete in L2(R,X); see, for example, [3,7]; see
also Remark A.3, below. Consider a function g ∈ Hn(X) for some fixed n ∈ {1,2, . . .}. Since
Hn(X) ⊆ L2(R,X), g can be expanded as

g(x) ∼
∞∑

k=0

αkφk(x), (2.1)

where αk = Eφk(X)g(X) are the Fourier coefficients of g. The series converges in the norm of
L2(R,X), that is, E[g(X) − ∑N

k=0 αkφk(X)]2 → 0 as N → ∞. Parseval’s identity shows that

Varg(X) =
∞∑

k=1

α2
k , g ∈ L2(R,X). (2.2)

On the other hand, since g ∈ Hn(X), (A.8) yields the expression

αk = Eqk(X)g(k)(X)√
k!ck(δ)Eqk(X)

for k = 1,2, . . . , n,

where ck(δ) = ∏2k−2
j=k−1(1 − jδ), see (A.3), and Eqk(X) is given explicitly in (A.9). Thus, in the

particular case where g ∈ Hn(X), (2.2) produces the equivalent formula

Varg(X) =
n∑

k=1

E
2qk(X)g(k)(X)

k!ck(δ)Eqk(X)
+

∞∑
k=n+1

α2
k , g ∈ Hn(X). (2.3)
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Now, consider the following heuristic derivation: Formally, we differentiate term by term (n
times) the series (2.1) to get, in view of Theorem A.5, the expansion

g(n)(x) ∼
∞∑

k=0

αk+nφ
(n)
k+n(x) =

∞∑
k=0

ν
(n)
k αk+nφk,n(x). (2.4)

Let lead(P ) be the leading coefficient of a polynomial P . The constants ν
(n)
k = ν

(n)
k (μ;q) are

given by (A.18) and {φk,n(x)}∞k=0 (with lead(φk,n) > 0) is the orthonormal polynomial sys-
tem corresponding to Xn with density fn = qnf/Eqn(X); φk,n is a (positive) scalar multiple
of the polynomial Pk,n given in (A.16). Now, if the expansion (2.4) was indeed correct in the
L2(R,Xn)-sense, then the completeness of the system {φk,n}∞k=0 in L2(R,Xn) would result to
the corresponding Parseval identity:

Eqn(X)(g(n)(X))2

Eqn(X)
= E

(
g(n)(Xn)

)2 =
∞∑

k=0

(
ν

(n)
k

)2
α2

k+n, g ∈ Hn(X). (2.5)

Finally, from (A.18) we have

(
ν

(n)
k

)2 = (k + n)!
k!Eqn(X)

k+2n−2∏
j=k+n−1

(1 − jδ).

A combination of the last equation with (2.5) yields the identity

Eqn(X)
(
g(n)(X)

)2 =
∞∑

k=0

(k + n)!∏k+2n−2
j=k+n−1(1 − jδ)

k! α2
k+n

(2.6)

=
∞∑

k=n

k!∏k+n−2
j=k−1(1 − jδ)

(k − n)! α2
k .

This must be correct for all g ∈ Hn(X), provided that expansion (2.4) is valid. However, the
above arguments are heuristic; they are not sufficient even to conclude convergence of the series
(2.6) or (2.5). Notice that the same technicality appeared in Chernoff’s [14] proof, although
in this case the polynomials are the well-known Hermite polynomials (with derivatives again
Hermite, i.e., orthogonal to the same weight function, the normal density). Chernoff overcame
this difficulty by applying Weierstrass (uniform) approximations to g in compact intervals.

In the sequel, we shall make the above arguments rigorous by applying a different technique, in
the spirit of Sturm–Liouville theory. In fact, we shall show more, namely, that an initial segment
of the Fourier coefficients for the nth derivative of g, suggested by (2.4), can be derived for any
X ∼ IP(μ; δ,β, γ ) having a sufficient number of moments. This result holds even if δ > 0, noting
that if δ > 0 then X possesses only a finite number of moments. Specifically, the following result,
which may have some interest in itself, holds true.
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Lemma 2.2. Assume that X has density f , support (α,ω), X ∼ IP(μ; δ,β, γ ) and E|X|2N < ∞
for some N ≥ 1, that is, δ < 1

2N−1 . Let {φk}Nk=0 ⊆ L2(R,X) be the orthonormal polynomial
system associated with X (where, to be specific, assume that lead(φk) > 0). Then, for every
x ∈ (α,ω),

q(x)f (x)φ′
k(x) = −λk(δ)

∫ x

α

φk(y)f (y)dy

(2.7)

= λk(δ)

∫ ω

x

φk(y)f (y)dy, k = 1,2, . . . ,N,

where λk(δ) := k(1 − (k − 1)δ). Moreover, if g ∈ Hn(X) for some n ∈ {1,2, . . . ,N} then

Eφk,n(Xn)g
(n)(Xn) = ν

(n)
k Eφk+n(X)g(X), k = 0,1, . . . ,N − n, (2.8)

where Xn has density fn = qnf/Eqn(X),

ν
(n)
k =

√
(k + n)!

k!

∏k+2n−2
j=k+n−1(1 − jδ)

Eqn(X)

is given by (A.18) and {φk,n}N−n
k=0 ⊆ L2(R,Xn) is the orthonormal polynomial system corre-

sponding to Xn, with lead(φk,n) > 0.

