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On the limiting distribution of sample central moments

Georgios Afendras · Nickos Papadatos · Violetta

Piperigou

Abstract We investigate the limiting behavior of sample central moments, examining

the special cases where the limiting (as the sample size tends to infinity) distribution

is degenerate. Parent (non-degenerate) distributions with this property are called sin-

gular, and we show in this article that the singular distributions contain at most three

supporting points. Moreover, using the delta-method, we show that the (second or-

der) limiting distribution of sample central moments from a singular distribution is

either a multiple, or a difference of two multiples of independent chi-square random

variables with one degree of freedom. Finally, we present a new characterization of

normality through the asymptotic independence of the sample mean and all sample

central moments.

Keywords sample central moments · singular distributions · second order approxi-

mation · characterization of normality · delta-method

1 Introduction

Let X be a random variable with distribution function F and finite moment of order

k, for some positive integer k ≥ 2. Then, X has finite central moment of order k.

Based on a random sample of size n from F , a natural estimator of the kth central

moment of X is the kth sample central moment, and the strong law of large numbers

implies that the kth sample central moment is a strongly consistent estimator of the
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population kth central moment. If, in addition, X has finite moment of order 2k, its

asymptotic normality is also known (see, for example, Lehmann 1999, pp. 297–8).

In the particular case where k = 2 and the sample size n ≥ 2 is fixed, Kourouklis

(2012) proved that the usual unbiased estimator for the variance, S2, is inadmissible

in the class C = {cS2:c > 0}, showing that the estimator n(n− 1)[n(n− 1)+ 2]−1S2

has smaller mean squared error than S2 for all F with finite fourth moment; see also

Yatracos (2005).

On the other hand, various authors provide statistical inference based on the asymp-

totic (as n → ∞) distribution of a function of the sample central moments. Such results

have several applications, including the evaluation of the limiting distribution of pro-

cess capability indices, which have been widely used to measure the improvement of

quality and productivity (see, e.g., Wu and Liang 2010). In a different context, Pewsey

(2005) and Afendras (2013) provide hypothesis testing, including normality-testing,

based on a function of the first four central moments of a distribution.

Haug et al. (2007) suggest moment estimators for the parameters of a continuous

time GARCH(1,1). The asymptotic normality of these estimators plays an important

role in their analysis.

Investigating the M-estimation procedure, Stefanski and Boos (2002) present cases

in which central moment-based estimates may be presented as M-estimators. The

asymptotic analysis and approximate inference are an important issue for large-sample

inference.

The sequence of the random vectors that contain the first k central moments
√

n-

converges in distribution to a k-dimensional normal distribution; this result arises

easily from the multivariate central limit theorem and the delta-method. However,

there are cases where the asymptotic distribution of the
√

n-convergence of a central

moment is a constant with probability one. In those cases, the order of convergence is

faster than
√

n, specifically, the convergence is of order n. Therefore, a deeper study

of the asymptotic behavior of the sample central moments is required.

This paper is organized as follows. Section 2 provides the basic notation and

terminology that will be used through the paper. Section 3 presents a motivation of the

problems that are studied and lists our contributions. Section 4 provides the asymptotic

distribution of the
√

n-convergence of the sample central moments, and discusses

asymptotic properties of these moments. Specifically, we introduce the property of

asymptotic independence, and investigate this property for the random vector of the

first k central moments; an asymptotic independence-based characterization for the

normal distribution is also given. In Section 5 we introduce the notion of a singular

distribution and we study the class of such distributions, while Section 6 contains

results associated with the asymptotic distribution of sample central moments under

singularity. Proofs of the results are presented in the Appendix.

2 Notation and Terminology

Let X ∼ F with E|X |k< ∞ for some (fixed) k ∈ {1,2, . . .}; and let us consider a

random sample X1, . . . ,Xn from F . To avoid trivialities we further assume that X is



On the limiting distribution of sample central moments 3

non-degenerate, that is, the set of points of increase of F ,

SF
.
= {x ∈R:F(x+ ε)−F(x− ε)> 0 for all ε > 0},

contains at least two elements. The first k central moments of X around its mean,

µ
.
=E(X), are well-defined and finite. In the sequel, we shall use the notation

µ j
.
= E(X − µ) j, j = 0, . . . ,k.

The sample moments of the centered Xis are

m j,n
.
=

1

n

n

∑
i=1

(Xi − µ) j, j = 1, . . . ,k.

The moment estimator of µk (for k ≥ 2) when µ is unknown (as is usually the case)

is its sample counterpart,

Mk,n
.
=

1

n

n

∑
i=1

(Xi − X̄n)
k
, where X̄n

.
=

1

n

n

∑
i=1

Xi;

for convenience, we set M1,n
.
= X̄n − µ.

Now, we define the vectors

µµµk
.
= (µ1, . . . ,µk)

′ =
(

0,σ2,µ3, . . . ,µk

)′
and µµµ∗

k
.
=
(

σ2,µ3, . . . ,µk

)′
,

as well as the random vectors

MMMk,n
.
= (X̄n−µ,M2,n, . . . ,Mk,n)

′, MMM∗
k,n

.
=(M2,n, . . . ,Mk,n)

′, mmmk,n
.
=(m1,n, . . . ,mk,n)

′;

it is worth noting that it is convenient to find the asymptotic distribution of
√

n(MMMk,n −
µµµk) instead of

√
n(MMM∗

k,n −µµµ∗
k).

Observe that, by Newton’s formula, M j,n = g j,k(mmmk,n), where for xxxk = (x1, . . . ,xk)
′

g j,k(xxxk) = (−1) j−1( j− 1)x
j
1 +

j−1

∑
i=2

(−1) j−i

(

j

i

)

xix
j−i
1 + x j, j = 1, . . . ,k,

where an empty sum should be treated as zero. Therefore, MMMk,n = gggk(mmmk,n), where

gggk = (g1,k, . . . ,gk,k)
′.

Finally, letXXXn be a sequence of random vectors. The terminologyXXXn

√
n-converges

in distribution to a distribution, say F0, means that there exists µµµ such that
√

n(XXXn −
µµµ)

d−−→ F0 as n → ∞; similarly, we define n-convergence. In the rest of the paper, all

limiting behaviors (limits, convergence in distribution or in probability as well as o(·),
O(·) and op(·) functions) will be with respect to n → ∞, except if something else is

explicitly denoted.
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3 Motivation and our contributions

Based on the asymptotic distribution of the vector of the sample skewness and kurtosis,

Pewsey (2005) gave an asymptotic result for testing normality. Afendras (2013) estab-

lishes moment-based estimators of the parameter vector of the characteristic quadratic

polynomial for both, integrated Pearson and cumulative Ord families of distributions,

and obtained the asymptotic distribution of those estimators. Using this asymptotic

distribution, he provides a number of hypothesis testing, including a normality test. In

both cases, i.e., sample skewness and kurtosis (Pewsey 2005) and parameter vector of

the characteristic quadratic polynomial (Afendras 2013), the estimator is a function of

MMM4,n. Thus, it is of some interest to obtain the asymptotic distribution of
√

n(MMMk,n−µµµk)
for any value of k.

Our contributions are as follows.

1. We give some more light on the limiting behavior of the vector MMMk,n. In particular,

we present results related to the rate of convergence of the first and second moments

of MMMk,n. Furthermore, we investigate in some detail the singular cases, i.e., the cases

where v2
k = 0 (see (3) below), characterizing the distributions with this property.

2. We introduce the notion of asymptotic independence between the components of a

sequence of k-dimensional random vectors, and we investigate the asymptotic proper-

ties of MMMk,n in view of this notion. Specifically, we show that, among the distributions

having finite moments of any order, the asymptotic independence of X̄n and the se-

quence {Mk,n,k ≥ 2} characterizes the normal distribution. This fact provides, in a

sense, a limiting counterpart of the well-known result that independence of X̄n and

M2,n = (1− 1/n)S2
n (for some fixed n ≥ 2) characterizes normality (see Geary 1936;

Zinger 1958; Laha et al. 1960; Kagan et al. 1973). Here, the assumption of indepen-

dence is weakened to asymptotic independence but, of course, the requirement of the

existence of all moments and the fact that X̄n has to be asymptotically independent of

all Mk,n,k ≥ 2 (and not only k = 2), seems to be quite restricted. However, this result is

best possible. Indeed, as we shall show, for any fixed k ≥ 2 there are (infinitely many)

non-normal distributions for which X̄n and MMM∗
k,n are asymptotically independent.

3. Let k = 2,3, . . . be fixed such that E|X |2k< ∞. Under non-singularity of order k,

that is v2
k 6= 0, the

√
n-convergence of Mk,n is a well-known result, i.e.,

√
n(Mk,n −µk)

converges in distribution to N(0,v2
k). Under singularity of order k we shall verify the

n-convergence of Mk,n, i.e., n(Mk,n − µk) converges in distribution to a non-normal

distribution.

4 The limiting distribution and a characterization of normality

Assume that k≥ 2 andE|X |2k<∞. The multivariate central limit theorem immediately

yields that

√
n(mmmk,n −µµµk)

d−−→ Nk(000k,ΣΣΣ| k), (1)

where 000k = (0, . . . ,0)′ ∈ R
k and ΣΣΣ| k = (σ i j) ∈ R

k×k with σ i j = µ i+ j − µ iµ j. Since

MMMk,n =gggk(mmmk,n), the asymptotic distribution of
√

n(MMMk,n−µµµk) easily arises by a simple
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application of delta-method and is a k-dimensional normal distribution (see, e.g.,

van der Vaart 1998, Theorem 3.1). This result is presented in the following proposition.

