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Abstract

The random variablesX1, X2, . . . , Xn are said to be totally negatively dependent (TND)
if and only if the random variables Xi and

∑
j �=i Xj are negatively quadrant dependent

for all i. Our main result provides, for TND 0–1 indicators X1, X2, . . . , Xn with
P[Xi = 1] = pi = 1−P[Xi = 0], an upper bound for the total variation distance between∑n
i=1Xi and a Poisson random variable with mean λ ≥ ∑n

i=1 pi . An application
to a generalized birthday problem is considered and, moreover, some related results
concerning the existence of monotone couplings are discussed.
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1. Introduction and a brief history of the Chen–Stein method

One of the most useful topics in applied probability is concerned with the Poisson
approximation of a sum of many dependent 0–1 indicators with small means—the generalized
Poisson law of small numbers. Perhaps the most accurate results in that direction are obtained
by the well-known Chen–Stein method, a method that was firstly obtained by Stein (1972)
for the normal approximation of sums of dependent random variables, and later extended
to the Poisson approximation by Chen (1975). Since the Chen–Stein method was found to
be extremely fruitful, it has become one of the most developed and effective approaches for
Poisson approximation in the last 25 years, so that a complete review of related papers seems
to be rather difficult. A collection of most results of this kind is contained in Barbour et al.
(1992). Our main interest, however, focuses on the following classical result, which presents an
upper bound for the total variation distance in the very important situation where the indicators
X1, X2, . . . , Xn are negatively related (NR). For completeness, we firstly give the definition of
NR indicators (see Barbour et al. (1992, Definition 2.1.1)).

Definition 1.1. Indicator random variables X1, X2, . . . , Xn are said to be negatively related
(NR) if, for each i ∈ {1, 2, . . . , n}, there exist random variables Y1, . . . , Yi−1, Yi+1, . . . , Yn
(depending on i) such that

(a) (Y1, . . . , Yi−1, Yi+1, . . . , Yn)
� D= (X1, . . . , Xi−1, Xi+1, . . . , Xn)

� given that Xi = 1
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and

(b) with probability 1, Y1 ≤ X1, . . . , Yi−1 ≤ Xi−1, Yi+1 ≤ Xi+1, . . . , Yn ≤ Xn.

In the dual case where (b) holds with the inequalities reversed for all i, we say that the
indicators X1, X2, . . . , Xn are positively related. Since this notion, however, is not related to
the results of the present article, it will not be used in the sequel.

The classical Chen–Stein bound for NR indicators is presented in the following theorem (see
Barbour et al. (1992, Corollary 2.C.2)).

Theorem 1.1. If the indicatorsX1, X2, . . . , Xn are NR with P[Xi = 1] = pi = 1−P[Xi = 0]
andW = ∑n

i=1Xi , then

dTV(W,Pµ) ≤ (1 − e−µ)
(
1 − σ 2

µ

)
, (1.1)

where µ = ∑n
i=1 pi = E[W ], σ 2 = var[W ] and Pµ denotes a Poisson random variable with

mean µ.

We note that here and elsewhere in this article,

dTV(X, Y ) = max{|P[X ∈ A] − P[Y ∈ A]|; A ⊆ {0, 1, . . . }} (1.2)

denotes the total variation distance between the nonnegative integer-valued random variables
X and Y, and Pθ denotes a Poisson random variable with mean θ ≥ 0.

The first step for proving (1.1) hinges on the derivation of a solution g = gλ,A for the
Chen–Stein difference equation

λg(x + 1)− xg(x) = 1(x ∈ A)− P[Pλ ∈ A], x = 0, 1, . . . , (1.3)

namely,

gλ,A(x) = (x − 1)!
λx

x−1∑
k=0

[1(k ∈ A)− P[Pλ ∈ A]]λ
k

k! , x = 1, 2, . . .

(the value of gλ,A(0) is arbitrary and it can be taken to be 0). For this solution, Barbour and
Eagleson (1983) obtained the (correct order) bounds

sup
x,A

|gλ,A(x)| ≤ min

{
1,

(
2

e

)1/2
λ−1/2

}
, sup

x,A

|�gλ,A(x)| ≤ λ−1(1 − e−λ), (1.4)

where the suprema are taken over x ∈ {0, 1, . . . } and A ⊆ {0, 1, . . . }, and �g(x) = g(x + 1)
−g(x) denotes the forward difference of any function g : {0, 1, . . . } → R (for the first estimate
see Barbour et al. (1992, Remark 1.1.2)). Since, by (1.3) with λ = µ,

|P[W ∈ A] − P[Pµ ∈ A]| = |E[µgµ,A(W + 1)−Wgµ,A(W)]|,
the remainder of the proof is based on a suitable coupling W̃ = ∑n

i=1 X̃i of W = ∑n
i=1Xi ,

makingXi and X̃i as close as possible for all i. It turns out that such useful couplings exist when
the Xi are NR; see Definition 1.1. This is the coupling approach, which was in fact introduced
by Serfling (1975); see also Chen (1998). The above coupling approach is used extensively by
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Barbour et al. (1992), while the local approach to the Chen–Stein method is widely discussed
by Arratia et al. (1989), (1990).

Our main interest is in extending (1.1) to a wider (than NR) class of indicators. It should be
noted that the approach given here is closely related to the Chen–Stein method, because it is
based on the solution of the Chen–Stein equation (1.3). Nevertheless, our derivation suggests
an alternative coupling method that may be of some interest in other situations as well.

It should also be noted that the connection of the present approach with some previous
results (using the so-called w-functions) is strong. In particular, a similar application of the
alternative (coupling) method to the normal approximation was given by Cacoullos et al. (1994)
and extended by Papathanasiou and Utev (1995) to the Poisson case. Neither approach is
complete, however, for the following three reasons: (i) the wX-function (corresponding to the
nondegenerate random variableX with finite variance) can be defined only when the support of
X is a finite or infinite interval (in the case of a nonnegative integer-valuedX, this corresponds
to the restriction that the set {x : P[X = x] > 0} is of the form {0, 1, . . . , b} with b ∈
{1, 2, . . . } ∪ {+∞}), (ii) in order to compute the bounds we have to know the wX-function,
which in turn characterizes the distribution ofX and (iii) although some results can be obtained
when the summands are independent, it seems rather difficult to obtain similar results for the
dependent case.