Proof. From (1.4) it follows that

f ′(x)

f (x)
= μ − x − q ′(x)

q(x)
= −(1 + 2δ)x + (μ − β)

δx2 + βx + γ
, α < x < ω.

Consider the polynomials Pk defined in (A.2). By (A.6), each φk is a scalar multiple of the
Rodrigues-type polynomial hk = Dk[qkf ]/f = (−1)kPk . Hence, Theorem 1 of Diaconis and
Zabell [15] (see, also, equation (4.4) in [2]) implies that[

q(x)f (x)φ′
k(x)

]′ = −λk(δ)φk(x)f (x), α < x < ω,k = 1,2, . . . ,N. (2.9)

Fix t and x with α < t < x < ω and integrate (2.9) over the interval [t, x] to get

−λk(δ)

∫ x

t

φk(y)f (y)dy = q(x)f (x)φ′
k(x) − q(t)f (t)φ′

k(t);

thus, taking limits as t ↘ α we see that the l.h.s. converges to −λk(δ)
∫ x

α
φk(y)f (y)dy, by

dominated convergence, while the r.h.s. tends to q(x)f (x)φ′
k(x) because, by Lemma A.2,

limt↘α q(t)f (t)h(t) = 0 for any polynomial h with deg(h) ≤ 2N − 1. This verifies the first
equality in (2.7), while the second one is obvious since Eφk(X) = 0 (because φk is orthogonal to
φ0 ≡ 1).

Fix now an integer k ∈ {0,1, . . . ,N − 1}. Observing that deg(q(x)x2k) ≤ 2k + 2 ≤ 2N we
have E(Xk

1)
2 = Eq(X)X2k/Eq(X) < ∞. Thus, the Rodrigues-type polynomial Pk,1 (see (A.16)
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with m = 1) belongs to L2(R,X1). By Corollary 2.1, E(g′(X1))
2 is also finite. Indeed, n ≤ N

implies that E|X|2n−1 < ∞ so that g ∈ Hn(X) ⊆ H1(X) and, therefore,

E
(
g′(X1)

)2 = 1

Eq(X)
Eq(X)

(
g′(X)

)2
< ∞.

Hence, the Fourier coefficient of g′ with respect to φk,1, Eφk,1(X1)g
′(X1), is well-defined (and

finite):

E
2
∣∣φk,1(X1)g

′(X1)
∣∣ ≤ E

(
φk,1(X1)

)2
E

(
g′(X1)

)2 = E
(
g′(X1)

)2
< ∞.

Let ρ1 < ρ2 < · · · < ρm be the distinct roots of φk+1 that lie into the interval (α,ω).
Clearly, 1 ≤ m ≤ k + 1 because Eφk+1(X) = 0 and deg(φk+1) = k + 1. Fix now a num-
ber ρ ∈ [ρ1, ρm] ⊆ (α,ω). From (A.19), we see that φk,1(x) = φ′

k+1(x)/ν
(1)
k where ν

(1)
k =√

(k + 1)(1 − kδ)/Eq(X). Therefore, using (2.7), we have

Eφk,1(X1)g
′(X1) = 1

Eq(X)

∫ ω

α

g′(x)q(x)f (x)φk,1(x)dx

= 1

ν
(1)
k Eq(X)

∫ ω

α

g′(x)q(x)f (x)φ′
k+1(x)dx

= −λk+1(δ)

ν
(1)
k Eq(X)

∫ ρ

α

g′(x)

∫ x

α

f (y)φk+1(y)dy dx

+ λk+1(δ)

ν
(1)
k Eq(X)

∫ ω

ρ

g′(x)

∫ ω

x

f (y)φk+1(y)dy dx.

Observing that

λk+1(δ)

ν
(1)
k Eq(X)

= (k + 1)(1 − kδ)

Eq(X)
√

(k + 1)(1 − kδ)/Eq(X)
= ν

(1)
k ,

the preceding equation can be rewritten as

Eφk,1(X1)g
′(X1) = ν

(1)
k (I2 − I1), (2.10)

where

I1 :=
∫ ρ

α

g′(x)

∫ x

α

f (y)φk+1(y)dy dx, I2 :=
∫ ω

ρ

g′(x)

∫ ω

x

f (y)φk+1(y)dy dx. (2.11)

Now, we wish to change the order of integration to both integrals I1 and I2. To this end, for I2 it
suffices to show that

I ∗
2 :=

∫ ω

ρ

∣∣g′(x)
∣∣ ∫ ω

x

f (y)
∣∣φk+1(y)

∣∣dy dx < ∞. (2.12)
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Similarly, for I1 it suffices to show that I ∗
1 := ∫ ρ

α
|g′(x)| ∫ x

α
f (y)|φk+1(y)|dy dx < ∞. We now

proceed to verify (2.12). Write I∗
2 = I ∗

21 + I ∗
22 where

I ∗
21 :=

∫ ρm

ρ

∣∣g′(x)
∣∣ ∫ ω

x

f (y)
∣∣φk+1(y)

∣∣dy dx,

I ∗
22 :=

∫ ω

ρm

∣∣g′(x)
∣∣ ∫ ω

x

f (y)
∣∣φk+1(y)

∣∣dy dx.

Since the polynomial φk+1 does not change sign in the interval (ρm,ω), we can define the con-
stant π as

π := sign
(
φk+1(x)

) ∈ {−1,1}, ρm < x < ω.