Proposition 1 If E|X |2k< ∞, then

√
n(MMMk,n −µµµk)

d−−→ Nk(000k,Vk), (2)

where the variance-covariance matrix Vk = (vi j) ∈R
k×k has elements

v11 = σ2, (3a)

v1 j = v j1 = µ j+1 − jσ2µ j−1, j = 2, . . . ,k, (3b)

vi j = µ i+ j − µiµ j − iµi−1µ j+1 − jµ i+1µ j−1 + i jσ2µ i−1µ j−1, i, j = 2, . . . ,k; (3c)

the elements vii are also denoted by v2
i , i = 1, . . . ,k.

The proof of Proposition 1 for the case k = 4 is contained in Afendras (2013, in

the proof of Theorem 3.1), while the proof for general k is similar to the case k = 4.

Particular cases of the preceding result are contained in the next corollary.

Corollary 1 If k ≥ 2 and E|X |2k< ∞, then

√
n(Mk,n − µk)

d−−→ N
(

0,v2
k

)

; (4)

√
n

(

X̄n − µ

Mk,n − µk

)

d−−→ N2

((

0

0

)

,

(

σ2

µk+1 − kσ2µk−1

µk+1 − kσ2µk−1

v2
k

))

. (5)

Note that, as it is well-known, the weak convergence in (2) does not imply con-

vergence of the corresponding moments; e.g., it is not necessarily true that either

E[
√

n(Mk,n−µk)]→ 0 orVar[
√

n(Mk,n−µk)]→ v2
k . Therefore, it is an interesting fact

that (2) correctly suggests the limits for the corresponding expectations, variances and

covariances. The following proposition asserts that this moment convergence is indeed

satisfied when the minimal (natural) set of assumptions is imposed on the moments

of X ; detailed proofs are given in Appendix A.

Proposition 2 Let k,r ∈ {2,3, . . .} be fixed.

(a) If E|X |k< ∞, then E(Mk,n) = µk + o(1/
√

n);

(b) If E|X |k+1< ∞, then Cov(X̄n,Mk,n) = (µk+1 − kσ2µk−1)/n+ o(1/n);

(c) IfE|X |k+r<∞, thenCov(Mr,n,Mk,n)= vrk/n+o(1/n), and in particular, ifE|X |2k<
∞, then Var[

√
n(Mk,n − µk)]→ v2

k .

In the sequel, we shall make use of the following definition.

Definition 1 Let k ∈ {2,3, . . .} be fixed.

(a) The sample mean, X̄n, is called asymptotically independent of the sample central

moment, Mk,n, if there exist independent random variables W1 and Wk such that

√
n

(

X̄n − µ

Mk,n − µk

)

d−−→
(

W1

Wk

)

;
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(b) X̄n is called asymptotically independent of the random vector MMM∗
k,n if there exist

random variables W1, . . . ,Wk such that W1, WWW ∗
k = (W2, . . . .Wk)

′ are independent and

√
n

(

X̄n − µ

MMM∗
k,n −µµµ∗

k

)

d−−→
(

W1

WWW ∗
k

)

;

(c) X̄n and Mk,n are called asymptotically uncorrelated if

Cov
(√

nX̄n,
√

nMk,n

)

→ 0.

Remark 1 Assume that E|X |2k< ∞ for some k ∈ {2,3, . . .}. According to (5) and

Proposition 2(b) (see, also, (34)), X̄n and Mk,n are asymptotically independent if

and only if they are asymptotically uncorrelated. Also, the asymptotic normality of

Proposition 1 shows that X̄n and MMM∗
k,n are asymptotically independent if and only if

X̄n and Mr,n are asymptotically uncorrelated for all r ∈ {2, . . . ,k}. If we merely as-

sume that E|X |k+1< ∞, then, even for those cases where the limiting distribution of√
n(Mk,n − µk) does not exist, Proposition 2(b) enables one to decide if X̄n and Mk,n

are asymptotically uncorrelated, or not.

Assume now X ∼ N(µ ,σ2). Observing the dispersion matrix in (2), it becomes

clear that the first column – except of the first element, σ2 – vanish. This is so because

µk = 0 for all odd k and µ2r = σ2r(2r)!/(2rr!); thus, for any k ∈ {2,3, . . .}, µk+1 =
kσ2µk−1. According to Definition 1, this means that X̄n is asymptotically independent

(uncorrelated) of all Mk,n. But, this is not a surprising fact for the normal distribution,

since it is well-known that for any fixed n ≥ 2, X̄n is independent of the vector ZZZ
.
=

(X1− X̄n, . . . ,Xn − X̄n)
′ (it suffices to observe that (X̄n,X1 − X̄n, . . . ,Xn − X̄n)

′ follows a

multivariate normal distribution andCov(X̄n,Xi− X̄n) = 0 for all i) and, therefore, X̄n is

stochastically independent (and uncorrelated) of any sequence of the form {hr(ZZZ),r =
2,3, . . .}, where hr:R

n →R are arbitrary Borel functions. Since Mr,n = n−1 ∑n
i=1(Xi−

X̄n)
r = hr(ZZZ), it follows that X̄n and MMM∗

k,n are independent (and, thus, X̄n and Mk,n

are uncorrelated) for all k and n and, certainly, the same is true for their limiting

distributions. The interesting fact is that the converse is also true, i.e., the asymptotic

independence of X̄n and Mk,n for all k characterizes normality.

Theorem 1 Assume that X is non-degenerate and has finite moments of any order. If

X̄n and Mk,n are asymptotically independent (or, merely, asymptotically uncorrelated)

for all k ∈ {2,3, . . .}, then X follows a normal distribution.

Proof From Proposition 2(b) (cf. (2), (5)) it follows that X̄n and Mk,n are asymptotically

uncorrelated if and only if µk+1 = kσ2µk−1. Since we have assumed that this relation

holds for all k ≥ 2 it follows that µ1 = µ3 = µ5 = · · · = 0 and, similarly, for all

r ∈ {1,2, . . .}, µ2r = σ2r(2r)!/(2rr!). But, these are the moments of N(0,σ2), and

since normal distributions are characterized by their moment sequence (see, e.g.,

Billingsley 1995, Example 30.1, p. 389), we conclude that X − µ ∼ N(0,σ2). ⊓⊔

Compared to the classical characterization of normality via the independence of

X̄n and S2
n = [n/(n−1)]M2,n, the asymptotic independence is a much weaker condition

to enable a characterization result. For example, (5) and Proposition 2(b) with k = 2
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(cf. (34)) shows that X̄n and S2
n are asymptotically independent if and only if µ3 = 0,

providedE|X |3< ∞. Clearly, the relationE(X −µ)3 = 0 is satisfied by any symmetric

distribution with finite third moment and by many others. On the other hand, the

requirement that the asymptotic independence has to be fulfilled for all k ≥ 2 may be

regarded as too restricted. However, the following result shows that any finite number

of ks will not work.

Theorem 2 For any fixed k ≥ 2, there exist (infinitely many) non-degenerate non-

normal random variables X with finite moments of any order such that X̄n and MMM∗
k,n

are asymptotically independent.

Proof Let φ(x) ∝ exp(−x2/2) be the standard normal density and consider the poly-

nomial Pm(x)
.
= (dm/dxm)[xm(1− x)m]; i.e., Pm is the shifted Legendre polynomial of

degree m. It is well-known that for all m ≥ k+ 2, Pm is orthogonal to {1,x, . . . ,xk+1}
in the interval [0,1], that is,

∫ 1

0
x jPm(x)dx = 0, j = 0, . . . ,k+ 1.

Since Pm is continuous on [0,1], it follows that 0 < maxx∈[0,1]|Pm(x)| .= am < ∞.

Also, minx∈[0,1] φ(x) = φ(1) = (2πe)−1/2 > 0. Clearly, we can choose an εm > 0

small enough to guarantee that φ(x) + εmPm(x) > 0 for all x ∈ [0,1] (e.g., εm =
[2am(2πe)1/2]−1 suffices). Now, define a sequence of probability densities { fm, m ≥
k+ 2} by

fm(x) = φ(x)+ εmPm(x)1{0≤x≤1}, x ∈R,

where 1 denotes the indicator function (see Figure 1).

−3 −2 −1 0 1 2 3

0

0.1

0.2

0.3

0.4

0.5

(a) f5(x).
−3 −2 −1 0 1 2 3

0

0.1

0.2

0.3

0.4

0.5

(b) f7(x).
−3 −2 −1 0 1 2 3

0

0.1

0.2

0.3

0.4

0.5

(c) f10(x).

Fig. 1: The densities fm(x) for m = 5,7 and 10.

If Xm has density fm, it is clear that, for j = 0, . . . ,k+ 1,

E
(

X j
m

)

=
∫

R

x jφ(x)dx+εm

∫ 1

0
x jPm(x)dx =

∫

R

x jφ(x)dx = E
(

Z j
)

,

where Z ∼N(0,1). Obviously, each Xm has finite moments of any order, is non-normal,

non-degenerate, and, by Proposition 1, X̄n and MMM∗
k,n are asymptotically independent.

⊓⊔
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5 The singular distributions

First, center the rv X as U = X −µ with E(U j) = µ j for all j. Assume that E|X |2k< ∞
for some k = 2,3, . . . and consider the random vector

UUUk =
(

U,U2,U3 − 3σ2U,U4 − 4µ3U, . . . ,Uk − kµk−1U
)′
.

