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Description of Research

(a) PhD Thesis

[0] Contribution to the theory of order statistics and to approximation of distribu-
tions.

The thesis is divided in two parts. First part (chapters 1–3) considers properties of or-
dered samples, while in the second part (chapters 4–6), some bounds and approximation
results for the total variation distance among probability measures are derived.

Specifically, in the first chapter we define the intermediate order statistics and it is
shown, [1], that they can be used as estimators of the population quantiles. In second
chapter we derive some variance bounds for order statistics using a method of Cacoullos
and Papathanasiou, Statist. Probab. Lett. (1985)3, 175–184 – [5]. In the third chapter
we obtain the best possible upper bound for the variance of a single order statistic, in
terms of the population variance, [2].

The second part of the thesis is devoted to find convenient upper bounds for the total
variation distance between two probability measures. Specifically, in fourth chapter we
obtain some information-type bounds between an arbitrary distribution and an extreme
value distribution. Fifth chapter extends these results to the general case, and the
typical bound is of the form

dTV (X,Y ) ≤ cY IE

∣∣∣∣f ′(X)

f(X)
− g′(X)

g(X)

∣∣∣∣ ,
where dTV (X, Y ) = supA |IP(X ∈ A)− IP(Y ∈ A)| is the total variation distance, f , g
are the densities of X, Y , and cY is a constant depending only on Y – see [4]. Finally,
the sixth chapter contains results using different functionals, the so called w-functions
of X and Y . It turns out that the last mentioned bounds have better behavior than
their information-type counterparts of chapter five, [3].

(b) Research Papers

(i) In International Journals / Refereed Volumes

[1] Intermediate order statistics with applications to nonparametric estimation.
The uniform intermediate order statistics are constructed by a method that uses the
original observations of the sample and an exterior generation of suitable Beta r.v.’s.
Moreover, a method to approximate the intermediate order statistics in the general (non-
uniform) case is given. Numerical simulations show that these r.v’s have well behavior
as estimators of the quantiles, even for small values of the sample size.

[2] Maximum variance of order statistics.
If σ2 > 0 is the population variance, it is proved that the variance of the standardized
order statistic, Xi:n/σ, cannot exceed a constant ci:n. The proof of the result is based
on Hoeffding’s identity, and the bound is best possible (attainable).



[3] Distance in variation between two arbitrary distributions via the associated w-
functions.
The main result in Cacoullos, Papathanasiou and Utev, Ann. Probab. (1994)22, 1607–
1618 is extended, obtaining bounds for the total variation distance of arbitrary r.v.’s X
and Y . The main result has the form (provided that the first two moments are identical)

dTV (X, Y ) ≤ cY IE

∣∣∣∣1− wX(X)

wY (X)

∣∣∣∣ ,
where the function wX(·) is defined in the (assumed) interval support of X by

wX(x) =
1

σ2f(x)

∫ x

−∞
(µ− t)f(t)dt, µ = IEX, σ2 = VarX,

and similarly for wY . These functions appear in variance bounds and in Stein-type
identities, so they are called covariance kernels.

It should be noted that Cacoullos, Papathanasiou and Utev proved this result only
for a normal r.v. Y . The above general bound is extended to the discrete case, and
also to the case where X is a sum of possible dependent r.v.’s. Applications to specific
examples provide the rate of convergence to the limiting distribution.

[4] Distance in variation and a Fisher-type information.
We derive an information-type bound for the total variation distance and the result is
also extended to the discrete case. A simple application of the main inequality simplifies
a result of Barron, Ann. Probab. (1986)14, 336–342, regarding a strengthened CLT (L1

convergence of densities), in the sense of entropy. Other applications are related to the
extreme value theory, providing explicit results to the rate of convergence.

[5] A generalization of variance bounds.
Upper and lower variance bounds for order statistics, involving the density–quantile
function f(F−1(·)), are obtained. A simple application simplifies the known result for
the limiting variance.

[6] A note on maximum variance of order statistics from symmetric populations.
When the population is symmetric, the bounds in [2] are no longer tight. Under sym-
metry, we obtain the new sharp bounds, verifying great improvement compared to the
general case.

[7] Exact bounds for the expectations of order statistics from non-negative popula-
tions.
We derive the best possible upper bound for the expectation of a single order statistic
when the population is non-negative and has mean µ > 0. Also, we derive the cor-
responding result for the difference of two order statistics (generalized spacings). In
practice, e.g., in Reliability Systems, the units are lifetimes, hence non-negative. Thus,
the assumption of non-negativity is not too restrictive. Since the bounds do not de-
pend on the population variance, we gain a major improvement to the classical results



of Hartley–David–Gumbel, Ann. Math. Statist. (1954)25, 85–99, 75–84, and Moriguti,
Ann. Math. Statist. (1953)24, 107–113.

[8] Variance inequalities for covariance kernels and applications to central limit
theorems.
We prove a convolution-type inequality for the standardized sum of two independent
absolutely continuous r.v.’s. Based on this inequality (which is valid under the restriction
that the support of the r.v.’s is a finite or infinite interval), it is shown that the rate
of convergence (in total variation) of the standardized sums (Sn − nµ)/(σ

√
n) (from

i.i.d. r.v.’s X,X1, X2, . . .) to the standard normal, Z, is at least O(n−1/2). Moreover, an
explicit value of the constant cX for which

dTV ((Sn − nµ)/(σ
√
n), Z) ≤ cX/

√
n

is given. The result applies also to the multivariate case. It should be noted that the
proof is extremely simple.

