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General

The Mean Value Theorem and Taylor’s Expansion in Statistics

Changyong FENG, Hongyue WANG, Yu HAN, Yinglin XIA, and Xin M. TU

The mean value theorem and Taylor’s expansion are powerful
tools in statistics that are used to derive estimators from nonlin-
ear estimating equations and to study the asymptotic properties
of the resulting estimators. However, the mean value theorem
for a vector-valued differentiable function does not exist. Our
survey shows that this nonexistent theorem has been used for a
long time in statistical literature to derive the asymptotic prop-
erties of estimators and is still being used. We review several
frequently cited papers and monographs that have misused this
“theorem” and discuss the flaws in these applications. We also
offer methods to fix such errors.

KEY WORDS: Asymptotic normality; Consistent estimator;
Estimating equation.

1. INTRODUCTION

Many estimators in statistics are obtained through estimat-
ing equations. For example, the maximum likelihood estimator
(MLE) is the solution of the score equation (Cramér, 1946); the
least square estimator in linear regression is the solution of nor-
mal equation (Seber and Lee 2003); the generalized estimating
equations (GEE) estimator (Liang and Zeger 1986), is the solu-
tion of a set of equations. Under mild regularity conditions, the
estimators from such estimating equations are consistent and
asymptotically normally distributed. Their asymptotic variance
can be easily obtained from some robust procedures such as the
“sandwich variance estimator” (Huber 1967; White 1982; Liang
and Zeger 1986 ).

Estimating equations are generally nonlinear. Highly efficient
numerical methods are available to solve those equations. How-
ever, the proof of consistency and asymptotic normality is not so
straightforward. Taylor’s expansion and the mean value theorem
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(MVT), which are useful tools in mathematics, have been widely
used in statistics to study the asymptotic properties of estima-
tors obtained from nonlinear estimating equations. In calculus
we know that the mean value theorem exists for multivariate
real-valued differentiable functions. However, a similar mean
value theorem does not exist for vector-valued differentiable
functions. Our survey shows that this fact is not well appreci-
ated and many frequently cited papers and books in statistics
have used this nonexistent theorem in their respective contexts.

In this article, we show how the nonexistent mean value the-
orem for vector-valued differentiable function has been used
in some highly cited journal papers and monographs. We also
discuss the reason for such flaws and methods to fix them.

The article is organized as follows. In Section 2 we briefly
summarize the Taylor’s expansion and MVT, especially for the
case of vector-valued multivariate differentiable functions. In
Section 3 we discuss some published works that have misused
the MVT and Taylor’s expansion. In Section 4 we show how to
fix the flaws, followed by the conclusion in Section 5.

2. MEAN VALUE THEOREM AND TAYLOR’S
EXPANSION OF VECTOR-VALUED FUNCTIONS

We now summarize some well-known results on the mean
value theorem and Taylor’s expansion in mathematical analysis.
All these results can be obtained from any standard book on
mathematical analysis such as Rudin (1976).

Suppose that O is an open interval and f : O → R is differ-
entiable. Then for any [a, b] ⊂ O, there exists θ ∈ (a, b) such
that

f (b) − f (a) = f ′(θ )(b − a). (1)

This is the well-known mean value theorem in calculus. This
result can be easily generalized to multivariate real-valued dif-
ferentiable functions. Suppose G is an open convex subset of
R

p (p > 1) and f : G → R is a differentiable function. Then
for any a, b ∈ G, there exists θ between a and b such that

f (b) − f (a) = ∇f (θ )(b − a), (2)

where ∇f (θ ) (a row vector) is the gradient of f at θ .
However, the MVT for vector-valued differentiable functions

does not exist. To see this, consider a vector-valued function
f . For an open convex subset G ⊂ R

p (p ≥ 1), the function
f : G → R

q (q > 1) is said to be differentiable at x ∈ G if there
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exists a linear operator Df (x) : R
p → R

q such that

lim
x+h∈G, h→0

‖f (x + h) − f (x) − Df (x)h‖
‖h‖ = 0. (3)

The function f is differentiable in G if it is differentiable at each
point of G. From (3)

f (x + h) = f (x) + Df (x)h + o (‖h‖) . (4)

If f is differentiable in G, for any a ∈ G, the first-order Taylor’s
expansion of f around a is

f (x) = f (a) + Df (a)(x − a) + o (‖x − a‖) . (5)

Although (5) is quite similar to (2) and the remainder term in (5)
has higher order than the linear part, it does not mean that for
any a, b ∈ G there exists θ on the line segment between a and
b such that

f (b) − f (a) = Df (θ )(b − a). (6)

We call (6) the nonexistent mean value theorem (NEMVT) for
vector-valued functions.

Here is an example to show why (6) is not true in general.
Consider the function f : R

2 → R
2 defined by

f (x, y) =
[

x + sin y

x + cos y

]
.

This function is continuously differentiable in R
2 with derivative

Df (x, y) =
[

1 cos y

1 − sin y

]
.