It is of some interest to observe that the variance-covariance matrix of the limiting

distribution in (2) coincides with the variance-covariance matrix of UUUk. In particular,

v2
k = Var

(

Uk − kµk−1U
)

, (6)

µk+1−kσ 2µk−1 =Cov

(

U,Uk − kµk−1U
)

, vrk =Cov

(

U r − rµr−1U,Uk − kµk−1U
)

,

r = 2, . . . ,k−1. Relation (6) evidently shows that v2
k ≥ 0. Of course, the non-negativity

of v2
k is a consequence of the fact that, by Proposition 2(c), v2

k = limn Var(
√

nMk,n);
but, the point here is that we have not to refer to a limit. Moreover, the expression (6)

enables to describe all distributions for which v2
k = 0. Such distributions will be called

singular, according to the following definition.

Definition 2 For fixed k ≥ 2, a non-degenerate random variable X , or its distribution

function F , is called singular (of order k) if E|X |2k< ∞ and

√
n(Mk,n − µk)

p−−→ 0.

The set of all singular random variables of order k will be denoted by Fk; the subset

of all standardized (with mean 0 and variance 1) singular random variables of order k

will be denoted by F 0
k .

Noting that Y ∈ F 0
k if and only if X

.
= µ +σY ∈ Fk for some µ ∈R and σ > 0, it

follows that Fk contains exactly the location-scale family of the random variables that

belong to F
0

k . According to (4), (6), and Proposition 2(a),(c) (cf. (32)), X ∈ Fk if and

only if v2
k = 0 or, equivalently,

(X − µ)k = µk + kµk−1(X − µ) with probability one. (7)

We also note that Fk is non-empty for all k ≥ 2. Indeed, it is easily seen that the

random variable Y with P(Y =±1) = 1/2 belongs to F 0
2k ⊆ F2k, k = 1,2, . . ., because

µ =E(Y ) = 0, σ2 =E(Y 2) = 1, µ2k =E(Y 2k) = 1, µ2k−1 =E(Y 2k−1) = 0 and Y 2k =
µ2k + 2kµ2k−1Y with probability one. Similarly, for every k ∈ {1,2, . . .}, the three-

valued symmetric random variable Y2k+1 with P(Y2k+1 =±
√

2k+ 1) = 1/[2(2k+1)]
and P(Y2k+1 = 0) = 2k/(2k+ 1) belongs to F 0

2k+1. Moreover, we shall show below

(Lemma 2) that we can find a unique value of p = p2k+1 ∈ (1/2,1), for which the

two-valued random variable W2k+1, with

P

(

W2k+1 =
√

(1− p)/p
)

= p = 1−P

(

W2k+1 =−
√

p/(1− p)
)

,

is such that W2k+1 ∈ F 0
2k+1.
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In general, it is easily seen that the equation yk = α + βy (with α,β ∈ R) has at

most two real solutions for even k, and at most three solutions for odd k. Assuming

that X ∼ F and X ∈ Fk, it follows from (7) that X takes at most two values (and

hence, exactly two values, since X has been assumed to be non-degenerate) if k is

even, and two or three values if k is odd. This follows from the fact that the points

of increase of F cannot be more than three, if k is odd, and more than two, if k is

even. To see this assume, e.g., that k is odd, X ∼ Fk, E(X) = µ, E(X − µ)k = µk

and E(X − µ)k−1 = µk−1. Let x1 < x2 < x3 < x4 be four distinct points of increase

of F . Then, there exists at least one xi for which (xi − µ)k − µk − kµk−1(xi − µ) 6= 0,

and thus, we can find a small ε > 0 such that (x− µ)k 6= µk + kµk−1(x− µ) for all

x ∈ (xi−ε,xi+ε]. Hence,P(xi−ε < X ≤ xi+ε)≤P[(X −µ)k 6= µk+kµk−1(X −µ)].
Since, however, xi is a point of increase of F , we have 0 < F(xi + ε)−F(xi − ε) =
P(xi − ε < X ≤ xi + ε) ≤ P[(X − µ)k 6= µk + kµk−1(X − µ)], which contradicts (7).

The same arguments apply to the case where k is even.

Therefore, we have the following description.

Proposition 3 If k ≥ 2 is even, then Fk contains only two-valued random variables.

If k ≥ 3 is odd, then Fk contains only two-valued and three-valued random variables.

Our purpose is to describe all singular distributions and to obtain a second order

non-degenerate distributional limit for Mk,n − µk. Firstly, we consider the two-valued

distributions because they are possible members of Fk.

Lemma 1 Let X ∼ b(p), i.e., P(X = 1) = p = 1−P(X = 0) for some p ∈ (0,1).
Then, X ∈ F2 if and only if p = 1/2. Moreover, if k ≥ 4 is even, then X ∈ Fk if and

only if p ∈ {1− pk,1/2, pk}, where pk is the unique root of the equation

(

p

1− p

)k−1

=
(k+ 1)p− 1

k− (k+ 1)p
,

k− 2

k− 1
< p <

k

k+ 1
; (8)

in particular, p4 = 1/2+
√

3/6 and p6 = 1/2+
√

15(4
√

10− 5)/30.

Proof Since µ = p and

µk = p(1− p)
[

(1− p)k−1 +(−1)k pk−1
]

, k = 1,2, . . . , (9)

(7) shows that X ∈ Fk if and only if

(x− p)k = µk + kµk−1(x− p) for x = 0 and x = 1. (10)

Using (9) and the fact that k ≥ 2 is even, both equations in (10) are reduced to

pk−1[k− (k+ 1)p] = (1− p)k−1[(k+ 1)p− 1], 0 < p < 1. (11)

Since the value of p = k/(k+ 1) is a root of the lhs of (11) which is not a root of

its rhs we conclude that (8) and (11) are equivalent. Obviously, p = 1/2 is a root of

(11). In order to find all roots of (11), we make the substitution t = p/(1− p), which

monotonically maps p ∈ (0,1) to t ∈ (0,∞). Then, we get the equation

pk(t)
.
= tk − ktk−1 + kt − 1 = 0, 0 < t < ∞, (12)
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which has the obvious solution t = 1 (corresponding to p = 1/2). If k = 2, then

(12) is written as t2 − 1 = 0, and thus t = 1 (resp. p = 1/2) is the unique solution

of (12) (resp. (11)). Since for any t > 0 we have pk(1/t) = −pk(t)/tk, it follows

that 1/t is a root of (12) whenever t is; equivalently, 1− p is a root of (11) if p is.

For even k ≥ 4 we see that pk(0) = −1, pk(1) = 0 and pk(∞)
.
= limt→∞ pk(t) = ∞.

Also, p′k(t) = k[tk−1 − (k−1)tk−2+1] = kqk(t), where qk(t) = tk−1− (k−1)tk−2+1

satisfies qk(0) = 1 > 0, qk(1) = −(k − 3) < 0 and qk(∞) = ∞. Moreover, we see

that q′k(t) = (k − 1)tk−3[t − (k − 2)] is negative for t ∈ (0,k − 2) and positive for

t ∈ (k−2,∞); thus, qk(t) decreases in (0,k−2) and increases in (k−2,∞). Therefore,

there exist ρ1 < ρ2, with 0 < ρ1 < 1 < k− 2 < ρ2 < ∞, such that qk(t) < 0 for t in

(0,ρ1)∪ (ρ2,∞) and qk(t) > 0 for t in (ρ1,ρ2). Relation qk(t) = p′k(t)/k shows that

pk(t) is increasing in (0,ρ1), decreasing in (ρ1,ρ2) and increasing in (ρ2,∞). From

1 ∈ (ρ1,ρ2) and pk(1) = 0, we conclude that pk(ρ1) > 0 and pk(ρ2) < 0; hence,

there exist unique t1 ∈ (0,ρ1) and t2 ∈ (ρ2,∞) such that pk(t1) = 0 = pk(t2). Clearly,

t1 = 1/t2, and the set of roots of (12) is {1/t2,1, t2}; thus, the set of roots of (11)

is {1− pk,1/2, pk}, with pk = t2/(1+ t2). Finally, relation t2 > ρ2 > k − 2 shows

that pk = t2/(1+ t2)> (k− 2)/[1+(k− 2)] = (k− 2)/(k− 1), while pk < k/(k+ 1)
is obvious because for p ≥ k/(k+ 1) the lhs of (11) is non-positive while its rhs is

strictly positive. ⊓⊔

From (8), we see that 1/2 < p4 < p6 < · · · and p2k = 1− 1/(2k) + o(1/k) as

k → ∞. Lemma 1 completely describes all Fk for even k.

Corollary 2 If k ≥ 2 is even, then X ∈ F
0

k if and only if either P(X =±1) = 1/2, or

P

(

X =−
√

pk/(1− pk)
)

= 1− pk, P

(

X =
√

(1− pk)/pk

)

= pk

and k ∈ {4,6, . . .}, or

P

(

X =−
√

(1− pk)/pk

)

= pk, P

(

X =
√

pk/(1− pk)
)

= 1− pk

and k ∈ {4,6, . . .}, where pk ∈ ((k− 2)/(k− 1),k/(k+ 1)) is given by (8).

Corollary 2 says that F 0
2 is singleton and that for every k ∈ {4,6, . . .}, F 0

k contains

exactly three two-valued distributions. When k is odd the nature of Fk is quite different,

because it contains both two-valued and three-valued distributions. First we examine

the two-valued case.