Then, πφk+1(x) = |φk+1(x)| holds for all x ∈ (ρm,ω) and from (2.7) we get

I ∗
22 = π

∫ ω

ρm

∣∣g′(x)
∣∣ ∫ ω

x

f (y)φk+1(y)dy dx = π

λk+1(δ)

∫ ω

ρm

∣∣g′(x)
∣∣q(x)f (x)φ′

k+1(x)dx

≤ 1

λk+1(δ)

∫ ω

ρm

∣∣g′(x)
∣∣q(x)f (x)

∣∣φ′
k+1(x)

∣∣dx

≤ 1

λk+1(δ)

∫ ω

α

∣∣g′(x)
∣∣q(x)f (x)

∣∣φ′
k+1(x)

∣∣dx = 1

λk+1(δ)
Eq(X)

∣∣φ′
k+1(X)g′(X)

∣∣
= ν

(1)
k

λk+1(δ)
Eq(X)

∣∣φk,1(X)g′(X)
∣∣ = 1

ν
(1)
k

E
∣∣φk,1(X1)g

′(X1)
∣∣ < ∞.

This shows that I ∗
22 < ∞. On the other hand, the function x �→ q(x)f (x) is strictly positive

and continuous for x in the compact interval [ρ,ρm] ⊆ (α,ω), so that, θ := min{q(x)f (x) :
ρ ≤ x ≤ ρm} > 0. Then, from the fact that g ∈ H1(X), we get∫ ρm

ρ

∣∣g′(x)
∣∣dx ≤ 1

θ

∫ ρm

ρ

q(x)f (x)
∣∣g′(x)

∣∣dx ≤ 1

θ
Eq(X)

∣∣g′(X)
∣∣

≤ 1

θ

√
Eq(X)Eq(X)

(
g′(X)

)2
< ∞.

Moreover, for any u1, u2 with α ≤ u1 ≤ u2 ≤ ω it is readily seen that∫ u2

u1

∣∣φk+1(y)
∣∣f (y)dy ≤

∫ ω

α

∣∣φk+1(y)
∣∣f (y)dy = E

∣∣φk+1(X)
∣∣ := Mk+1 < ∞.

Combining the above, we conclude that

I ∗
21 =

∫ ρm

ρ

∣∣g′(x)
∣∣ ∫ ω

x

f (y)
∣∣φk+1(y)

∣∣dy dx ≤ Mk+1

∫ ρm

ρ

∣∣g′(x)
∣∣dx < ∞.
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Therefore, I ∗
2 = I ∗

21 + I ∗
22 < ∞ and (2.12) follows. Using similar arguments it is shown that

I ∗
1 < ∞. Thus, we can indeed interchange the order of integration to both integrals I1 and I2 of

(2.11). It follows that

I2 =
∫ ω

ρ

f (y)φk+1(y)

∫ y

ρ

g′(x)dx dy

=
∫ ω

ρ

f (y)φk+1(y)g(y)dy − g(ρ)

∫ ω

ρ

f (y)φk+1(y)dy

and, similarly,

I1 = g(ρ)

∫ ρ

α

f (y)φk+1(y)dy −
∫ ρ

α

f (y)φk+1(y)g(y)dy.

Taking into account the fact that
∫ ω

α
f (y)φk+1(y)dy = Eφk+1(X) = 0, we get

I2 − I1 =
∫ ω

α

f (y)φk+1(y)g(y)dy − g(ρ)

∫ ω

α

f (y)φk+1(y)dy = Eφk+1(X)g(X).

Finally, from (2.10), we conclude that

Eφk,1(X1)g
′(X1) =

√
(k + 1)(1 − kδ)

Eq(X)
Eφk+1(X)g(X), k = 0,1, . . . ,N − 1. (2.13)

So far we have shown that g ∈ Hn(X) and E|X|2N < ∞ for some N ≥ n implies that g ∈ H1(X)

and (2.13) is fulfilled. Assume now that for some i ∈ {1,2, . . . , n − 1} we have shown that g ∈
Hi (X) and that for every k ∈ {0,1, . . . ,N − i},

Eφk,i(Xi)g
(i)(Xi) =

√
(k + i)!

k!

∏k+2i−2
j=k+i−1(1 − jδ)

Eqi(X)
Eφk+i (X)g(X). (2.14)

Clearly, we can apply (2.13) for g = g(i), X = Xi and for k = 0,1, . . . , Ñ − 1, provided that

E|Xi |2Ñ < ∞. Observing that E|Xi |2Ñ = Eqi (X)|X|2Ñ

Eqi (X)
it follows that Ñ = N − i is a suitable

choice. Therefore, for k = 0,1, . . . ,N − i − 1, (2.13) yields

Eφk,i+1(Xi+1)g
(i+1)(Xi+1) =

√
(k + 1)(1 − kδi)

Eqi(Xi)
Eφk+1,i (Xi)g

(i)(Xi),

where δi = δ
1−2iδ

, qi(x) = q(x)
1−2iδ

(see Theorem A.3) and, thus,

Eqi(Xi) = Eq(Xi)

1 − 2iδ
= Eqi+1(X)

(1 − 2iδ)Eqi(X)
.
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Finally, calculating Eφk+1,i (Xi)g
(i)(Xi) from (2.14) (for k = 0,1, . . . ,N − i − 1) we see that

Eφk,i+1(Xi+1)g
(i+1)(Xi+1)

=
√

(k + 1)(1 − kδ/(1 − 2iδ))

Eqi+1(X)/((1 − 2iδ)Eqi(X))

√
(k + i + 1)!