In order to overcome the difficulties of the first two restrictions when X admits a density,
Papadatos and Papathanasiou (2001) defined a new random variable X∗, which is similar to
the so-called zero-bias transformation independently defined by Goldstein and Reinert (1997).
It turns out that this approach is fruitful not only for the classical local central limit theorem
(CLT) with i.i.d. summands (Cacoullos et al. (2002)), but also for some dependent structures
(simple random sampling; Goldstein and Reinert (1997)).

Furthermore, several generalizations of the alternative method to distributions other than the
normal and the Poisson were obtained by Papadatos and Papathanasiou (1995), and a further
application to the rate of convergence in the classical CLT (with respect to the total variation
distance) was given by Cacoullos et al. (1997); moreover, the alternativemethod for the Poisson
approximation was also applied byMajsnerowska (1998) to some specific distributions (such as
binomial, negative binomial and hypergeometric), yielding accurate bounds, but it seems that
the results depend heavily on the specific distributional assumptions. The above applications
(using the w-functions) have the disadvantages described above. Therefore, the novelty of our
results is in the unification of the alternative method for the Poisson approximation, and its
application to some dependent situations; the bound (3.6) in combination with Theorem 3.1
below shows that the present approach may produce successful bounds.

The paper is organized as follows. In Section 2, we present a general unified upper bound,
valid for any nonnegative integer-valued random variable X with finite variance. In fact,
this kind of bound has already been studied by Papathanasiou and Utev (1995), Papadatos and
Papathanasiou (1995) andMajsnerowska (1998) in some restricted cases (among them, themost
general form is given by the last author); however, for our general approach, we need the unified
expression givenbyTheorem2.1 below, and thereforeweprovide a brief proof for completeness.
Section 3 contains our main results. We introduce a notion of negative dependence (totally
negative dependence (TND)) and we show (Theorem 3.1) that NR indicators are always TND,
implying that the class of TND indicators is wider than the class of NR indicators. Moreover,
under the TND assumption, we show that the bound (2.2) takes a very pleasant form (actually,
it is the same as that of Theorem 1.1; see Theorem 3.2 below). In Section 4, we apply the
results of Section 3 to a generalized birthday problem. Finally, in Section 5, we present some
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equivalent conditions for the existence of monotone, weak monotone and very weak monotone
couplings of random vectors, implying a strong relationship between the TND property and
some existing results.

2. A unified upper bound for Poisson approximation

Let X be a nonnegative integer-valued random variable with finite variance. It will be
convenient to denote by F0 the class of all such random variables. Let also F1 = {X ∈ F0 :
var[X] > 0} be the subclass of nondegenerate random variables in F0 and F2 = {X ∈ F1 :
P[X = x] > 0 for some x implies that P[X = y] > 0 for all y = 0, . . . , x} be the subclass of
those random variables in F1 having integer interval supports containing the origin. For the
above families of random variables, some useful functions can be defined as follows.

Definition 2.1. Assume that X lies in F0 and has mean µ = E[X], variance σ 2 = var[X] and
probability function pX(x) = P[X = x], x ∈ {0, 1, . . . }.
(a) The function hX is defined by

hX(x) =
x∑
k=0

(µ− k)pX(k), x = 0, 1, . . . .

(b) If, furthermore, X ∈ F1, then the function pX∗ is defined by

pX∗(x) = hX(x)

σ 2 , x = 0, 1, . . . ,

with hX as in (a).

(c) Finally, if X lies in F2, then the function wX is defined by

wX(x) = pX∗(x)

pX(x)
for x in the support of X

(and it is undefined outside this integer interval support), where pX∗ is as in (b).

We note that the above definition (c) for thew-function in the discrete case has been studied
by Cacoullos and Papathanasiou (1989), the definition of pX∗ in (b) is the discrete analogue of
the zero-bias transformationX∗ (cf.Goldstein andReinert (1997), Papadatos andPapathanasiou
(2001)) and that the definition of hX in (a) is presented here only for technical reasons, in order
to include the degenerate nonnegative integer-valued random variables.

Using the above terminology, the general Stein-type covariance identity can be restated as
follows.

Lemma 2.1. (Cacoullos and Papathanasiou (1989).) If X lies in F0, then, with the notation of
Definition 2.1,

cov[X, g(X)] =
∞∑
x=0

hX(x)�g(x), (2.1)

for any function g : {0, 1, . . . } → R for which the series is absolutely convergent.

By (2.1) it follows immediately that the nonnegative unimodal function hX(x) sums up to
σ 2 = var[X], and thus pX∗ is a unimodal probability function, defining the discrete zero-bias
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transformation X∗ of X (provided that X ∈ F1). Moreover, the covariance identity takes the
equivalent forms:

cov[X, g(X)] =
{
σ 2 E[�g(X∗)] for X ∈ F1,

σ 2 E[wX(X)�g(X)] for X ∈ F2.

In the most interesting case where X
D= Pλ (with µ = σ 2 = λ), it follows that either hX ≡ 0

(when λ = 0) or X∗ D= X and wX ≡ 1 (when λ > 0), and in both cases (2.1) yields the
Stein identity for the Poisson law, i.e. E[(X − λ)g(X)] = cov[X, g(X)] = λE[�g(X)]; this
particular identity (which also characterizes the Poisson law) entails the fundamental Chen–
Stein equation (1.3).

The unified upper bound for the Poisson approximation is stated in the following theorem.