Note that f (0, 0) = f (0, 2π ) = (0, 1)	. Assume that there ex-
ists (x∗, y∗) on the line segment between (0, 0) and (0, 2π ) such
that (6) holds, then we must have

f (0, 2π ) − f (0, 0) =
[

0
0

]
=

[
1 cos y∗

1 − sin y∗

] {[
0

2π

]
−

[
0
0

]}
.

This means that cos y∗ = sin y∗ = 0, which is impossible.
We give an argument to show why (6) is generally wrong.

Our argument is not novel to mathematicians, but may be new
to some statisticians.

Let f = (f1, . . . , fq)	 : R
p → R

q, p ≥ 1, q > 1 be differ-
entiable. For k = 1, . . . , q, fk : R

p → R are multivariate real-
valued differentiable functions. According to (2), for any a, b ∈
R

p, there exists θk between a and b such that

fk(b) − fk(a) = ∇fk(θk)(b − a), k = 1, . . . , q. (7)

Note that θk may be different for different k. This means in
general we cannot find a universal θ between a and b such that
(7) holds for all k, even when Df (x) is invertible for all x ∈ R

p.
All examples discussed in Section 3 simply assume that θk is
the same for all k. Although

Df (θ ) =

⎡
⎢⎢⎣

∇f1(θ )
...

∇fq(θ )

⎤
⎥⎥⎦, θ ∈ R

p,

from (7) we can only have for vectors θ1, . . . , θq ,

f (b) − f (a) =

⎡
⎢⎢⎣

∇f1(θ1)
...

∇fq(θq)

⎤
⎥⎥⎦ (b − a),

which is totally different.
Sometimes the MVT and Taylor’s expansion are used inter-

changeably in the statistical literature. See Example 1 in the next
section, in which the Taylor’s expansion is actually the NEMVT.

3. SOME MISUSES OF THE MEAN VALUE THEOREM
IN STATISTICS

Our survey of the literature shows that the NEMVT (6) has
been used quite extensively for decades in the statistical litera-
ture. In this section we focus on five highly cited publications
(two journal article and three published monographs) to illus-
trate the extent of the problem. To make our argument precise,
we try to use the same notation as in the original works and
point out the exact formula where mistakes occur. Please refer
to the original works for more details.

Example 1. Wei, Lin, and Weissfeld (1989).

This is a highly cited article in survival analysis, especially
in the literature of multivariate survival data and recurrent event
failure time data. In this article, the marginal hazard functions
of failure times are assumed to be of the form

λk(t) = λk0(t) exp(β ′
kZ(t)),

where βk is a p × 1 vector. The marginal working independence
partial likelihood was used to estimate the parameter βk . The
score function Uk(βk,∞) is also a p × 1 vector. To study the
asymptotic properties of β̂k , Wei, Lin, and Weissfeld (1989)
stated “By the Taylor series expansion of Uk(βk,∞) around βk ,
we have”

n−1/2Uk(βk,∞) = Âk(β∗
k )n1/2(β̂k − βk), (8)

where “β∗
k is on the line segment between β̂k and βk”. See

formula (A.1) and the expression of Âk(β∗) in Wei, Lin, and
Weissfeld (1989). In fact, Âk(β∗) is exactly −DUk(β∗

k ,∞)/n.
It is obvious that Equation (8) [formula (A.1) in Wei, Lin,

and Weissfeld (1989)] is not obtained from the Taylor series
expansion but from the application of the NEMVT on the vector-
valued function Uk(βk,∞).

Example 2. Gross and Huber (1987).

Gross and Huber (1987) studied the asymptotic properties
of semiparametric estimators of regression parameters in the
hazard functions of matched-pair survival data. In their setup,
the regression parameter β is a p × 1 vector. The partial like-
lihood score function DLn(β) (formula 4 of Gross and Huber
1987) is a vector-valued function with p components. To study
the asymptotic normality of the maximum partial likelihood
estimator β̃n, they used the following expansion of the score
function DLn around the true value β0:

DLn(β̃n) = DLn(β0) + (
β̃n − β0

)
D2Ln(β∗

n ), (9)
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where “D2 denotes the matrix of second partial derivatives with
respect to β, and β∗

n lies between β0 and β̃n” [see lines 3–6 on
p31 of Gross and Huber (1987)].

To study the asymptotic normality of MLE β̂n, they expanded
the score function DLF

n around β∗ in the following way

n−1/2DLF
n (β̂n) = 0 = n−1/2DLF

n (β∗)

+ n1/2(β̂n − β∗)n−1D2LF
n (β∗∗

n ), (10)

“with β∗∗
n ∈ (β∗, β̂n)” (see Gross and Huber 1987, sec. 3.2).

It is again clear that these two expansions of the vector-valued
function used by Gross and Huber (1987) are the application of
formula (6).

Example 3. Kalbfleisch and Prentice (2002).

This book is a revised and expanded version of Kalbfleisch
and Prentice (1980). Since the publication of the first edition,
the book has become an “authority on censoring and likelihood
and the hazard function approach to models for several types of
failure” (Andersen et al. 1993, p. 7).