(k + 1)!

∏k+2i−1
j=k+i (1 − jδ)

Eqi(X)
Eφk+i+1(X)g(X)

=
√

(k + i + 1)!
k!

∏k+2i−1
j=k+i (1 − jδ)

Eqi+1(X)
Eφk+i+1(X)g(X), k = 0,1, . . . ,N − i − 1,

which verifies the inductional step and shows that (2.14) holds for all i ∈ {1,2, . . . , n}. Letting
i = n in (2.14) completes the proof. �

3. The strengthened inequality

In the present section, we assume that X ∼ IP(μ; δ,β, γ ) with δ ≤ 0. The well-known Normal,
Gamma and Beta random variables and their affine transformations are of this form – see [2],
Table 2.1. In this case the orthonormal polynomial system {φk}∞k=0 is complete in L2(R,X) and,
therefore, the following result holds.

Lemma 3.1. If X ∼ IP(μ; δ,β, γ ) with δ ≤ 0, then

Varg(X) =
∞∑

k=1

α2
k for any g ∈ L2(R,X), (3.1)

where

αk = Eφk(X)g(X), k = 0,1,2, . . . , (3.2)

are the Fourier coefficients of g with respect to the orthonormal polynomial system {φk}∞k=0. If,
furthermore, g ∈ Hn(X) for some n ∈ {1,2, . . .}, then

αk = Eφk(X)g(X) = Eqk(X)g(k)(X)√
k!Eqk(X)

∏2k−2
j=k−1(1 − jδ)

, k = 1,2, . . . , n (3.3)

and

Eqn(X)
(
g(n)(X)

)2 =
∞∑

k=n

k!∏k+n−2
j=k−1(1 − jδ)

(k − n)! α2
k , (3.4)

with αk given by (3.2).

Proof. (3.1) is the well-known Parseval’s identity. Also, if g ∈ Hn(X) then, by Corollary 2.1,
g ∈ Hk(X) for all k ∈ {0,1, . . . , n}. Therefore, the Cauchy–Schwarz inequality shows that
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Eqk(X)|g(k)(X)| ≤ Eqk(X)Eqk(X)(g(k)(X))2 < ∞. Hence, (3.3) follows from (A.4) – see
Theorem A.2 – and the fact that the polynomials Pk(x) := (−1)kDk[qk(x)f (x)]/f (x) are re-

lated to φk by Pk(x) = φk(x)

√
k!Eqk(X)

∏2k−2
j=k−1(1 − jδ) for all k ∈ {1,2, . . .}. Moreover, by

Lemma 2.2 we have that for any g ∈ Hn(X), the Fourier coefficients αk = Eφk(X)g(X) (of g

with respect to X) and the Fourier coefficients α
(n)
k := Eφk,n(Xn)g

(n)(Xn) of g(n) with respect
to Xn are related through

α
(n)
k =

√
(k + n)!

k!

∏k+2n−2
j=k+n−1(1 − jδ)

Eqn(X)
αk+n, k = 0,1,2, . . . ,

where Eqn(X) is given explicitly by (A.9). Finally, Theorem A.3 asserts that

Xn ∼ IP(μn; δn,βn, γn) with δn = δ

1 − 2nδ
≤ 0.

Hence, δn ≤ 0 guarantees that the corresponding orthonormal polynomial system {φk,n}∞k=0 is
complete in L2(R,Xn). Since g ∈ Hn(X), g(n) ∈ L2(R,Xn) and, by Parseval’s identity,

E
(
g(n)(Xn)

)2 =
∞∑

k=0

(
α

(n)
k

)2 = 1

Eqn(X)

∞∑
k=0

(k + n)!∏k+2n−2
j=k+n−1(1 − jδ)

k! α2
k+n

(thus, the series converges). Observing that

E
(
g(n)(Xn)

)2 = 1

Eqn(X)
Eqn(X)

(
g(n)(X)

)2
,

(3.4) is deduced and the proof is complete. �

We are now in a position to state and prove the main result of the paper.

Theorem 3.1. If X ∼ IP(μ; δ,β, γ ) with δ ≤ 0 and if g ∈ Hn(X) for some n ∈ {1,2, . . .} then

Varg(X) ≤
n∑

k=1

E
2qk(X)g(k)(X)

k!Eqk(X)
∏2k−2

j=k−1(1 − jδ)
(3.5)

+ Eqn(X)(g(n)(X))2 − (1/Eqn(X))E2qn(X)g(n)(X)

(n + 1)!∏2n−1
j=n (1 − jδ)

,

with equality if and only if g is a polynomial of degree at most n + 1.
In particular, if σ 2 = VarX and g is absolutely continuous with a.s. derivative g′ such that

Eq(X)(g′(X))2 < ∞ (i.e., g ∈ H1(X)) then

Varg(X) ≤
(

1 − 1

2(1 − δ)

)
1

σ 2
E

2q(X)g′(X) + 1

2(1 − δ)
Eq(X)

(
g′(X)

)2
, (3.6)

with equality if and only if g is a polynomial of degree at most two.
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Three examples of (3.6) are as follows:

Example 3.1. If X ∼ N(μ,σ 2) ≡ IP(μ;0,0, σ 2) then δ = 0, q(x) ≡ σ 2 and we obtain the in-
equality

Varg(X) ≤ 1
2σ 2

E
2g′(X) + 1

2σ 2
E

(
g′(X)

)2
, (3.7)

in which the equality holds if and only if g is a polynomial of degree at most two. Chernoff’s
upper bound, Varg(X) ≤ σ 2

E(g′(X))2, is strictly weaker than (3.7) since, obviously, E
2g′(X) ≤

E(g′(X))2, and the equality holds if and only if g is linear. It should be noted that σ 2
E

2g′(X) is,
actually, a lower bound for Varg(X); see, for example, [10].