Theorem 2.1. (Cf. Papathanasiou and Utev (1995), Majsnerowska (1998).) If X ∈ F0, then,
under the notation of Definition 2.1,

dTV(X,Pλ) ≤ λ−1(1 − e−λ)
∞∑
x=0

|λpX(x)− hX(x)| + min

{
1,
(2/e)1/2

λ1/2

}
|µ− λ|, (2.2)

where λ−1(1 − e−λ) and min{1, (2/e)1/2λ−1/2} is taken to be 1 when λ = 0.

Proof. For λ = 0, the upper bound in (2.2) becomes µ + σ 2 ≥ µ. In this case, however,
dTV(X,P0) = P[X ≥ 1] ≤ µ, proving the assertion. In any other case, the desired result
follows on taking expectations with respect to X in (1.3) and using the identity (2.1) with g =
gλ,A (a bounded function because of (1.4)) which, taking into account (1.4), yields the desired
result (the arguments needed for a detailed proof can be found in Papadatos and Papathanasiou
(1995, Theorem 3.1) or Majsnerowska (1998, Theorem 2)).

The above unified upper bound can be rewritten in a simpler form when X satisfies some
additional assumptions. In particular, if X ∈ F1 and σ 2 = λ, then (2.2) takes the form

dTV(X,Pσ 2) ≤ (1 − e−σ 2
)

∞∑
x=0

|pX(x)− pX∗(x)| + min

{
1,
(2/e)1/2

σ

}
|µ− σ 2|

= 2(1 − e−σ 2
)dTV(X,X

∗)+ min

{
1,
(2/e)1/2

σ

}
|µ− σ 2|,

showing that the total variation distance betweenX and its zero-bias transformationX∗ provides
an upper estimate for the total variation distance between X and Pσ 2 (provided that µ and σ 2

are close to each other); a similar result holds for the normal approximation. On the other hand,
if X ∈ F2, then (2.2) yields the known upper bound (Papadatos and Papathanasiou (1995),
Majsnerowska (1998))

dTV(X,Pλ) ≤ λ−1(1 − e−λ)E |λ− σ 2wX(X)| + min

{
1,
(2/e)1/2

λ1/2

}
|µ− λ|.

Our experience with the above kind of bounds leads us to the following: although the estimates
are often accurate, the bounds are difficult to use inmost interesting situations (with the possible
exception of the case where X is a sum of independent random variables; cf. Papathanasiou
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and Utev (1995)), because we have to evaluate the function hX (equivalently, the distribution
ofX∗ or the wX-function), which usually happens to be intractable. Therefore, except in some
special cases (where the distribution of X is completely known) the bound (2.2) is only of
theoretical interest. The purpose of the next section (which contains our main results) is to
carry the information contained in the bound (2.2) to a particular interesting case where the
random variableX presents a sum of totally negatively dependent indicators (see Definition 3.1
below).

3. A bound for the sum of totally negatively dependent indicators

In the sequel we shall use the following notion.

Definition 3.1. Random variables X1, X2, . . . , Xn (n ≥ 2) are said to be totally negatively
dependent (TND) if, for all i = 1, 2, . . . , n, the random variables Xi and X(i) = ∑

j �=i Xj are
negatively quadrant dependent (NQD).

We see that the TND property is defined via the NQD property, introduced by Lehmann
(1966). Specifically, the random variables X, Y are defined to be NQD if

cov[f (X), g(Y )] ≤ 0 (3.1)

for all nondecreasing functions f, g : R → R for which the covariance is finite (note that it
suffices to test (3.1) only for nondecreasing indicators f, g : R → {0, 1}). Obviously, the NQD
and TND properties coincide when n = 2; on the other hand, independent random variables are
TND for all n ≥ 2 (thus, it will be convenient to define a single random variable X1 as TND).

It should be noted that a notion similar to TND was introduced recently by Boutsikas and
Koutras (2000). Specifically, theydefined the randomvariablesX1, X2, . . . , Xn to be negatively
cumulative dependent (NCD) if, for all i ≥ 2, the random variables Xi and Si−1 = ∑

j<i Xj
are NQD.Although the definitions of TND andNCDdo coincide for n = 2, it will be shown that
for n ≥ 3 there exist TND 0–1 indicators that are not NCD (see Remark 3.1 below), implying
that the NCD class does not contain the TND class. It is more important, however, that NR
indicators are always TND, showing that the class of TND indicators is wider than that of NR
indicators.

Theorem 3.1. (a) If the 0–1 indicators X1, X2, . . . , Xn are NR then they are TND.

(b) For n ≥ 3, there exist n TND 0–1 indicators that are not NR.

(c) For exchangeable 0–1 indicators, the TND and NR properties are equivalent.

Proof. (a) We firstly show that X1 and X(1) = X2 + · · · + Xn are NQD. To this end, it
is enough to test (3.1) with X = X1 and Y = X(1) for nondecreasing f, g : R → {0, 1}.
Since X1 ∈ {0, 1} with probability 1, the case f (0) = f (1) trivially yields equality in (3.1).
Thus, it suffices to show that, for all nondecreasing g : R → {0, 1},

cov[X1, g(X
(1))] = E{X1[E[g(X(1)) | X1] − E g(X(1))]} = E[h(X1)] ≤ 0, (3.2)

where
h(x) = x[E[g(X2 + · · · +Xn) | X1 = x] − E g(X2 + · · · +Xn)].

Obviously h(0) = 0. On the other hand, by the NR property of X1, X2, . . . , Xn it follows that
there exist random variables Y2, . . . , Yn satisfying (a) and (b) of Definition 1.1 (with i = 1).
This shows that

h(1) = E[g(X(1)) | X1 = 1] − E g(X(1)) = E[g(Y2 + · · · + Yn)− g(X(1))] ≤ 0
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with probability 1, where the equality follows from Definition 1.1(a) and the inequality from
(b) and the fact that g is nondecreasing. This shows that h(X1) ≤ 0 with probability 1, and
thus (3.2) follows. The general case (that Xi and X(i) are NQD) can be proved similarly.