In the proof of the asymptotic normality of the Cox partial
likelihood estimator β̂ of parameter vector β (formula 5.59 in
Kalbfleisch and Prentice 2002, p. 176), the following formula

0 = n−1/2U (β̂, τ ) = n−1/2U (β0, τ )

− [n1/2(β̂ − β0)]′[n−1I (β∗, τ )] (11)

is used, “where β∗ is between β̂ and β0” (Kalbfleisch and
Prentice 2002, p. 177).

Example 4. Fleming and Harrington (1991).

This is the first book devoted entirely to the counting process
method in survival data. It is a beautifully written book and
is accessible to researchers in survival analysis with a solid
background in probability theory.

In the proof of the asymptotic normality of the Cox partial
likelihood estimator β̂ of parameter vector β in Fleming and
Harrington (1991, p. 299), they used a similar expansion to
Kalbfleisch and Prentice (2002) for the score function U,

U (β̂, τ ) = U (β0, τ ) − I(β∗, τ )(β̂ − β0), (12)

“where β∗ is on a line segment between β̂ and β0” (Fleming and
Harrington 1991, p. 299). Here I(β, τ ) = −∂U (β, τ )/∂β	.

Example 5. Tsiatis (2006).

Tsiatis (2006) is a very nice introduction to semiparametric
methods in statistics and is more accessible than some classical
books in semiparametric statistical methods such as Bickel et al.
(1993), which may be too theoretical for graduate students in
statistics and applied researchers.

Unfortunately, the NEMVT was used numerous times in Tsi-
atis (2006) to derive certain estimators. For example, in the dis-
cussion of M-estimator, Tsiatis (2006, p. 30) has the following
expansion of estimating equation

0 =
n∑

i=1

m(Zi, θ̂n) =
∑
i=1

m(Zi, θ0)

+
{

n∑
i=1

∂m(Zi, θ
∗
n )

∂θ	

}p×p

(θ̂n − θ0), (13)

“where θ∗
n is an intermediate value between θ̂n and θ0” (Tsiatis

2006, p. 30).

4. CAN WE FIX THE FLAWS?

In Section 3, we showed some misuses of the MVT in pub-
lished papers and monographs, although the conclusions usu-
ally remain unchanged in large samples. Here we use the idea of
Andersen et al. (1993) to illustrate how to fix the mistake. Con-
sider the problem mentioned earlier in Kalbfleisch and Prentice
(2002). Assume that U (β) = (U1(β), . . . , Up(β))′, U (β̂) = 0,
and β̂ is a consistent estimator of β. From MVT (2) we have
that for k = 1, . . . , p,

0 = n−1/2Uk(β̂) = n−1/2Uk(β) + n−1∇Uk

(
β(k∗)

) · √
n(β̂ − β),

where β(k∗) is between β̂ and β. Suppose we can prove that
−n−1∇Uk(β(k∗)) → �k , and � = (�′

1, . . . , �
′
p)′ is nonsingu-

lar, then we can prove
√

n(β̂ − β) = �−1 · n−1/2Uk(β) + op(1).

Another way to correct the mistake is to use the integral
form of the mean value theorem for vector-valued functions,
which states that if f : R

p → R
q is differentiable and Df is

continuous in a neighborhood {x : ‖x − x0‖ < r} of x0, then for
all t with ‖t‖ < r ,

f (x0 + t) − f (x0) =
∫ 1

0
Df (x0 + ut)du · t. (14)

The proof of this result can be found in Lang (1993, p. 341) and
Ferguson (1996, p. 20).

The key to using this result is that if Df is continuous in the
open area, then it is uniformly bounded in any compact region
contained in the neighborhood of x0. In this case,∥∥∥∥

∫ 1

0
Df (x0 + ut)du − Df (x0)

∥∥∥∥
≤ max

x:‖x−x0‖≤‖t‖
‖Df (x) − Df (x0)‖ → 0

as t → 0. A direct result of this fact is

f (x0 + t) − f (x0) = Df (x0) · t + o(‖t‖), (15)

which is exactly Equation (4), equivalent to the definition of
differentiability.

Ferguson (1996, pp. 45, 122, and 138) used (14) to prove the
multivariate δ-method, the asymptotic normality of the MLE,
and the equivalence of the one-step estimator to the MLE. Shao
(2003, p. 191) also used (14) to prove the asymptotic normality
of the MLE.

5. CONCLUSION

Our limited survey establishes misuse of the MVT for vector-
valued differentiable functions in the statistical literature for
more than two decades. All the examples discussed in Section 3
have been cited numerous times in many statistics/biostatistics
publications. Some books discussed in Section 3 have been
widely used as textbooks in graduate education or as reference
books for researchers. Our article reminds statisticians that such
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an “MVT” does not exist and appropriate results should be used
to ensure the validity of estimators and asymptotic properties
derived from estimating equations. As one reviewer pointed out
“Our statistical literature should not be perpetuating this error.”

[Received March 2013. Revised September 2013.]
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