Example 3.2. If X ∼ �(a,λ) ≡ IP(a/λ;0,1/λ,0) so that f (x) = λaxa−1e−λx/�(a), x > 0,
then δ = 0, q(x) = x/λ, σ 2 = a/λ2 and we obtain the inequality

Varg(X) ≤ 1

2a
E

2Xg′(X) + 1

2λ
EX

(
g′(X)

)2
, (3.8)

in which the equality holds if and only if g is a polynomial of degree at most two.

Example 3.3. If X ∼ B(a,b) ≡ IP( a
a+b

; −1
a+b

, 1
a+b

,0) then δ = −1
a+b

, q(x) = x(1−x)
a+b

, σ 2 =
ab

(a+b)2(a+b+1)
and we obtain the inequality

Varg(X) ≤ a + b + 2

2ab
E

2X(1 − X)g′(X) + 1

2(a + b + 1)
EX(1 − X)

(
g′(X)

)2
, (3.9)

in which the equality holds if and only if g is a polynomial of degree at most two. In the particular
case where a = b = 1, X = U is uniformly distributed over the interval (0,1) and (3.9) yields an
improvement of Polya’s inequality (see, e.g., [4]),∫ 1

0
g2(x)dx −

(∫ 1

0
g(x)dx

)2

≤ 1

2

∫ 1

0
x(1 − x)

(
g′(x)

)2 dx.

Indeed, for a = b = 1, (3.9) yields∫ 1

0
g2(x)dx −

(∫ 1

0
g(x)dx

)2

≤ 2

(∫ 1

0
x(1 − x)g′(x)dx

)2

+ 1

6

∫ 1

0
x(1 − x)

(
g′(x)

)2 dx,

and the upper bound is smaller than Polya’s bound because, by the Cauchy–Schwarz inequality,(∫ 1

0
x(1 − x)g′(x)dx

)2

≤
∫ 1

0
x(1 − x)dx

∫ 1

0
x(1 − x)

(
g′(x)

)2 dx

= 1

6

∫ 1

0
x(1 − x)

(
g′(x)

)2 dx.
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Remark 3.1. In [11,18,22] it was shown that Varg(X) ≤ Eq(X)(g′(X))2; the equality in this
Chernoff-type variance bound is attained only by linear functions g. Also, in [10,12,18,22] it
was shown that Varg(X) ≥ 1

σ 2 E
2q(X)g′(X), in which the equality characterizes again the linear

functions. We observe that the upper bound in (3.6) is a convex combination of the preceding
lower and upper bounds and, thus, smaller than the Chernoff-type upper bound, Eq(X)(g′(X))2.
Also, the last term in the upper bound (3.5) can be rewritten as

Eqn(X)(g(n)(X))2 − (1/Eqn(X))E2qn(X)g(n)(X)

(n + 1)!∏2n−1
j=n (1 − jδ)

= Eqn(X)

(n + 1)!∏2n−1
j=n (1 − jδ)

Varg(n)(Xn).

Thus, we can apply the Chernoff-type upper bound to Varg(n)(Xn), provided that g(n) ∈ H1(Xn).
Recall that g(n) ∈ H1(Xn) means that g(n) is absolutely continuous with a.s. derivative g(n+1)

such that Eqn(Xn)(g
(n+1)(Xn))

2 < ∞. Since Xn ∼ fn = qnf/Eqn(X), δ ≤ 0 and qn(x) =
q(x)/(1 − 2nδ), the preceding requirement is equivalent to

1

(1 − 2nδ)Eqn(X)
Eqn+1(X)

(
g(n+1)(X)

)2
< ∞;

thus, g(n) ∈ H1(Xn) if and only if g ∈ Hn+1(X). Therefore, if g ∈ Hn+1(X) then we have

Varg(n)(Xn) ≤ Eqn(Xn)
(
g(n+1)(Xn)

)2 = Eqn+1(X)(g(n+1)(X))2

(1 − 2nδ)Eqn(X)
,

with equality if and only if g(n) is linear, that is, g is a polynomial of degree at most n + 1. The
preceding inequality shows that for any g ∈ Hn+1(X),

Eqn(X)(g(n)(X))2 − (1/Eqn(X))E2qn(X)g(n)(X)

(n + 1)!∏2n−1
j=n (1 − jδ)

≤ Eqn+1(X)(g(n+1)(X))2

(n + 1)!∏2n
j=n(1 − jδ)

,

with equality only for polynomial g of degree at most n+ 1. Combining the upper bound in (3.5)
with the last displayed inequality, we obtain the weaker bound

Varg(X) ≤
n−1∑
k=1

E
2qk(X)g(k)(X)

k!Eqk(X)
∏2k−2

j=k−1(1 − jδ)
+ Eqn(X)(g(n)(X))2

n!∏2n−2
j=n−1(1 − jδ)

, (3.10)

which holds for any g ∈ Hn(X), and the equality is attained if and only if g is a polynomial of
degree at most n. For n = 1 this is the Chernoff-type variance bound. Also, for X ∼ B(a,b),
(3.10) has been shown by Wei and Zhang [25], using Jacobi polynomials.