(b) Consider the indicators X1, X2, X3, uniformly distributed over

S = {(0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.
It is easily seen that X1, X2, X3 are TND. Since, however, cov[X1, X2] = 1

25 > 0, they are
not NR. This proves the assertion for n = 3, while for any n > 3 it suffices to consider the
indicators X1, X2, X3, 1, . . . , 1, with X1, X2, X3 as above.

(c) Because of (a), it suffices to prove that if the 0–1TND indicatorsX1, X2, . . . , Xn (n ≥ 2) are
exchangeable, then they are NR.Without loss of generality, wemay assume that P[Xi = 1] > 0
for all i. Using a result of Strassen (1965) (see also Preston (1974, Proposition 2), Barbour
et al. (1992, Theorem 2.D)), it follows that the NR property is equivalent to the fact that, for all
i = 1, . . . , n,

E[φ(X1, . . . , Xi−1, Xi+1, . . . , Xn) | Xi = 1] ≤ E[φ(X1, . . . , Xi−1, Xi+1, . . . , Xn)]
for any component-wise nondecreasing test function φ : R

n−1 → {0, 1}. By the exchange-
ability ofX1, X2, . . . , Xn, it follows that, for any such φ, there exists a nondecreasing function
g : R → {0, 1} such that

φ(X1, . . . , Xi−1, Xi+1, . . . , Xn) = g(X(i)) with probability 1,

where X(i) = X1 + · · · + Xi−1 + Xi+1 + · · · + Xn. Therefore, assuming X1, X2, . . . , Xn to
be TND, it follows that

E[φ(X1, . . . , Xi−1, Xi+1, . . . , Xn) | Xi = 1] = E[g(X(i)) | Xi = 1]
≤ E[g(X(i))]
= E[φ(X1, . . . , Xi−1, Xi+1, . . . , Xn)]

(the inequality is a consequence of the NQD property of Xi and X(i) and the fact that g is
nondecreasing), proving the assertion.

Remark 3.1. It can easily be verified that, for n = 2, the NR and TND notions do coincide
for 0–1 indicators X1, X2 (they also coincide with the NCD and NQD notions, stated above).
For n ≥ 3, however, there exist TND 0–1 indicators that are not NCD, e.g. the TND indicators
X1, X2, X3, 1, . . . , 1, with X1, X2, X3 defined in the proof of Theorem 3.1(b), are not NCD
because X2 and S1 = X1 are positively correlated and thus they are not NQD (nevertheless,
X3, X2, X1, 1, . . . , 1 are NCD). As a conclusion, the main difference between TND and NCD
notions is that the former is symmetric in its arguments, in contrast to the latter.

We also note that negatively associated random variables X1, X2, . . . , Xn are TND, as can
be readily shown from the definition due to Joag-Dev and Proschan (1983), stated below for
completeness.

Definition 3.2. The randomvariablesX1, X2, . . . , Xn are said to be negatively associated (NA)
if, for all nonempty subsets A,B of {1, . . . , n} with AB = ∅ and A ∪ B = {1, . . . , n} and all
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component-wise nondecreasing functions f : R
|A| → R and g : R

|B| → R (where |C| denotes
the cardinal number of a set C),

cov[f (Xi; i ∈ A), g(Xj ; j ∈ B)] ≤ 0, (3.3)

provided that the covariance is finite.

Once again, it suffices to verify (3.3) only for nondecreasing 0–1 indicators f, g. As a general
observation, the notions NA, NQD, TND and NCD coincide for n = 2 (and they are equivalent
to NR, when we consider the 0–1 indicatorsX1, X2). However, for n ≥ 3, the strictly restricted
class is that of NA.

We next prove the following basic lemma satisfied by TND indicators.

Lemma 3.1. Assume that X1, X2, . . . , Xn are TND 0–1 indicators with P[X1 = 1] = pi =
1 − P[Xi = 0], i = 1, 2, . . . , n, and let W = ∑n

i=1Xi and µ = E[W ]. Then, for any
nondecreasing function g,

E[Wg(W)] ≤ µE[g(1 +W)]. (3.4)

Proof. First observe that W has bounded support, and thus the expectations in (3.4) are
finite. Since, by the assumptions, the random variables Xi and X(i) = W − Xi are NQD for
all i, taking into account the fact thatW ≤ 1 +X(i) ≤ 1 +W with probability 1, we have

E[Xig(W)] ≤ E[Xig(1 +X(i))] ≤ pi E[g(1 +X(i))] ≤ pi E[g(1 +W)],
where the first and third inequalities follow because g is nondecreasing and the second because
Xi and X(i) are NQD. Adding for i = 1, . . . , n, we get (3.4).

Corollary 3.1. Under the terminology of Definition 2.1 and the assumptions of Lemma 3.1,

hW(x) ≤ µpW(x), x = 0, 1, . . . , (3.5)

wherepW is the probability function ofW (which lies inF0) andhW is given byDefinition 2.1(a).

Proof. For all x ∈ {0, 1, . . . }, we have

hW(x) =
∞∑

k=x+1

(k − µ)pW(k)

= E[(W − µ)1(W ≥ x + 1)]
= E[W1(W ≥ x + 1)] − µP[W ≥ x + 1]
≤ µP[W + 1 ≥ x + 1] − µP[W ≥ x + 1]
= µP[W = x],

where for the inequality we applied (3.4) to the nondecreasing function g(w) = 1(w ≥ x+ 1).

We are now in a position to state and prove our main result for TND 0–1 indicators.

Theorem 3.2. Let X1, X2, . . . , Xn be TND 0–1 indicators and setW = ∑n
i=1Xi , µ = E[W ]

and σ 2 = var[W ]. Then, for any λ ≥ µ,

dTV(W,Pλ) ≤ (1 − e−λ)
(
1 − σ 2

λ

)
+ min

{
1,
(2/e)1/2

λ1/2

}
(λ− µ), (3.6)

where for λ = µ = 0 the upper bound should be taken to be 0.