Lemma 2 Let X ∼ b(p) for some p ∈ (0,1). If k ≥ 3 is odd and X ∈ Fk, then p ∈
{1− pk, pk} where pk is the unique root of the equation

(

p

1− p

)k−1

=
(k+ 1)p− 1

(k+ 1)p− k
,

k

k+ 1
< p < 1; (13)

in particular, p3 = 1/2+
√

3/6 and p5 = 1/2+
√

5
√

5/10. Conversely, if k ≥ 3 is

odd and either X ∼ b(pk) or X ∼ b(1− pk), with pk as above, then X ∈ Fk.
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Proof Assume that k≥ 3 is odd, X ∼ b(p) and X ∈ Fk. This means that (10) is satisfied.

Using (9) and the fact that k ≥ 3 is odd, both equations in (10) are reduced to

pk−1[(k+ 1)p− k] = (1− p)k−1[(k+ 1)p− 1], 0 < p < 1. (14)

Since the value of p = k/(k+ 1) is a root of the lhs of (14) which is not a root of its

rhs, we conclude that (13) and (14) are equivalent. As in Lemma 1, in order to find

all roots of (14) we make the substitution t = p/(1− p), which monotonically maps

p ∈ (0,1) to t ∈ (0,∞). Then, we get the equation

pk(t)
.
= tk − ktk−1 − kt + 1 = 0, 0 < t < ∞. (15)

Since for any t > 0 we have pk(1/t) = pk(t)/tk, it follows that 1/t is a root of (15)

whenever t is; equivalently, 1− p is a root of (14) if p is. For odd k ≥ 3, we see that

pk(0) = 1 > 0, pk(1) = −2(k− 1) < 0 and pk(∞) = ∞. Thus, (15) has at least one

root in (0,1) and at least one root in (1,∞). Also, p′k(t) = k[tk−1 − (k−1)tk−2−1] =
kqk(t), where qk(t) = tk−1 − (k−1)tk−2−1 satisfies qk(0) =−1 < 0 and qk(∞) = ∞.

Moreover, we see that q′k(t) = (k − 1)tk−3[t − (k− 2)] is negative for t ∈ (0,k− 2)
and positive for t ∈ (k − 2,∞); thus, qk(t) decreases in (0,k − 2) and increases in

(k − 2,∞). Therefore, there exists a unique ρ > k − 2 ≥ 1 such that qk(t) < 0 for

t in (0,ρ) and qk(t) > 0 for t in (ρ,∞). Relation qk(t) = p′k(t)/k shows that pk(t)
decreases in (0,ρ) and increases in (ρ,∞). From pk(0)> 0, pk(1)< 0 and pk(∞)> 0

we conclude that there exist unique t1 ∈ (0,1) and t2 ∈ (ρ,∞) such that pk(t1) = 0 =
pk(t2). Clearly, t1 = 1/t2, and the set of roots of (15) is {1/t2, t2}; thus, the set of

roots of (14) is {1− pk, pk}, with pk = t2/(1+ t2). Finally, relation t2 > ρ > k− 2

shows that pk = t2/(1+ t2) > (k− 2)/[1+(k− 2)] = (k− 2)/(k− 1). However, the

root pk cannot lie in ((k− 2)/(k− 1),k/(k+ 1)] because for all p in this interval the lhs

of (14) is non-positive, while its rhs is strictly positive (p > (k− 2)/(k− 1) implies

(k + 1)p− 1 > (k + 1)(k− 2)/(k− 1)− 1 = [(k− 3)(k+ 1)+ 2]/(k− 1) > 0, since

k ≥ 3). This verifies that pk > k/(k+ 1). Finally, if either X ∼ b(pk) or X ∼ b(1− pk),
then (9) and (14) show that (10) and (7) are satisfied and, thus, X ∈ Fk. ⊓⊔

Corollary 3 If k ≥ 3 is odd, then the unique two-valued random variables contained

in F 0
k are the following:

P

(

X =−
√

pk/(1− pk)
)

= 1− pk, P

(

X =
√

(1− pk)/pk

)

= pk

and

P

(

X =−
√

(1− pk)/pk

)

= pk, P

(

X =
√

pk/(1− pk)
)

= 1− pk,

where pk ∈ (k/(k+ 1),1) is given by (13).

Corollary 3 describes all two-valued random variables of F 0
k when k ≥ 3 is odd; how-

ever, we have already seen that F 0
k contains also some three-valued random variables.

Among them, exactly one is symmetric.
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Lemma 3 If k ≥ 3 is odd, the unique symmetric random variable of F 0
k is given by

P(X =±√
k) = 1/(2k), P(X = 0) = 1− 1/k.

More generally, this is the unique random variable of F 0
k with µk = 0.

Proof Since X ∈ F 0
k , we have E(X) = 0 and E(X2) = 1. Therefore, in view of the

assumption µk = 0, (7) simplifies to

X
(

X k−1 − kµk−1

)

= 0 with probability one.

It follows that the support of X is a subset of A
.
= {−(kµk−1)

1/(k−1),0,(kµk−1)
1/(k−1)},

where µk−1 = E(X k−1) > 0, because X is non-degenerate and k − 1 is even. Let

p=P(X = 0), p1 =P(X =−(kµk−1)
1/(k−1)) and p2 =P(X =(kµk−1)

1/(k−1)); p, p1,

p2 are non-negative and p+ p1+ p2 = 1 becauseP(X ∈A)= 1. AssumptionE(X)= 0

shows that p1 = p2. Thus, p1 = p2 = (1− p)/2 and, so, P(X =±(kµk−1)
1/(k−1)) =

(1− p)/2. Calculating µk−1 =E(X k−1) = (1− p)kµk−1, we see that p = 1−1/k and

thus, P(X =±a) = 1/(2k) where a = (kµk−1)
1/(k−1) > 0. Finally, from 1=E(X2) =

a2/k, we conclude that a =
√

k. On the other hand, it is easily seen that for this value

of a =
√

k, µk = 0 and µk−1 = k(k−3)/2 so that kµk−1 = k(k−1)/2 = (±√
k)k−1; hence,

A = {−√
k,0,

√
k} and x(xk−1 − kµk−1) = x[xk−1 − (±√

k)k−1]≡ 0 for all x ∈ A. ⊓⊔

The following lemma presents a complete description of all tree-valued distribu-

tions of F 0
3 and gives a picture of the nature of F 0

k when k ≥ 3 is odd.

Lemma 4 For each µ3 ∈ [−√
2,
√

2] there exists a unique random variable X ∈ F 0
3

such that E(X3) = µ3. Cases µ3 = ±√
2 correspond to the two-valued distributions

described in Corollary 3 for k = 3. Any other value of µ3 ∈ (−√
2,
√

2) uniquely

determines a three-valued distribution, and in particular, µ3 = 0 corresponds to the

symmetric distribution of Lemma 3 for k = 3. Moreover, there not exist other random

variables in F 0
3 . Therefore, F 0

3 admits the parametrization

F
0

3 = {Xθ , −
√

2 ≤ θ ≤√
2},

where Xθ is characterized by

E(Xθ ) = 0, E
(

X2
θ

)

= 1, E
(

X3
θ

)

= θ and P
[

Xθ

(

X2
θ − 3

)

= θ
]

= 1.

Proof Let X ∈ F 0
3 and assume that µ3 =E(X3) = θ . Then, µ =E(X) = 0, σ2 = µ2 =

E(X2) = 1 and, according to (7), X(X2 − 3) = θ with probability one. Therefore,

since X is non-degenerate, the support of X must contains at least two points which

are included in the set of zeros of y(y2 − 3) = θ . This shows that |θ |≤ 2 because,

otherwise, the set {y ∈ R:y(y2 − 3) = θ} is a singleton. Observe that θ = 0 leads,

uniquely, to the symmetric random variable of Lemma 3 with k = 3. Thus, from

now on assume that θ 6= 0. The values θ =±2 are impossible because the equations

y(y2 − 3) =±2 have exactly two real solutions, say α,β , with |α|= 1 and |β |= 2, so

that E(X) = 0 and E(X2) = 1 are impossible.
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Consider now the case where −2 < θ < 0. Then, {y:y(y2 −3) = θ}= {−α,β ,γ}
where 0 < β < 1 < γ <

√
3 < α and, by definition, the numbers α, β , γ satisfy the

relation

−α
(

α2 − 3
)

= β
(

β 2 − 3
)

= γ
(

γ2 − 3
)

= θ . (16)

From (16), we see that θ = θ(β) = β(β 2 − 3) is a strictly decreasing and continu-

ous function of β which maps β ∈ (0,1) to θ ∈ (−2,0); thus, its inverse function,

β(θ ):(−2,0)→ (0,1), is well-defined, continuous and strictly decreasing in θ with

β(−2+) = 1 and β(0−) = 0. Also, from (16) we get the equation 3(α+β) = α3+β 3 =
(α + β)(α2 −αβ + β 2) which shows that α2 −αβ + β 2 = 3 and, since α > β/2, we

have

α = α(β) =
1

2
(β + δ), where δ = δ(β) =

√

3
(

4− β2
)

. (17)

Similarly, (16) yields the equation 3(γ −β) = γ3 −β 3 = (γ −β)(γ2 + γβ +β2) which

shows, in view of β < γ, that γ2 + γβ + β2 = 3. Since γ > 0 it follows that

γ = γ(β ) =
1

2
(−β + δ), where δ = δ(β) =

√

3
(

4− β2
)

. (18)

From (17) and (18) we conclude that α = β +γ. Set now p1 =P(X =−α), p2 =P(X =
β) and p3 = P(X = γ). Since P(X ∈ {−α,β ,γ}) = 1 and E(X) = 0, E(X2) = 1, we

get the system of equations (in p1, p2, p3)

p1 + p2 + p3 = 1, −α p1 + β p2 + γ p3 = 0, α2 p1 + β2 p2 + γ2 p3 = 1,

which, in view of α = β + γ, has the unique solution

p1 =
1+ βγ

(β + 2γ)(2β + γ)
, p2 =

γ(β + γ)− 1

(γ − β)(2β + γ)
, p3 =

1− β(β + γ)

(γ − β)(β + 2γ)
.