Proof of Theorem 3.1. From (3.1) and (3.3),

Varg(X) −
n∑

k=1

E
2qk(X)g(k)(X)

k!Eqk(X)
∏2k−2

j=k−1(1 − jδ)
= α2

n+1 + α2
n+2 + · · · , (3.11)
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with αk given by (3.2). Also, from (3.3) with k = n,

1

Eqn(X)
E

2qn(X)g(n)(X) = n!
(

2n−2∏
j=n−1

(1 − jδ)

)
α2

n.

Thus, in view of (3.4),

Eqn(X)
(
g(n)(X)

)2 − 1

Eqn(X)
E

2qn(X)g(n)(X)

=
∞∑

k=n

k!∏k+n−2
j=k−1(1 − jδ)

(k − n)! α2
k − n!

(
2n−2∏

j=n−1

(1 − jδ)

)
α2

n =
∞∑

k=n+1

k!∏k+n−2
j=k−1(1 − jδ)

(k − n)! α2
k .

Therefore,

Eqn(X)(g(n)(X))2 − (1/Eqn(X))E2qn(X)g(n)(X)

(n + 1)!∏2n−1
j=n (1 − jδ)

=
∞∑

k=n+1

k!∏k+n−2
j=k−1(1 − jδ)

(k − n)!(n + 1)!∏2n−1
j=n (1 − jδ)

α2
k = α2

n+1 +
∞∑

k=n+2

λkα
2
k ,

where

λk := 1

n + 1

(
k

n

)∏k+n−2
j=k−1(1 − jδ)∏2n−1
j=n (1 − jδ)

, k = n + 2, n + 3, . . . .

The sequence {λk}∞k=n+2 is nondecreasing in k. Indeed, since δ ≤ 0, we have

1 ≤ 1 − δ ≤ 1 − 2δ ≤ 1 − 3δ ≤ · · ·
and thus, k �→ ∏k+n−2

j=k−1(1−jδ) is nondecreasing in k and positive (for each k the product contains
n positive factors). Also,

k �→
(

k

n

)
is, obviously, positive and nondecreasing in k. Thus, for every k ≥ n + 2,

λk ≥ λn+2 =
(

1 + n

2

)(
1 − nδ

1 − nδ

)
> 1,

because 1 + n/2 > 1 and 1 − nδ/(1 − nδ) ≥ 1 (since δ ≤ 0). It follows that

Eqn(X)(g(n)(X))2 − (1/Eqn(X))E2qn(X)g(n)(X)

(n + 1)!∏2n−1
j=n (1 − jδ)

≥ α2
n+1 + α2

n+2 + · · · , (3.12)
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with equality if and only if αn+2 = αn+3 = · · · = 0, that is, if and only if g is a polynomial of
degree at most n + 1. A combination of (3.11) and (3.12) completes the proof. �

Remark 3.2. The upper bound in (3.5) is meaningful (it is nonnegative and makes sense) even for
0 < δ < 1

2n−1 , in which case E|X|2n < ∞. Also, since xn+1 ∈ L2(R,X) if and only if δ < 1
2n+1 ,

it would be desirable to show the validity of (3.5) at least when 0 < δ < 1
2n+1 . For example,

we have tried, without success, to prove (3.6) when 0 < δ < 1
3 . In contrast to the correspond-

ing Chernoff-type bound, which can be shown directly (without Fourier expansions – see, e.g.,
[13]; cf. Lemma 2.1, above), it seems that the completeness of the corresponding orthonormal
polynomial system in L2(R,X) plays a crucial role in proving (3.6).

Appendix

Proposition A.1 ([2], Proposition 2.1). Let X ∼ IP(μ;q) and set (α,ω) := (ess inf(X),

ess sup(X)). Then, there is a version f of the density of X such that

(i) f (x) is strictly positive for x in (α,ω) and zero otherwise, that is, {x :f (x) > 0} = (α,ω);
(ii) f ∈ C∞(α,ω), that is, f has derivatives of any order in (α,ω);

(iii) X is a (usual) Pearson random variable supported in (α,ω), that is, f ′(x)/f (x) =
p1(x)/q(x), x ∈ (α,ω), where p1(x) = μ − x − q ′(x) is a polynomial of degree at most
one;

(iv) q(x) = δx2 + βx + γ > 0 for all x ∈ (α,ω);
(v) if α > −∞ then q(α) = 0 and, similarly, if ω < +∞ then q(ω) = 0;

(vi) for any θ, c ∈ R with θ �= 0, the random variable X̃ := θX + c ∼ IP(μ̃; q̃) with μ̃ =
θμ + c and q̃(x) = θ2q((x − c)/θ).

Lemma A.1 ([2], Corollary 2.2). Assume that X ∼ IP(μ; δ,β, γ ).

(i) If δ ≤ 0, then E|X|θ < ∞ for any θ ∈ [0,∞).
(ii) If δ > 0, then E|X|θ < ∞ for any θ ∈ [0,1 + 1/δ), while E|X|1+1/δ = ∞.