Poisson approximation for a sum of dependent indicators 617

Proof. From (2.2) we have that, for all λ ≥ 0,

dTV(W,Pλ) ≤ λ−1(1 − e−λ)
∞∑
x=0

|λpW(x)− hW(x)| + min

{
1,
(2/e)1/2

λ1/2

}
|λ− µ|.

If we take λ ≥ µ, then hW ≤ λpW by (3.5), all the absolute value bars can be removed from the
above expression, and (3.6) follows since

∑∞
x=0 hW(x) = var[W ] = σ 2 from the covariance

identity (2.1).

Remark 3.2. (a) For λ = µ, the upper bound in (3.6) is the same as that of Theorem 1.1;
therefore, as was already noted, Theorem 3.2 provides an extension of the classical Chen–Stein
bound to a wider class of 0–1 indicators—the TND class.

(b) Although, under the TND assumption, some pairs Xi,Xj may be positively correlated
(see the proof of Theorem 3.1(b)), the bound (3.6) shows that the inequality E[W ] ≥ var[W ]
(with strict inequality unless X1 = · · · = Xn = 0) holds for TND 0–1 indicators.

(c) Since for all µ and σ 2 satisfying 0 < σ 2 < µ, the three functions 1 − e−λ, 1 − σ 2/λ and
min{1, (2/e)1/2/λ1/2}(λ− µ) are strictly increasing in λ ≥ µ and positive for λ ∈ (µ,∞), it
follows that the right-hand side of (3.6) is strictly increasing in λ ≥ µ. Thus, the best estimate
in (3.6) is given for λ = µ, in which case the bound simplifies to (1.1). In most applications,
however, the distribution of W = Wn depends on the sample size n (and its mean µ = µn
and variance σ 2 = σ 2

n are functions of n), so that it is more natural to consider the distance
between Wn and its constant Poisson limit Pλ (provided that µn ↑ λ and dTV(Wn,Pλ) → 0
as n → ∞; see Section 4) rather than considering the moving ‘limit’ Pµn . Therefore, if we
are interested in bounding the distance between W and Pλ (with E[W ] = µ < λ), it is easily
verified that the upper estimate (3.6) is strictly better than the corresponding one which is
commonly used in similar situations, namely, the estimate obtained by using first the triangular
inequality dTV(W,Pλ) ≤ dTV(W,Pµ)+dTV(Pµ,Pλ) and next the estimates (3.6) with λ = µ

and
dTV(Pµ,Pλ) = dTV(Pλ,Pµ) ≤ (1 − e−λ + min{λ, (2λ/e)1/2})

(
1 − µ

λ

)
(3.7)

(which is the minimum of the two estimates obtained fromTheorem 2.1 on taking firstX = Pµ

and next interchanging the roles of µ and λ). For this reason, we presented the wide family of
bounds (3.6) (λ ≥ µ) instead of giving the single estimate (1.1).

4. Application to a generalized birthday problem

Assume that, for some fixed c ∈ {2, 3, . . . }, mn = �tn1−1/c� balls (persons) are randomly
placed into n urns (the possible, equally likely, dates of birth; usually n = 365), where t > 0
is a constant (which is considered for practical reasons, i.e. in order to ensure that, for all fixed
n and c, any given number of m balls can be expressed in the above form m = mn) and �x�
denotes the integer part of x. If Wn presents the number of urns with at least c balls, then
Henze (1998) proved that, as n → ∞, Wn converges to Pλ with λ = tc/c!. As an immediate
application for T (k)n,c , the number of balls needed until for the first time exactly k urns contain
at least c balls, Henze (1998) showed that n−(c−1)(T

(k)
n,c )

c/c! converges to a limiting Erlang
distribution, as n → ∞, with parameter k (standard exponential for k = 1).

Since the above generalized birthday problem, however, lies in the extremely useful category
of occupancy models, more general results can be found in several previous works such as
Arratia et al. (1989, Example 2) and Kolchin et al. (1978, Chapter III, Section 3, Theorem 1).
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Moreover, in Barbour et al. (1992, Chapter 6, Corollary 6.C.1) it is shown that, in order to have
a Poisson limit for Wn, it suffices to choose mn = tnn

1−1/c where tn → t > 0 as n → ∞
(observe that Henze’s choice satisfies this condition), in which case

dTV(Wn,Pµn) = O(n−(1−1/c)) as n → ∞, (4.1)

where µn = E[Wn] (in fact, the order n−(1−1/c) was shown to hold for the much wider class of
urns with unequal uniformly small probabilities satisfying some regularity conditions).

It seems, however, that all the preceding results about the rate of convergence are concerned
with dTV(Wn,Pµn) rather than the more natural dTV(Wn,Pλ), with λ = tc/c!; thus, a conver-
gence rate for the latter may be of some interest. With the help of Theorem 3.2 we can easily
show the following result.

Theorem 4.1. For fixed c ∈ {2, 3, . . . } and t > 0, let mn = �tn1−1/c� be the number of balls
randomly placed into n equally likely urns andWn be the number of urns that contain at least
c balls. Then we have

dTV(Wn,Pλ) ≤ O(n−1/c) as n → ∞, (4.2)

where λ = tc/c!.
For the proof of Theorem 4.1, we shall make use of the following, very particular, cases of the

well-known identities expressing the tail probabilities of a binomial and a trinomial distribution
in terms of incomplete beta and Dirichlet integrals respectively (see Olkin and Sobel (1965),
Henze (1998)).

Lemma 4.1. If Y1, Y2 follow a trinomial distribution with m trials and probabilities 1/n and
1/n (n > 2), then, for any c ∈ {1, . . . , �m/2�},

P[Y1 ≥ c] = m!
c! (m− c)!