Now, since γ2 + γβ + β 2 = 3, we have γ(β + γ) = 3− β 2 and β(β + γ) = 3− γ2;

substituting these values in the numerators of p2 and p3 we get

p1 =
1+ βγ

(β + 2γ)(2β + γ)
, p2 =

2− β2

(γ − β)(2β + γ)
, p3 =

γ2 − 2

(γ − β)(β + 2γ)
. (19)

It is clear that p1 > 0 and p2 > 0 for all values of β and γ with (see (18))

0 < β < 1 < γ =
−β +

√

3
(

4− β2
)

2
<
√

3.

However, this is not the case for p3, since p3 ≥ 0 requires γ2 ≥ 2, i.e., γ ≥√
2 (since

γ > 0). Now, from µ3 = θ = γ(γ2 − 3) and the fact that γ ∈ [
√

2,
√

3), we conclude

that all possible values of θ (with θ < 0) are included in the interval [−√
2,0). Us-

ing (18) and the fact that β > 0, it follows that γ ≥ √
2 if and only if 0 < β ≤

(
√

6−√
2)/2 =

√

2−√
3. Now, observe that γ =

√
2 corresponds to a standard-

ized two-valued random variable with µ3 = θ = γ(γ2 − 3) =−√
2, taking the values
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−α = −β − γ = −(
√

6+
√

2)/2 = −
√

2+
√

3 and β =
√

2−√
3 = (

√
6−√

2)/2

with respective probabilities 1− p and p, where

p =
2− β2

(γ − β)(2β + γ)
=

1

2
+

√
3

6
;

this is the first two-valued random variable of Corollary 3 when k = 3. On the other

hand, each value of γ∈ (
√

2,
√

3) corresponds to a unique value of µ3 = θ = γ(γ2−3)∈
(−√

2,0), which, in turn, uniquely determines β = β(θ ) ∈ (0,(
√

6−√
2)/2) through

β = [−γ +
√

3(4− γ2)]/2 (cf. (18)), and α = α(θ) through α = β + γ. Finally, these

uniquely determined values of α , β and γ specify the (strictly positive) probabilities

p1, p2 and p3, through (19), which shows that each Xθ ∈ F 0
3 is uniquely determined

by E(X3
θ ) = θ , −√

2 < θ < 0.

It remains to examine the cases where 0< θ < 2. However, if X ∈ F 0
3 andE(X3) =

θ > 0, then it is easily verified that −X ∈ F 0
3 and E(−X)3 =−θ < 0. By the previous

arguments it follows that, necessarily, −√
2 ≤−θ < 0, that −X is determined by the

value of −θ , and that −X is a two-valued random variable, if −θ = −√
2, and a

three-valued random variable otherwise; thus, the same is true for X , and the proof is

complete. ⊓⊔
We was not able to completely describe F 0

k for odd k ≥ 5. However, the situation

seems to be similar to the case k = 3, i.e., each Xθ ∈ F 0
k is characterized by its central

moment, θ = E(X k) = µk, and the possible values of θ form a symmetric interval

of the form [−αk,αk], where the boundary values θ = ±αk correspond to the two-

valued distributions of Corollary 3, while every θ ∈ (−αk,αk) determines uniquely a

three-valued random variable.

6 Limiting distribution under singularness

If the random sample comes from a singular distribution of order k ≥ 2, then the

asymptotic normality of (4) reduces to
√

n(Mk,n − µk)
p−−→ 0 (see Definition 2). This

shows that the order of convergence of Mk,n to µk is faster than o(1/
√

n), and a second

order approximation applies, according to the following lemma.

Lemma 5 Assume that XXXn is a sequence of k-variate random vectors such that

√
n(XXXn −µµµ)

d−−→WWW , (20)

where µµµ ∈ R
k and WWW is a k-variate random vector. Suppose that the Borel function

g:Rk →R is twice continuously differentiable at a neighborhood of µµµ and define

∇g(µµµ) =

(

∂g(xxx)

∂xi

)∣

∣

∣

∣

xxx=µµµ

∈R
k and Hk(µµµ)

.
=

(

∂ 2g(xxx)

∂xi∂x j

)∣

∣

∣

∣

xxx=µµµ

∈R
k×k.

If

n[∇g(µµµ)]′(XXXn −µµµ)
p−−→ 0, (21)

then

n[g(XXXn)− g(µµµ)]
d−−→ 1

2
WWW ′Hk(µµµ)WWW . (22)
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Proof By (20), we see that XXXn
p−−→ µµµ . Therefore, the Taylor expansion suggests the

approximation

n[g(XXXn)−g(µµµ)] = n[∇g(µµµ)]′(XXXn −µµµ)+
1

2
[
√

n(XXXn −µµµ)]′Hk(µµµ)[
√

n(XXXn −µµµ)]+op(1)

and, by (21), the rhs of the above equals to

1

2
[
√

n(XXXn −µµµ)]′Hk(µµµ)[
√

n(XXXn −µµµ)]+ op(1).

By Slutsky’s Theorem and in view of (20), we conclude that the above quantity tends

in distribution to 1
2
WWW ′Hk(µµµ)WWW . ⊓⊔

Lemma 5 immediately applies to Mk,n whenever the random sample arizes from a

singular distribution. This result is stated in the following theorem; for the proof see

Appendix A.

Theorem 3 If Mk,n is the sample central moment of a singular distribution of order

k ≥ 2, then

n(Mk,n − µk)
d−−→ 1

2
k(k− 1)µk−2W 2

1 − kW1Wk−1, (23)

where
(

W1

Wk−1

)

∼ N2

((

0

0

)

,

(

σ2

µk

µk

µ2k−2 − µ2
k−1

))

. (24)

The limiting distribution in (23) can be expressed in terms of two independent and

identically distributed standard normal random variables, Z1, Z2. Indeed, observing

that σ2(µ2k−2 − µ2
k−1)− µ2

k = Var[σ(X − µ)k−1 − µk(X − µ)/σ ]≥ 0, it is easily seen

that

(

W1

Wk−1

)

d
==

(

σZ1
µk
σ Z1 +

γk
σ Z2

)

, where γk
.
=
√

σ2(µ2k−2 − µ2
k−1)− µ2

k .

Therefore, (23) can be rewritten as

n(Mk,n − µk)
d−−→
(

1

2
k(k− 1)σ2µk−2 − kµk

)

Z2
1 − kγkZ1Z2. (25)

In order to obtain a further simplification, we shall make use of the following propo-

sition.

Proposition 4 If Z1, Z2 are independent and identically distributed standard normal

random variables, then, for arbitrary constants α,β ∈R,

αZ2
1 + βZ1Z2

d
==

1

2

(
√

α2 + β2 +α

)

Z2
1 −

1

2

(
√

α2 + β 2 −α

)

Z2
2 . (26)
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Proof The assertion is obvious if β = 0. Assume that β 6= 0 and set ρ =
√

α2 + β 2 > 0.

It is easily seen that the moment generating function of the rhs of (26) is given by

M2(t) =
1

√

1− 2αt − β2t2

and it is finite in the interval {t ∈R:1−2αt −β2t2 > 0}= (−(ρ −α)−1,(ρ +α)−1),
which contains the origin because ρ +α > 0 and ρ −α > 0. Also, the moment gener-

ating function of the lhs of (26) is

M1(t) = E
[

exp
(

αtZ2
1 + βtZ1Z2

)]

=
1

2π

∫∫

R2
e−

1
2 γ(x,y) dydx,

where

γ(x,y) = x2 + y2 − 2αtx2 − 2βtxy =
(

1− 2αt − β2t2
)

x2 +(y− βtx)2.

Therefore, for t ∈ (−(ρ −α)−1,(ρ +α)−1),

M1(t) =
1√
2π

∫ ∞

−∞
e−

x2

2 (1−2αt−β 2t2)
(

1√
2π

∫ ∞

−∞
e−

1
2 (y−βtx)2

dy

)

dx

=
1√
2π

∫ ∞

−∞
e−

x2

2 (1−2αt−β 2t2) dx = M2(t),

and the proof is complete. ⊓⊔

Corollary 4 If (X1,X2)
′ follows a bivariate normal distribution with E(X1) = µ1,

E(X2)= µ2,Var(X1)= σ2
1,Var(X2)= σ2

2 andCov(X1,X2)= ρσ1σ2, where µ1,µ2 ∈R

and σ1 ≥ 0, σ2 ≥ 0 and −1 ≤ ρ ≤ 1 are arbitrary constants, then

(X1 − µ1)(X2 − µ2)
d
== σ1σ2

[

1

2
(1+ ρ)Z2

1 −
1

2
(1− ρ)Z2

2

]

.

Proof Since (X1−µ1,X2−µ2)
′ d
==(σ 1Z1,σ2(ρZ1+

√

1− ρ2Z2))
′, we have that (X1−

µ1)(X2−µ2)
d
== σ1σ2(ρZ2

1 +
√

1− ρ2Z1Z2), and the assertion follows from (26) with

α = ρ and β =
√

1− ρ2. ⊓⊔

The main result is contained in the following theorem; its proof, being an imme-

diate consequence of (25) and Proposition 4, is omitted.