Lemma A.2 ([2], Lemma 2.1). If X ∼ IP(μ; δ,β, γ ) ≡ IP(μ;q) has support (α,ω) and
E|X|n < ∞ for some n ≥ 1 (equivalently, δ < 1/(n − 1)), then for any polynomial Qn−1 of
degree at most n − 1,

lim
x↗ω

q(x)f (x)Qn−1(x) = lim
x↘α

q(x)f (x)Qn−1(x) = 0. (A.1)

Theorem A.1 ([16], page 401; [6], pages 99–100; [15], page 295; [2], Theorem 4.1). Assume
that f is the density of a random variable X ∼ IP(μ;q) ≡ IP(μ; δ,β, γ ) with support (α,ω).
Then, the functions Pk : (α,ω) → R with

Pk(x) := (−1)k

f (x)

dk

dxk

[
qk(x)f (x)

]
, α < x < ω,k = 0,1,2, . . . (A.2)
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are (Rodrigues-type) polynomials with

deg(Pk) ≤ k and lead(Pk) =
2k−2∏

j=k−1

(1 − jδ) := ck(δ), k = 0,1,2, . . . , (A.3)

where lead(Pk) is the coefficient of xk in Pk(x). Here c0(δ) := 1, that is, an empty product should
be treated as one.

Theorem A.2 ([3], pages 515–516; [2], Theorem 5.1). Let X ∼ IP(μ; δ,β, γ ) ≡ IP(μ;q) with
density f and support (α,ω). Assume that X has 2k finite moments for some fixed k ∈ {1,2, . . .}.
Let g : (α,ω) → R be any function such that g ∈ Ck−1(α,ω), and assume that the function

g(k−1)(x) := dk−1

dxk−1
g(x)

is absolutely continuous in (α,ω) with a.s. derivative g(k). If Eqk(X)|g(k)(X)| < ∞ then
E|Pk(X)g(X)| < ∞, where Pk is the polynomial defined by (A.2) of Theorem A.1, and the fol-
lowing covariance identity holds:

EPk(X)g(X) = Eqk(X)g(k)(X). (A.4)

It should be noted that when we claim that h : (α,ω) → R is an absolutely continuous function
with a.s. derivative h′ we mean that there exists a Borel measurable function h′ : (α,ω) → R such
that h′ is integrable in every finite subinterval [x, y] of (α,ω), and∫ y

x

h′(t)dt = h(y) − h(x) for all compact intervals [x, y] ⊆ (α,ω).

Corollary A.1 ([3], equation (3.5), page 516; [2], Corollary 5.1). Let X ∼ IP(μ; δ,β, γ ) ≡
IP(μ;q). Assume that for some n ∈ {1,2, . . .}, E|X|2n < ∞ or, equivalently, δ < 1/(2n − 1).
Then, the polynomials defined by (A.2) of Theorem A.1 satisfy the orthogonality condition

E
[
Pk(X)Pm(X)

] = δk,mk!Eqk(X)

2k−2∏
j=k−1

(1 − jδ)

(A.5)
= δk,mk!ck(δ)Eqk(X), k,m ∈ {0,1, . . . , n},

where δk,m is Kronecker’s delta and where an empty product should be treated as one.

Remark A.1. The orthogonality of Pk and Pm, k �= m, k,m ∈ {0,1, . . . , n}, remains valid even
if δ ∈ [ 1

2n−1 , 1
2n−2 ); in this case, however, Pn /∈ L2(R,X) since lead(Pn) > 0 and E|X|2n = ∞.

Remark A.2. In view of Lemma A.1, the assumption E|X|2n < ∞ is equivalent to the condition
δ < 1

2n−1 . Therefore, for each k ∈ {1, . . . , n} and for all j ∈ {k −1, . . . ,2k −2} we have 1− jδ >
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0 because

{k − 1, . . . ,2k − 2} ⊆ {0,1, . . . ,2n − 2}.
Thus, ck(δ) > 0. Since P[q(X) > 0] = 1, deg(q) ≤ 2 and E|X|2n < ∞ we conclude that 0 <

Eqk(X) < ∞ for all k ∈ {0,1, . . . , n}. It follows that the set {φ0, φ1, . . . , φn} ⊂ L2(R,X), where

φk(x) := Pk(x)

(k!ck(δ)Eqk(X))1/2

(A.6)

= ((−1)k/f (x))(dk/dxk)[qk(x)f (x)]
(k!Eqk(X)

∏2k−2
j=k−1(1 − jδ))1/2

, k = 0,1, . . . , n,

is an orthonormal basis of all polynomials with degree at most n. By (A.3), the leading coefficient
of φk is

lead(φk) =
(∏2k−2

j=k−1(1 − jδ)

k!Eqk(X)

)1/2

=
(

ck(δ)

k!Eqk(X)

)1/2

> 0, k = 0,1, . . . , n. (A.7)

The orthonormal system {φk}nk=0 is characterized by the fact that deg(φk) = k and lead(φk) > 0
for each k.