∫ 1/n

0
(1 − u)m−c duc, (4.3)

P[Y1 ≥ c, Y2 ≥ c] = m!
(c!)2(m− 2c)!

∫ 1/n

0

∫ 1/n

0
(1 − u− v)m−2c duc dvc. (4.4)

Proof of Theorem 4.1. Since n,mn → ∞, we may assume that n ≥ 3 and mn ≥ 2c. Let
Yi = Y

(n)
i , i = 1, . . . , n, be the number of balls contained in the urn i, and observe that

Wn =
n∑
i=1

1(Yi ≥ c) =
n∑
i=1

Xi,

where the Xi = X
(n)
i = 1(Yi ≥ c) are 0–1 indicators which are nondecreasing functions of

the NA random variables Y1, Y2, . . . , Yn (because every multinomial random vector consists of
NA random variables). Since each Xi is a function of Yi alone, it follows that X1, X2, . . . , Xn
are also NA, and thus NR and TND. Therefore, both Theorems 1.1 and 3.2 could equally be
applied to Wn. However, in the remainder of the proof we shall use Theorem 3.2, because
we are interested in the constant limit Pλ (see Remark 3.2(c)). By the exchangeability of
X1, X2, . . . , Xn, it follows that

µn = E[Wn] = nE[X1] = nP[X1 = 1] = nP[Y1 ≥ c] = npn
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with

pn = P[Y1 ≥ c] =
mn∑
j=c

mn!
j ! (mn − j)!

(
1

n

)j(
1 − 1

n

)mn−j
,

and thus by (4.3) we get

µn = npn = n(mn!)
c! (mn − c)!

∫ 1/n

0
(1 − u)mn−c duc. (4.5)

On the other hand,

σ 2
n = var[Wn] = n var[X1] + n(n− 1) cov[X1, X2]

= npn(1 − pn)+ n(n− 1)(qn − p2
n)

= µn − µ2
n + n(n− 1)qn

with

qn = E[X1X2] = P[X1 = 1, X2 = 1]
= P[Y1 ≥ c, Y2 ≥ c]

=
mn−c∑
j=c

mn−j∑
k=c

mn!
j ! k! (mn − j − k)!

(
1

n

)j+k(
1 − 2

n

)mn−j−k
;

therefore, (4.4) yields

σ 2
n − µn + µ2

n = n(n− 1)(mn!)
(c!)2(mn − 2c)!

∫ 1/n

0

∫ 1/n

0
(1 − u− v)mn−2c duc dvc, (4.6)

with µn given by (4.5). Using the obvious inequalities mn ≤ tn1−1/c, mn!/(mn − c)! < mcn ≤
tcnc−1 and (1 − u)mn−c < 1, we conclude from (4.5) that

µn <
tc

c! = λ, (4.7)

which shows that we can apply Theorem 3.2 for this particular value of λ. On the other hand,
since σ 2

n < µn < λ by the TND property of X1, X2, . . . , Xn (see Remark 3.2(b)), the bound
(3.6) yields the estimate

dTV(Wn,Pλ) ≤ Bλ(λ− σ 2
n )+ Aλ(λ− µn) = O(λ− σ 2

n ) as n → ∞, (4.8)

where Aλ, Bλ are positive constants depending only on λ = tc/c! > 0 (in fact, Bλ =
λ−1(1 − e−λ) and Aλ = min{1, (2/e)1/2/λ1/2} are given in (1.4)). Therefore, for the proof of
(4.2), it suffices to verify that

λ− σ 2
n ≤ O(n−1/c) as n → ∞. (4.9)

Observe that, by (4.7),

λ− σ 2
n = (λ− µn)− (λ2 − µ2

n)+ (λ2 − (σ 2
n − µn + µ2

n))

≤ (λ− µn)+ (λ2 − (σ 2
n − µn + µ2

n)),
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which implies that, for (4.9) to hold, it is sufficient to verify that both λ − µn and λ2 −
(σ 2
n − µn + µ2

n) converge to 0 at least as fast as n
−1/c. To this end, we have to obtain accurate

lower bounds for µn and σ 2
n −µn +µ2

n. Using first the obvious inequalities mn!/(mn − c)! ≥
(mn − c + 1)c ≥ (tn1−1/c − c)c (assuming that n > (c/t)c/(c−1)) and

(1 − u)mn−c >
(
1 − 1

n

)mn−c
≥

(
1 − 1

n

)tn1−1/c

for 0 < u <
1

n
,

we get from the integral expansion (4.5) the inequality

µn > λ

(
1 − c

tn1−1/c

)c(
1 − 1

n

)tn1−1/c

= λ(1 −O(n−1/c)),

which implies that λ − µn ≤ O(n−1/c). For the other term, we use the inequalities
mn!/(mn − 2c)! ≥ (tn1−1/c − 2c)2c (provided that n > (2c/t)c/(c−1)) and

(1 − u− v)mn−2c >

(
1 − 2

n

)mn−2c

≥
(
1 − 2

n

)tn1−1/c

for 0 < u, v <
1

n
,

which, combined with (4.6), yield the lower bound

σ 2
n − µn + µ2

n > λ2
(
1 − 1

n

)(
1 − 2c

tn1−1/c

)2c(
1 − 2

n

)tn1−1/c

= λ2(1 −O(n−1/c));

this shows that λ2 − (σ 2
n − µn + µ2

n) ≤ O(n−1/c), and the proof is complete.

Remark 4.1. (a) The rate n−(1−1/c) given in (4.1) is strictly better than that suggested by (4.2),
namely n−1/c, except if c = 2. The latter rate, however, cannot be improved, for the following
reason: working as in the proof of Theorem 4.1, it can be shown that

λ− µn = O(n−1/c).