Theorem 4 If Mk,n is the sample central moment of a singular distribution of order

k ≥ 2, then

n(µk −Mk,n)
d−−→ k

2
(σ

√
θ k +αk)Z

2
1 −

k

2
(σ

√
θ k −αk)Z

2
2 ,

where Z1, Z2 are independent and identically distributed standard normal and

αk = µk −
1

2
(k− 1)σ2µk−2,

θ k = µ2k−2 − µ2
k−1 − (k− 1)µk−2

[

µk −
1

4
(k− 1)σ2µk−2

]

.
(27)
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Corollary 5 If Mk,n is the sample central moment of a singular distribution of order

k ≥ 2, then there exists a constant λ k ∈R such that

n(µk −Mk,n)
d−−→ λ kχ2

1

if and only if

µ2
k = σ2

(

µ2k−2 − µ2
k−1

)

. (28)

If (28) holds, λ k = k(µk − (1/2)(k− 1)σ2µk−2) and, thus,

n(µk −Mk,n)
d−−→ k

[

µk −
1

2
(k− 1)σ2µk−2

]

χ2
1. (29)

If (28) does not hold,

n(µk −Mk,n)
d−−→ λ kχ2

1 − λ̃k χ̃2
1 (30)

with λ k = (k/2)(σ
√

θ k +αk)> 0, λ̃ k = (k/2)(σ
√

θ k −αk)> 0, αk and θ k as in (27),

and where χ2
1 and χ̃2

1 are independent and identically distributed random variables

from the chi-square distribution with one degree of freedom.

After some algebra it follows that (28) is satisfied by all two-valued distributions

of Corollaries 2 and 3. In particular, from (29) we can show that

n(µk −Mk,n)
d−−→ k(k− 1)

2
pk−1

k

(k+ 1)p2
k − (k+ 1)pk + 1

(k+ 1)pk − 1
χ2

1, k = 3,4, . . . .

For example, the two-valued standardized distribution of Corollary 2 with p6 = 1/2+
√

15(4
√

10− 5)/30 has sixth central moment equal to µ6 = (50− 13
√

10)/45 and

n

(

4
√

10− 5

135
−M6,n

)

d−−→ 50− 13
√

10

45
χ2

1.

Finally, for the symmetric distributions of Lemma 3 one finds that (28) is not satisfied

and that λ k = λ̃ k = (
√

k− 1/2)k(k−1)/2. Hence, since µk = 0, we conclude from (30)

the limit

nMk,n
d−−→

√
k− 1

2
k(k−1)/2

(

χ2
1 − χ̃2

1

)

, k = 3,5,7, . . . .

Appendix A Proofs

We shall make use of the following Lemmas. For the proof of Lemma 6 see, e.g., Gut

(1988, p. 18); for more general results, see Afendras and Markatou (2016).

Lemma 6 If X ,X1, . . . ,Xn are independent and identically distributed with E(X) = µ,

Var(X) = σ2 and E|X |δ< ∞ for some δ ≥ 2, then, for any α ∈ (0,δ ],

E|√n(X̄n − µ)|α → σ α
E|Z|α ,

where Z ∼ N(0,1) and X̄n = (X1 + · · ·+Xn)/n.
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Lemma 7 If X ,X1, . . . ,Xn are independent and identically distributed with E(X) = µ

and E|X |ν< ∞ for some ν ∈ {2,3, . . .}, then, for any j ∈ {2, . . . ,ν},

E|m j,n|ν/ j≤ E|X − µ|ν , (31)

where m j,n = n−1 ∑n
i=1(Xi − µ) j.

Proof If j = ν, then (31) follows by taking expectations to the obvious inequality

|m j,n|≤ 1
n ∑n

i=1|Xi − µ| j= 1
n ∑n

i=1|Xi − µ|ν . If j < ν (and thus, ν ≥ 3), we apply the

inequality
∣

∣

∣

∣

∣

n

∑
i=1

xi

∣

∣

∣

∣

∣

p

≤
(

n

∑
i=1

|xi|
)p

≤ np−1
n

∑
i=1

|xi|p, p > 1,

(the last inequality is a by-product of Hölder’s inequality) for p = ν/ j and xi =
(Xi − µ) j. Then, we have

E|m j,n|ν/ j =
1

nν/ j
E

∣

∣

∣

∣

∣

n

∑
i=1

(Xi − µ) j

∣

∣

∣

∣

∣

ν/ j

≤ 1

nν/ j
E

(

n

∑
i=1

|Xi − µ| j

)ν/ j

≤ 1

nν/ j
E

(

nν/ j−1
n

∑
i=1

|Xi − µ|ν
)

=
1

n
E

(

n

∑
i=1

|Xi − µ|ν
)

= E|X − µ|ν . ⊓⊔

Proof of Proposition 2 (a) Observe that the statement in Proposition 2(a) is equivalent

to

E[
√

n(Mk,n − µk)]→ 0. (32)

Writing

Mk,n − µk = (mk,n − µk)+ (−1)k−1(k− 1)mk
1,n +

k−1

∑
j=2

(−1)k− j

(

k

j

)

m
k− j
1,n m j,n, (33)

it suffices to verify that

(i)
√

nE(mk,n − µk) = 0,

(ii)
√

nE(mk
1,n)→ 0,

(iii)
√

nE(m
k− j
1,n m j,n)→ 0, j = 2, . . . ,k− 2 (provided k ≥ 4), and

(iv)
√

nE(m1,nmk−1,n)→ 0 (provided k ≥ 3).

Now, (i) is obvious (since E(mk,n) = µk), (iv) follows from E(m1,nmk−1,n) = µk/n

and (ii) can be seen by using Lemma 6 with α = δ = k, which shows that

∣

∣

∣n
k/2

E

(

mk
1,n

)∣

∣

∣≤ nk/2
E|m1,n|k= E|√n(X̄n − µ)|k → σ k

E|Z|k< ∞,

and thus, |√nE(mk
1,n)|≤ n−(k−1)/2

E|√n(X̄n−µ)|k→ 0. To show (iii), we assume that

k ≥ 4 and 2 ≤ j ≤ k − 2, and we use Hölder’s inequality with p = k/(k − j) > 1,
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Lemma 7 with ν = k and Lemma 6 with α = δ = k to obtain

∣

∣

∣

√
nE
(

m
k− j
1,n m j,n

)∣

∣

∣

≤ √
nE
(

|m1,n|k− j|m j,n|
)

≤ √
n
(

E|m1,n|k
)(k− j)/k(

E|m j,n|k/ j
) j/k

≤ √
n
[

n−k/2
E |√n(X̄n − µ)|k

](k− j)/k(

E|X − µ|k
) j/k

= n−(k−1− j)/2
[

E |√n(X̄n − µ)|k
](k− j)/k(

E|X − µ|k
) j/k

= n−(k−1− j)/2O(1) → 0,

because E|√n(X̄n − µ)|k→ σk
E|Z|k< ∞.

(b) Observe that the statement in Proposition 2(b) is equivalent to

Cov
[√

n(X̄n − µ),
√

n(Mk,n − µk)
]

→ µk+1 − kσ2µk−1, (34)

and since E(X̄n − µ) = 0, it suffices to verify that

nE
[

(X̄n − µ)(Mk,n − µk)
]

= nE[m1,n(Mk,n − µk)]→ µk+1 − kσ2µk−1. (35)

If k = 2, then nE[m1,n(M2,n − µ2)] = nE[(X̄n − µ)(m2,n − µ2)]− nE(X̄n − µ)3 =
µ3−nE(X̄n−µ)3, and it easily seen, by Lemma 6 with α = δ = 3, that |nE(X̄n−µ)3|
≤ n−1/2

E|√n(X̄n − µ)|3→ 0; thus, nE[m1,n(M2,n − µ2)]→ µ3. Since µ1 = 0, (35) is

satisfied for k = 2.

If k = 3, nE[m1,n(M3,n − µ3)] = nE[(X̄n − µ)(m3,n − µ3)]+ 2nE(X̄n − µ)4 − 3n

E[m2,n(X̄n − µ)2], and it is easy to see that nE[(X̄n − µ)(m3,n − µ3)] = µ4. Also,

by Lemma 6 with α = δ = 4, 2nE(X̄n − µ)4 → 0. Finally, −3nE[m2,n(X̄n − µ)2] =
−3[µ4 +(n− 1)µ2

2]/n →−3µ2
2 =−3σ4, which verifies (35) for k = 3.

In the general case when k ≥ 4, we write Mk,n − µk as in (33) and we observe that

for (35) to hold it suffices to verify that

(i) nE[m1,n(mk,n − µk)] = µk+1,

(ii) nE(mk+1
1,n )→ 0,

(iii) nE(mk+1− j
1,n m j,n)→ 0, j = 2, . . . ,k− 2, and

(iv) nE(m2
1,nmk−1,n)→ σ 2µk−1.