Remark A.3. The identity (A.4) enables a convenient calculation of the Fourier coefficients of
any (smooth enough) function g with Varg(X) < ∞. More precisely, if X ∼ IP(μ; δ,β, γ ) ≡
IP(μ;q) and E|X|2n < ∞ for some n ≥ 1 then the Fourier coefficients of g, αk = Eφk(X)g(X),
are given by α0 = Eg(X) and

αk = Eqk(X)g(k)(X)

(k!ck(δ)Eqk(X))1/2
, k = 1,2, . . . , n, (A.8)

provided that g is smooth enough so that Eqk(X)|g(k)(X)| < ∞ for k ∈ {1,2, . . . , n}; cf. [3],
Theorem 5.1(a). Here ck(δ) is given by (A.3) and for any k ∈ {1, . . . , n} (see [2], Corollary 5.3)

Eqk(X) =
∏k−1

j=0(1 − 2jδ)∏k−1
j=0(1 − (2j + 1)δ)

k−1∏
j=0

q

(
μ + jβ

1 − 2jδ

)
. (A.9)

In the particular case where X ∼ IP(μ; δ,β, γ ) and δ ≤ 0 (i.e., if X is of Normal, Gamma or Beta-
type), it follows that E|X|n < ∞ for all n. Moreover, there exists an ε > 0 such that EetX < ∞
for |t | < ε (see types 1–3 of Table 2.1 in [2]). Hence, the polynomials {φk}∞k=0, given by (A.6)
(with n = ∞), form a complete orthonormal system in L2(R,X); see, for example, [3,7]. There-
fore, the Fourier coefficients are easily obtained for any smooth enough function g such that
Varg(X) < ∞ and Eqk(X)|g(k)(X)| < ∞ for all k ≥ 1. Indeed, in this case we have

αk = Eφk(X)g(X) = Eqk(X)g(k)(X)

(k!ck(δ)Eqk(X))1/2
, k = 0,1,2, . . . , (A.10)
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where Eqk(X) is as in (A.9). Thus, by Parseval’s identity, the variance of g equals to ([3], Theo-
rem 5.1(a))

Varg(X) =
∞∑

k=1

E
2qk(X)g(k)(X)

k!ck(δ)Eqk(X)
, (A.11)

with Eqk(X) given by (A.9) and ck(δ) by (A.3).

Theorem A.3 ([2], Theorem 5.2). Let X be a random variable with density f ∼ IP(μ;q) ≡
IP(μ; δ,β, γ ), supported in (α,ω). Furthermore, assume that E|X|2n+1 < ∞ (i.e., δ < 1

2n
) for

some n ∈ {0,1, . . .}. Define the random variable Xk with density fk given by

fk(x) := qk(x)f (x)

Eqk(X)
, α < x < ω,k = 0,1, . . . , n. (A.12)

Then, fk ∼ IP(μk;qk) with (the same) support (α,ω),

μk = μ + kβ

1 − 2kδ
and qk(x) = q(x)

1 − 2kδ
, α < x < ω,k = 0,1, . . . , n. (A.13)

Theorem A.4 ([2], Theorem 5.3; cf. [5], page 207). If X ∼ IP(μ; δ,β, γ ) with support (α,ω)

and E|X|2n < ∞ for some n ≥ 1 (i.e., δ < 1
2n−1 ), then for any m ∈ {1,2, . . . , n},

P
(m)
k+m(x) = C

(m)
k (δ)Pk,m(x), α < x < ω,k = 0,1, . . . , n − m, (A.14)

where

C
(m)
k (δ) := (k + m)!

k! (1 − 2mδ)k
k+2m−2∏

j=k+m−1

(1 − jδ). (A.15)

Here, Pk are the polynomials given by (A.2) associated with f , and Pk,m are the corresponding

Rodrigues polynomials of (A.2), associated with the density fm(x) = qm(x)f (x)
Eqm(X)

, α < x < ω, of
the random variable Xm ∼ IP(μm;qm) defined in Theorem A.3, that is,

Pk,m(x) := (−1)k

fm(x)

dk

dxk

[
qk
m(x)fm(x)

]
(A.16)

= (−1)k

(1 − 2mδ)kqm(x)f (x)

dk

dxk

[
qk+m(x)f (x)

]
, α < x < ω,k = 0,1, . . . , n − m.

Theorem A.5 ([2], Corollary 5.4). Let X ∼ IP(μ; δ,β, γ ) ≡ IP(μ;q) and assume that
E|X|2n < ∞ for some fixed n ≥ 1 (i.e., δ < 1

2n−1 ). Let {φk}nk=0 be the orthonormal polynomials
associated with X, with lead(φk) > 0; see (A.6), (A.7). Fix a number m ∈ {0,1, . . . , n}, and con-
sider the corresponding orthonormal polynomials {φk,m}n−m

k=0 , with lead(φk,m) > 0, associated
with Xm ∼ fm = qmf/Eqm(X). Then,

φ
(m)
k+m(x) = ν

(m)
k φk,m(x), k = 0,1, . . . , n − m, (A.17)
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where the constants ν
(m)
k = ν

(m)
k (μ;q) > 0 are given by

ν
(m)
k = ν

(m)
k (μ;q) :=

{
((k + m)!/k!)∏k+2m−2

j=k+m−1(1 − jδ)

Eqm(X)

}1/2

, (A.18)

with Eqm(X) as in (A.9) with m in place of k. In particular, setting σ 2 = VarX = Eq(X) we
have

φ′
k+1(x) =

√
(k + 1)(1 − kδ)

σ
φk,1(x)

(A.19)

=
√

(k + 1)(1 − δ)(1 − kδ)

q(μ)
φk,1(x), k = 0,1, . . . , n − 1.
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