Indeed, using the obvious inequalities mn!/(mn − c)! ≤ tcnc−1 and

(1 − u)mn−c ≤ 1 − (mn − c)u+ 1
2 (mn − c)(mn − c − 1)u2, 0 < u < 1,

in the integral expression (4.5), we have

µn ≤ λ

(
1 − c

c + 1
(mn − c)n−1 +O(n−2/c)

)
= λ(1 −O(n−1/c));

this shows that λ − µn ≥ O(n−1/c), while the opposite inequality was shown in the proof of
the theorem. Therefore, since dTV(Pµn,Pλ) = O(λ− µn), which follows from (3.7) and the
fact that

dTV(Pµn,Pλ) ≥ P[Pµn = 0] − P[Pλ = 0] = e−µn − e−λ = O(λ− µn),

we conclude from (4.1) and the triangular inequality that

dTV(Wn,Pλ) ≥ dTV(Pµn,Pλ)− dTV(Wn,Pµn) = O(n−1/c)−O(n−(1−1/c)) = O(n−1/c);
thus, the correct order of magnitude for the approximation is exactly n−1/c.

(b) Comparing with other techniques, it seems that the method for proving Theorem 4.1 is
quite simple; this suggests that the assertion (4.2) may be extended to the case of unequal urn
probabilities p(n)i . However, more restricted conditions (than those given in Corollary 6.C.1
of Barbour et al. (1992)) may be required for p(n)i , in order to ensure that µn ↑ λ; a condition
needed in applying Theorem 3.2.
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5. On the existence of monotone couplings

In Barbour et al. (1992, Remark 2.1.4) it is stated that the assertion of Theorem 1.1 remains
valid for a wider (than NR) class of indicators, namely the weakly negatively related indicators
given by the following definition.

Definition 5.1. Indicator random variables X1, X2, . . . , Xn are said to be weakly negatively
related (WNR) if, for each i ∈ {1, 2, . . . , n}, there exist random variables Y1, . . . , Yi−1,

Yi+1, . . . , Yn (depending on i) satisfying Definition 1.1(a) and

(b′) with probability 1,
∑

j �=i Yj ≤ ∑
j �=i Xj .

Clearly, NR indicators are always WNR, while the converse is false for n ≥ 3 (see the
proof of Theorem 3.1(b)). The following definition seems to give an even weaker negative
relationship among indicators.

Definition 5.2. The0–1 indicatorsX1, X2, . . . , Xn are said to be veryweakly negatively related
(VWNR) if, for each i ∈ {1, 2, . . . , n}, there exists a random variable Y (depending on i) such
that

(a′) Y D= (
∑

j �=i Xj ) given that Xi = 1, and

(b′′) with probability 1, Y ≤ ∑
j �=i Xj .

From the above definitions it becomes clear that WNR indicators are always VWNR (take
Y = ∑

j �=i Yj ), while the situation concerning the converse is not very clear at this point.
Another natural question arising from the above definitions is the interrelation between theTND
and NR orWNR or VWNR classes of random variables (we have already seen in Theorem 3.1
that the TND class is strictly wider than the NR class of indicators). In order to see exactly what
happens between the above classes, it will be convenient to use the following three notions of
a monotone coupling.

Definition 5.3. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two random vectors taking
values in R

n with distributions L(X) and L(Y ) respectively.

(i) We say that there exists a monotone coupling for X and Y (or for L(X) and L(Y )) if
there is a random vector (U1, . . . , Un;V1, . . . , Vn) = (U ; V ) in R

2n such that L(U) = L(X),
L(V ) = L(Y ) and P[Ui ≤ Vi, i = 1, 2, . . . , n] = 1. The existence of a monotone coupling
will be denoted by MC(L(X),L(Y )).

(ii) We say that there exists a weak monotone coupling for X and Y if there is a random vector
(U1, . . . , Un;V1, . . . , Vn) = (U ; V ) in R

2n such that L(U) = L(X), L(V ) = L(Y ) and
P[∑i Ui ≤ ∑

i Vi] = 1. The existence of a weak monotone coupling will be denoted as
WMC(L(X),L(Y )).

(iii) We say that there exists a very weak monotone coupling for X and Y if there is a random
vector (U ;V ) in R

2 such that L(U) = L(
∑

i Xi), L(V ) = L(
∑

i Yi) and P[U ≤ V ] = 1.
The existence of a very weak monotone coupling will be denoted as VWMC(L(X),L(Y )).

From the above definitions it is clear that a monotone coupling implies the existence of a
weak monotone one, and the existence of a weak monotone coupling implies the existence of
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a very weak monotone one. Moreover,

VWMC(L(X),L(Y )) if and only if MC

(
L

(∑
i

Xi

)
,L

(∑
i

Yi

))
. (5.1)

Therefore, if X1, X2, . . . , Xn are 0–1 indicators, then the alternative definitions become

NR ≡ MC(L(Xi | Xi = 1),L(Xi )) for all i, (5.2)

WNR ≡ WMC(L(Xi | Xi = 1),L(Xi )) for all i, (5.3)

VWNR ≡ VWMC(L(Xi | Xi = 1),L(Xi )) for all i (5.4)

(where Xi = (X1, . . . , Xi−1, Xi+1, . . . , Xn)). Thus, using Strassen’s (1965) results on mono-
tone couplings, the following lemma can be easily established.

Lemma 5.1. The 0–1 indicators X1, . . . , Xn are TND if and only if they are VWNR.

Proof. Without loss of generality assume that P[Xi = 1] > 0 for all i. Write Xi =
(X1, . . . , Xi−1, Xi+1, . . . , Xn) and X(i) = ∑

j �=i Xj and observe that E[Xig(X(i))] =
P[Xi = 1]E[g(X(i)) | Xi = 1] for all nondecreasing test functions g : R → {0, 1}; thus,
the TND property is equivalent to the fact that

E[g(X(i)) | Xi = 1] ≤ E[g(X(i))] for all such g and for all i.

By (5.4), the VWNR property is equivalent to VWMC(L(Xi | Xi = 1),L(Xi )) for all i,
which, in turn, is equivalent by (5.1) to MC(L(X(i) | Xi = 1),L(X(i))) for all i, and the
assertion follows by Strassen’s results on monotone couplings (see also Barbour et al. (1992,
Theorem 2.D)).