Calculating E[m1,n(mk,n − µk)] = E[(X̄n − µ)(mk,n − µk)] = E[(X̄n − µ)mk,n] =
n−2 ∑n

i1=1 ∑n
i2=1E[(Xi1 − µ)(Xi2 − µ)k] = µk+1/n, we conclude (i), while (ii) follows

by using Lemma 6 with α = δ = k+ 1. Also,

nE
(

m2
1,nmk−1,n

)

=
1

n2

n

∑
i1=1

n

∑
i2=1

n

∑
i3=1

E

[

(Xi1 − µ)(Xi2 − µ)
(

Xi3 − µ
)k−1

]

=
1

n2

[

nµk+1 + n(n − 1)σ2µk−1

]

→ σ2µk−1,
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which shows that (iv) is satisfied, and it remains to verify (iii). To this end, we use

Hölder’s inequality with p = (k+1)/(k+1− j)> 1 and Lemma 7 with ν = k+1 to

obtain
∣

∣

∣nE
(

m
k+1− j
1,n m j,n

)∣

∣

∣

≤ nE|m1,n|k+1− j|m j,n|≤ n

(

E|m1,n|k+1
)(k+1− j)/(k+1)(

E|m j,n|(k+1)/ j
) j/(k+1)

≤ n
[

n−(k+1)/2
E |√n(X̄n − µ)|k+1

](k+1− j)/(k+1)(

E|X − µ|k+1
) j/(k+1)

= n−(k−1− j)/2
[

E |√n(X̄n − µ)|k+1
](k+1− j)/(k+1)(

E|X − µ |k+1
) j/(k+1)

→ 0,

because n−(k−1− j)/2 → 0; and, by Lemma 6 with α = δ = k+1, E|√n(X̄n−µ)|k+1→
σk+1

E|Z|k+1< ∞.

(c) Without loss of generality assume that 2≤ r ≤ k and observe that the first statement

of Proposition 2(c) is equivalent to

Cov[
√

n(Mr,n − µr),
√

n(Mk,n − µk)]→ vrk. (36)

Since E|X |r+k< ∞, (32) shows that E[
√

n(Mk,n − µk)]→ 0 and E[
√

n(X̄n − µ)]→ 0,

and it suffices to verify that

(37)
nE[(Mr,n − µr)(Mk,n − µk)] → vrk = µr+k − µrµk − rµr−1µk+1

− kµr+1µk−1 + rkσ2µr−1µk−1.

The proof can be deduced by showing that (37) holds for each one of the cases

r = k = 2; r = 2, k = 3; r = k = 3; r = 2, k ≥ 4; r = 3, k ≥ 4; 4 ≤ r ≤ k. In the

following we shall present the details only for the case where 4 ≤ r ≤ k; the other

cases can be treated using similar (and simpler) arguments.

Assume now that 4 ≤ r ≤ k. From (33), we have

(38)

Mr,n − µr = (mr,n − µr)− rm1,nmr−1,n

+
r−2

∑
j1=2

(−1)r− j1

(

r

j1

)

m
r− j1
1,n m j1,n + (−1)r−1(r − 1)mr

1,n,

(39)

Mk,n − µk = (mk,n − µk)− km1,nmk−1,n

+
k−2

∑
j2=2

(−1)k− j2

(

k

j2

)

m
k− j2
1,n m j2,n + (−1)k−1(k − 1)mk

1,n.

We shall show that the asymptotic covariance in (36) can be determined by using only

the first two terms in (38) and (39). Indeed, it is easily seen that (37) holds true if it

can be shown that

(i) nE[(mr,n − µr)(mk,n − µk)] = µr+k − µrµk,

(ii) nE[m1,nmk−1,n(mr,n − µr)]→ µr+1µk−1,
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(iii) nE[m1,nmr−1,n(mk,n − µk)]→ µr−1µk+1,

(iv) nE(m2
1,nmr−1,nmk−1,n)→ σ2µr−1µk−1,

(v) nE[m
k− j2
1,n m j2,n(mr,n − µr)]→ 0, j2 = 2, . . . ,k− 2,

(vi) nE[mk
1,n(mr,n − µr)]→ 0,

(vii) nE(mk+1− j2
1,n m j2,nmr−1,n)→ 0, j2 = 2, . . . ,k− 2,

(viii) nE(mk+1
1,n mr−1,n)→ 0,

(ix) nE[m
r− j1
1,n m j1,n(mk,n − µk)]→ 0, j1 = 2, . . . ,r− 2,

(x) nE(mr+1− j1
1,n m j1,nmk−1,n)→ 0, j1 = 2, . . . ,r− 2,

(xi) nE(mr+k− j1− j2
1,n m j1,nm j2,n)→ 0, j1 = 2, . . . ,r− 2, j2 = 2, . . . ,k− 2,

(xii) nE(m
r+k− j1
1,n m j1,n)→ 0, j1 = 2, . . . ,r− 2,

(xiii) nE[mr
1,n(mk,n − µk)]→ 0,

(xiv) nE(mr+1
1,n mk−1,n)→ 0,

(xv) nE(mr+k− j2
1,n m j2,n)→ 0, j2 = 2, . . . ,k− 2, and

(xvi) nE(mr+k
1,n )→ 0.

We now proceed to verify (i)–(xvi). Since E(mr,n) = µr and E(mk,n) = µk, we have

nE[(mr,n − µr)(mk,n − µk)]

= n[E(mr,nmk,n)− µrµk] = n

{

1

n2

n

∑
i1=1

n

∑
i2=1

E

[

(Xi1 − µ)r (Xi2 − µ)k
]

− µrµk

}

= n

{

1

n2
[nµr+k + n(n − 1)µrµk]− µrµk

}

= µr+k − µrµk,

which shows (i). Also, (ii), (iii) and (iv) follow by straightforward computations; e.g.,

for (ii) we have

nE[m1,nmk−1,n(mr,n − µr)] = −µrµk +
µr+k + (n − 1)(µr+1µk−1 + µrµk)

n
→ µr+1µk−1,

while (iii) is similar to (ii), and (iv) can be deduced from

nE
(

m2
1,nmr−1,nmk−1,n

)

=
1

n3

[

n(n− 1)(n− 2)σ2µr−1µk−1 + o
(

n3
)]

→ σ2µr−1µk−1.

The vanishing limits (vi)–(viii) and (x)–(xvi) are by-products of Lemmas 6 and 7

with α = δ = ν = r+k, sinceE|X |r+k<∞. Indeed, we have |nE(mr+k
1,n )|≤ nE|m1,n|r+k=

n−(r+k−2)/2
E|√n(X̄n−µ)|r+k→ 0, which verifies (xvi). Also, using Hölder’s inequal-
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ity with p = (r+ k)/(r+ k− j2)> 1, we obtain (xv) as follows:

∣

∣

∣nE
(

m
r+k− j2
1,n m j2,n

)∣

∣

∣

≤ nE
(

|m1,n|r+k− j2 |m j2,n|
)

≤ n
(

E|m1,n|r+k
)

r+k− j2
r+k

(

E|m j2,n|
r+k
j2

)

j2
r+k

≤ n
[

n−(r+k)/2
E |√n(X̄n − µ)|r+k

]

r+k− j2
r+k

(

E|X − µ|r+k
)

j2
r+k

= n−(r+k− j2−2)/2
[

E |√n(X̄n − µ)|r+k
]

r+k− j2
r+k

(

E|X − µ|r+k
)

j2
r+k → 0,

because n−(r+k− j2−2)/2 → 0 andE|√n(X̄n−µ)|r+k→ σ r+k
E|Z|r+k<∞; (xii) is similar

to (xv). For the limit (xiv) we have

∣

∣

∣nE
[

mr+1
1,n mk−1,n

]∣

∣

∣

≤ nE
(

|m1,n|r+1|mk−1,n|
)

≤ n

(

E|m1,n|r+k
) r+1

r+k
(

E|mk−1,n|
r+k
k−1

) k−1
r+k

≤ n−(r−1)/2
[

E |√n(X̄n − µ)|r+k
] r+1

r+k
(

E|X − µ |r+k
) k−1

r+k → 0,

and similarly for (viii). In order to prove (xiii), it is sufficient to show that nE[mr
1,nmk,n]→

0 and nE(mr
1,n) → 0. The second limit is obvious since, as for (xvi), one can easily

verify that |nE(mr
1,n)|≤ n−(r−2)/2

E|√n(X̄n − µ)|r= n−(r−2)/2O(1)→ 0. For the first

limit, we have

∣

∣nE
(

mr
1,nmk,n

)∣

∣ ≤ nE
(

|m1,n|r|mk,n|
)

≤ n
(

E|m1,n|r+k
) r

r+k
(

E|mk,n|
r+k

k

) k
r+k

≤ n−(r−2)/2
[

E |√n(X̄n − µ)|r+k
] r

r+k
(

E|X − µ |r+k
) k

r+k → 0.