Since Barbour et al. (1992, Remark 2.1.4) state that (3.6) holds for WNR 0–1 indicators,
while in the present article it is proved that this holds for TND indicators (i.e. for VWNR
indicators because of Lemma 5.1), it would be desirable to show that the TND (VWNR) class
is strictly larger than the WNR class of indicators. This is not true, however, because of the
following lemma.

Lemma 5.2. The 0–1 indicatorsX1, X2, . . . , Xn areVWNR (TND) if and only if they areWNR.

Thus, surprisingly enough, the notions of TND, WNR and VWNR do coincide. The proof
of this fact is a consequence of (5.3), (5.4) and the following very general result, which may be
of some independent interest.

Theorem 5.1. (a) For any random vectors X and Y with values in R
n, the properties

WMC(L(X),L(Y )) and VWMC(L(X),L(Y )) are equivalent. In other words, the existence
of a very weak monotone coupling implies the existence of a weak monotone one.

(b) Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Ym) be two arbitrary random vectors
with values in R

n and R
m respectively. If the random vector (U ;V ) in R

2 satisfies

L(U) = L

( n∑
i=1

Xi

)
and L(V ) = L

( m∑
j=1

Yj

)
,
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then there exists a random vector (U ; V ) = (U1, . . . , Un;V1, . . . , Vm) with values in R
n+m

such that

L(U) = L(X), L(V ) = L(Y ) and L

( n∑
i=1

Ui;
m∑
j=1

Vj

)
= L(U ;V ).

Proof. We shall only show (b) which trivially implies (a). Denote by K the probability
distributions of the random vectors (U ; V ) in R

n+m such that

L

( n∑
i=1

Ui;
m∑
j=1

Vj

)
= L(U ;V ).

It follows that K is a nonempty convex subset of all probability measures in R
n+m, which is

closed with respect to the topology generated by the weak convergence of probability measures
inR

n+m. ByTheorem 7 of Strassen (1965), there exists an element ofK satisfying the assertion
if and only if, for all bounded continuous functions f : R

n → R and g : R
m → R,

E[f (X)] + E[g(Y )] ≤ sup
K

{E[f (U)] + E[g(V )]}, (5.5)

where the supremum is taken over the random vectors (U ; V ) for which L(U ; V ) ∈ K .
Fix two functions f and g as above and ε > 0. Without loss of generality, we may assume that
0 ≤ f (x) ≤ 1 and 0 ≤ g(y) ≤ 1 for all (x; y) ∈ R

n+m. LetM = M(ε) > 0 be large enough
so that

P[max |Xi | > M] < ε,

P[max |Yj | > M] < ε,

P

[
max

{ |U |
n
,
|V |
m

}
> M

]
< ε,

and define the functions

fM(x) = f (x)1(max |xi | ≤ M),

gM(y) = g(y)1(max |yj | ≤ M).

Since |f (x)− fM(x)| ≤ 1(max |xi | > M) and similarly for |g − gM |, it follows that
E[f (X)] ≤ E[fM(X)] + ε, E[g(Y )] ≤ E[gM(Y )] + ε.

Since fM and gM have a compact support, we may construct the random vector (U ; V ) =
(U(U ;V ); V (U ;V )) defined by

(U ; V ) =
{
(u∗

1(U), . . . , u
∗
n(U); v∗

1(V ), . . . , v
∗
m(V )) if |U | ≤ nM and |V | ≤ mM,

(U/n, . . . , U/n;V/m, . . . , V/m) otherwise,

where u∗(u) = (u∗
1(u), . . . , u

∗
n(u)) and v∗(v) = (v∗

1(v), . . . , v
∗
m(v)) are, respectively, any

maximizing points for fM and gM over the compact sets Au,M = {u : max |ui | ≤ M, u1 +
· · · + un = u} and Bv,M = {v : max |vj | ≤ M, v1 + · · · + vm = v}, that is,

fM(u
∗(u)) = max{fM(u) : u ∈ Au,M} for |u| ≤ nM,
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and similarly for gM . By construction, L(U ; V ) ∈ K . On the other hand, by the definition of
(U ; V ) and the fact that L(U) = L(

∑
i Xi), we have

E[fM(X)] = E

{
E

[
fM(X)

∣∣∣∣ ∑
i

Xi

]}

≤ E

{
1
(∣∣∣∣∑

i

Xi

∣∣∣∣ ≤ nM

)
E

[
fM(X)

∣∣∣∣ ∑
i

Xi

]}
+ P

[∣∣∣∣∑
i

Xi

∣∣∣∣ > nM

]

≤ E

[
1
(∣∣∣∣∑

i

Xi

∣∣∣∣ ≤ nM

)
fM

(
u∗

(∑
i

Xi

))]
+ P

[∣∣∣∣∑
i

Xi

∣∣∣∣ > nM

]

= E[1(|U | ≤ nM)fM(u
∗(U))] + P[|U | > nM]

≤ E[1(|U | ≤ nM)1(|V | ≤ mM)fM(u
∗(U))] + P[|U | > nM] + P[|V | > mM]

= E[1(|U | ≤ nM)1(|V | ≤ mM)f (u∗(U))] + P[|U | > nM] + P[|V | > mM]
= E[1(|U | ≤ nM)1(|V | ≤ mM)f (U)] + P[|U | > nM] + P[|V | > mM]
≤ E[f (U)] + 2 P[max{|U |/n, |V |/m} > M]
≤ E[f (U)] + 2ε.

By the same arguments it can be shown that E[gM(Y )] ≤ E[g(V )] + 2ε and, therefore,

E[f (X)] + E[g(Y )] ≤ E[f (U)] + E[g(V )] + 6ε.

Since ε is arbitrary and L(U ; V ) ∈ K , (5.5) holds and the proof is complete.
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