Limit (vi) is similar to (xiii) and its proof is omitted. Regarding (xi), we have

∣

∣

∣nE
(

m
r+k− j1− j2
1,n m j1,nm j2,n

)∣

∣

∣

≤ nE
(

|m1,n|r+k− j1− j2 |m j1,nm j2,n|
)

≤ n

(

E|m1,n|r+k
)

r+k− j1− j2
r+k

(

E|m j1,nm j2,n|
r+k

j1+ j2

)

j1+ j2
r+k

≤ n
(

E|m1,n|r+k
)

r+k− j1− j2
r+k





(

E|m j1,n|
r+k
j1

)

j1
j1+ j2

(

E|m j2,n|
r+k
j2

)

j2
j1+ j2





j1+ j2
r+k

≤ n
(

E|m1,n|r+k
)

r+k− j1− j2
r+k

(

E|X − µ |r+k
)

j1+ j2
r+k

= n−(r+k− j1− j2−2)/2
[

E |√n(X̄n − µ)|r+k
]

r+k− j1− j2
r+k

(

E|X − µ|r+k
)

j1+ j2
r+k → 0.
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Similarly, for (x) we have
∣

∣

∣nE
(

m
r+1− j1
1,n m j1,nmk−1,n

)∣

∣

∣

≤ n
(

E|m1,n|r+1− j1 |m j1,nmk−1,n|
)

≤ n

(

E|m1,n|r+k
)

r+1− j1
r+k

(

E|m j1,nmk−1,n|
r+k

j1+k−1

)

j1+k−1

r+k

≤ n
(

E|m1,n|r+k
)

r+1− j1
r+k





(

E|m j1,n|
r+k
j1

)

j1
j1+k−1 (

E|mk−1,n|
r+k
k−1

) k−1
j1+k−1





j1+k−1

r+k

≤ n
(

E|m1,n|r+k
)

r+1− j1
r+k

(

E|X − µ|r+k
)

j1+k−1

r+k

= n−(r− j1−1)/2
[

E |√n(X̄n − µ)|r+k
]

r+1− j1
r+k

(

E|X − µ|r+k
)

j1+k−1

r+k → 0,

while (vii) is similar to (x).

It remains to verify (v) and (ix); but, since they are similar, it suffices to prove (v).

If j2 ∈ {2, . . . ,k− 3} (and hence, k ≥ 5 and j2 < k− 2), we have
∣

∣

∣nE
[

m
k− j2
1,n m j2,n(mr,n − µr)

]∣

∣

∣

≤ nE

(

|m1,n|k− j2 |m j2,nmr,n|
)

+ n|µr|E
(

|m1,n|k− j2 |m j2,n|
)

,

and it suffices to prove that nE(|m1,n|k− j2 |m j2,nmr,n|)→ 0 and nE(|m1,n|k− j2 |m j2,n|)→
0. For the first quantity, we have

nE
(

|m1,n|k− j2
∣

∣m j2,nmr,n

∣

∣

)

≤ n
(

E|m1,n|r+k
)

k− j2
r+k

(

E|m j2,nmr,n|
r+k

r+ j2

)

r+ j2
r+k

≤ n

(

E|m1,n|r+k
)

k− j2
r+k





(

E|m j2,n|
r+k
j2

)

j2
r+ j2

(

E|mr,n|
r+k

r

) r
r+ j2





r+ j2
r+k

≤ n−(k− j2−2)/2
[

E |√n(X̄n − µ)|r+k
]

k− j2
r+k
(

E|X − µ|r+k
)

r+ j2
r+k → 0,

because k− j2 − 2 > 0. Similarly, for the second quantity we have

nE
(

|m1,n|k− j2
∣

∣m j2,n

∣

∣

)

≤ n
(

E|m1,n|r+k
)

k− j2
r+k

(

E|m j2,n|
r+k

r+ j2

)

r+ j2
r+k

≤ n

(

E|m1,n|r+k
)

k− j2
r+k

(

E|m j2,n|
r+k
j2

)

j2
r+k

≤ n−(k− j2−2)/2
[

E |√n(X̄n − µ)|r+k
]

k− j2
r+k
(

E|X − µ|r+k
)

j2
r+k → 0,
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because k− j2 − 2 > 0. Finally, it remains to study the limit (v) when j2 = k− 2; in

this case the above limits do not necessarily vanish. However, since j2 = k− 2 we

have

nE
[

m
k− j2
1,n m j2,n(mr,n − µr)

]

= nE
(

m2
1,nmr,nmk−2,n

)

− nµr E
(

m2
1,nmk−2,n

)

,

and direct computations show that

nE
(

m2
1,nmr,nmk−2,n

)

=
1

n3

[

n(n− 1)(n− 2)σ2µrµk−2 + o
(

n3
)]

→ σ2µrµk−2

and

nE
(

m2
1,nmk−2,n

)

=
1

n2

[

n(n− 1)σ2µk−2 + o
(

n2
)]

→ σ 2µk−2.

Hence, when j2 = k− 2 we have

nE
[

m
k− j2
1,n m j2,n(mr,n − µr)

]

= nE
(

m2
1,nmr,nmk−2,n

)

− nµr E
(

m2
1,nmk−2,n

)

→ σ2µrµk−2 − µrσ2µk−2 = 0,

and the proof is complete. ⊓⊔
Proof of Theorem 3 Observe that Mk,n − µk = gk,k(mmmk,n)−gk,k(µµµk); see in Section 2.

Also,
√

n(mmmn −µµµk)
d−−→WWW k, where WWW k = (W1, . . . ,Wk)

′ ∼ N(000k,ΣΣΣ| k), see (1). Hence,

Lemma 5 applies to XXXn = mmmk,n, provided (21) is fulfilled for mmmk,n, i.e., provided that

n[∇gk,k(µµµk)]
′(mmmk,n − µµµk)

p−−→ 0. Because ∇gk,k(µµµk) = (−kµk−1,0, . . . ,0,1)
′, we get

[∇gk,k(µµµk)]
′(mmmk,n − µµµk) = −kµk−1m1,n +(mk,n − µk). Since E(m j,n) = µ j for all n

and j we get E[−kµk−1m1,n +(mk,n − µk)] = 0. Also,

Var[−kµk−1m1,n + (mk,n − µk)]

= k2µ2
k−1Var(m1,n) + Var(mk,n)− 2kµk−1Cov(m1,n,mk,n)

= k2µ2
k−1

σ2

n
+

µ2k − µ2
k

n
− 2kµk−1

µk+1

n

=
1

n

(

k2µ2
k−1σ2 + µ2k − µ2

k − 2kµk−1µk+1

)

=
1

n

[

µ2k − µ2
k + kµk−1

(

kσ2µk−1 − 2µk+1

)]

=
v2

k

n
= 0,

because v2
k = 0 by the assumed singularness. Therefore, [∇gk,k(µµµk)]

′(mmmk,n −µµµk) = 0

with probability one and, thus, n[∇gk,k(µµµk)]
′(mmmk,n −µµµk)

p−−→ 0 in a trivial sense. Now,

a simple calculation, since ∇gk,k(µµµk) = (−kµk−1,0, . . . ,0,1)
′, shows that

Hk(µµµk) =



















k(k− 1)µk−2 0 · · · 0 −k 0

0 0 · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · 0 0 0

−k 0 · · · 0 0 0

0 0 · · · 0 0 0



















,



On the limiting distribution of sample central moments 25

i.e.,

H2(µµµ2) =

(

2 0

0 0

)

, H3(µµµ3) =





0 −3 0

−3 0 0

0 0 0



, H4(µµµ4) =









12σ2 0 −4 0

0 0 0 0

−4 0 0 0

0 0 0 0









,

e.tc. Applying (22), we see that n(Mk,n − µk) converges weakly to the distribution

of 1
2
WWW ′

kHk(µµµk)WWW k =
1
2
k(k− 1)µk−2W 2

1 − kW1Wk−1, while, by (1), the distribution of

(W1,Wk−1)
′ is given by (24). ⊓⊔

Acknowledgements We would like to thank H. Papageorgiou for helpful discussions.

References

Afendras, G. (2013). Moment-based inference for Pearson’s quadratic q subfamily of distributions. Comm.

Statist. – Theory Methods, 42(12), 2271–2280.

Afendras, G.; Markatou, M. (2016). Uniform integrability of the OLS estimators, and the convergence of

their moments. TEST, 25(4), 775–784.

Billingsley, P. (1995). Probability and Measure (3rd ed.), John Wiley & Sons, New York.

Geary, R.C. (1936). The distribution of “Student’s” ratio for non-normal samples. J. Roy. Statist. Soc. Ser.

B, 3, 178–184.

Gut, A. (1988). Stopped Random Walks: Limit Theorems and Applications. Springer–Verlag, N.Y.

Haug, S; Klüppelberg, C.; Lindner, A.; Zapp, M. (2007). Method of moment estimation in the COGA-

RCH(1,1) model. Econom. J., 10(2), 320–341.

Kagan, A.M.; Linnik, Y.V.; Rao, C.R. (1973). Characterization Problems in Mathematical Statistics. John

Wiley, N.Y.

Kourouklis, S. (2012). A new estimator of the variance based on minimizing mean squared error. The

American Statistician, 66(4), 234–236.

Laha, R.G.; Lukacs, E.; Newman, M. (1960). On the independence of a sample central moment and the

sample mean. Ann. Math. Statist., 31, 1028–1033.

Lehmann, E.L. (1999). Elements of Large-Sample Theory. Springer, N.Y.

Pewsey, A. (2005). The large-sample distribution of the most fundamental of statistical summaries. J. Statist.

Plann. Inference, 134, 434–444.

Stefanski, L.A.; Boos, D.D. (2002). The calculus of M-estimation. Amer. Statist., 56(1), 29–38.

Wu, S.-F.; Liang, M.-C. (2010). A note on the asymptotic distribution of the process capability index Cpkm .

J. Statist. Comput. Simul., 80, 227–235.

Yatracos, Y. (2005). Artificially augmented samples, shrinkage, and mean squared error reduction. J. Amer.

Statist. Assoc., 100, 1168–1175.

van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge University Press, N.Y.

Zinger, A.A. (1958). Independence of quasi-polynomial statistics and analytical properties of distributions.

Theory of Probability & Its Applications, 3(3), 247-265.


	1 Introduction
	2 Notation and Terminology
	3 Motivation and our contributions
	4 The limiting distribution and a characterization of normality
	5 The singular distributions
	6 Limiting distribution under singularness
	A Proofs