[9] Total variation distance and generalized covariance kernels.
We provide an extended version of [3], in order to obtain total variation bounds in terms
of a function Zf (·;h(·)), where f is the density of X and h(·) is an arbitrary function.
The function Zf (·;h(·)) is a generalized covariance kernel, since the identity function
h(x) = x leads to Zf (·;x) = wX(·), as in [3]. When h is strictly increasing, the bound
takes the form

dTV (X, Y ) ≤ cY IE

∣∣∣∣1− Zf (X;h)

Zg(X;h)

∣∣∣∣ ,
where the constant cY depends only on Y . Using h = −g′/g, where g is the density of
Y , it is shown that, under general conditions,

dTV (Xn, Y ) → 0 if and only if Zfn(Xn;−g′/g) → 1 in probability.

[10] Variational inequalities for arbitrary multivariate distributions.
We present bounds for the total variation in the multivariate setup and in the discrete
case. The bounds are similar to those given in [3], and extend the main result from
Papathanasiou, J. Multivariate Anal. (1996)58, 189–196 to the general (not necessarily
normal) case. Interesting applications include discrete distributions where the limiting
distribution has independent components. In such cases, the bound simplifies consi-
derably and we can investigate the rate of convergence. As illustrative examples, we
obtain rates of convergence of the Multinomial and the Negative Multinomial to the
multivariate Poisson.

[11] Three elementary proofs of the Central Limit Theorem with applications to
random sums.
The present work was presented in the Conference in the Memory of Stamatis Cambanis,



18–19 December 1995 at Athens, Greece, and contains three elementary proofs and CLT.
Moreover, it includes a result regarding the case of random sums, i.e., sums of N i.i.d.
r.v.’s where N is an r.v. with values in IN.

[12] Upper bound for the covariance of extreme order statistics from a sample of size
three.
Let X1:3 ≤ X2:3 ≤ X3:3 be the order statistics based on a sample of size n = 3 from an
arbitrary distribution function with mean µ and variance σ2 > 0. Using the orthogonal
polynomial system of Legendre on [0, 1], it shown that

Cov[X1:3, X3:3] ≤
6

a2
σ2,

where a ≃ 0.16838 is the unique positive root to the equation tanh(a/2) = a/6, and the
equality characterizes the hyperbolic sine distribution with density

f(x) =
1/a√

(x− µ)2 + λ2σ2
, |x− µ| < aσ

√
2

a2 − 24
,

where λ =
√

2(36− a2)/(a2 − 24) ≃ 0.25089.

[We point out that the same inequality can be derived if we apply some results from the
theory of integral operators].

[13] Expectation bounds on linear estimators from dependent samples.
Let (X1, X2, . . . , Xn)

′ be a vector of arbitrary r.v’s (possibly dependent with possibly
different marginals), and consider their order statistics X1:n ≤ X2:n ≤ · · · ≤ Xn:n.
Assuming µi = IEXi and σ2

i = VarXi < ∞, i = 1, 2, . . . , n, it is shown that for any
constants c1, c2, . . . , cn,

n∑
i=1

ci(IEXi:n − µ) ≤

(
n∑

i=1

(ai − c)2

)1/2( n∑
i=1

{
(µi − µ)2 + σ2

i

}
− nVarX

)1/2

,

where µ = n−1
∑n

i=1 µi, c = n−1
∑n

i=1 ci, X = n−1
∑n

i=1Xi and (a1, a2, . . . , an)
′ is the ℓ2-

projection of (c1, c2, . . . , cn)
′ onto the convex cone of component-wise increasing vectors

of IRn (in particular, ai = ci for all i if and only if the ci’s are non-decreasing in i). A
similar lower bound holds.

The bound is best possible whenever theXi’s are exchangeable. Moreover, it provides
an essential improvement over the bounds given by Arnold and Groeneveld, Ann. Statist.
(1979)7, 220–223, Aven, J. Appl. Probab. (1985)22, 723–728 and Lefèvre, Stochastic
Anal. Appl. (1986)4, 351-356, as it becomes clear from its applications.



[14] Distribution and expectation bounds on order statistics from possibly dependent
variates.
We define a new dependence structure that is useful especially for reliability systems.
Specifically, the n-variate random vector X = (X1, X2, . . . , Xn)

′ is called Maximally
Stable of order j, MAS(j) for short, if the distribution F(j) of max{Xk1 , . . . , Xkj} is
invariant for any subset {k1, . . . , kj} ⊆ {1, . . . , n} of order j. For example, all n-variate
random vectors are MAS(n), while the random vectors that are MAS(1) are exactly
those with the same marginals, F(1) say. Note that exchangeable vectors are MAS(j)
for all j ∈ {1, . . . , n}.

Denote by Xk:n and Fk:n the k-th order statistic and its distribution. It is shown
that if X is MAS(j) then for k ≥ j,

Fk:n(x) ≤ min

{
1,

(n)j
(k)j

F(j)(x)

}
and IEXk:n ≥ 1

a

∫ a

0

F−1
(j) (u)du,

where a = (k)j/(n)j, (c)j = c(c− 1) · · · (c− j + 1), and F−1
(j) (u) = inf{x : F(j)(x) ≥ u},

0 < u < 1, is the left-continuous inverse of F(j). Equality is always attainable for all j, k,
n, and for any given distribution function F(j). Similar results hold for vectors that are
Minimally Stable of order j, MIS(j), i.e., when the distribution of min{Xk1 , . . . , Xkj}
is the same for all j-tuples. We point out the above bounds for MAS(j) and MIS(j)
systems are applicable to reliability systems without restricting the components of the
system to be independent or identically distributed; the only requirement is that a
MAS(j) or a MIS(j) condition is fulfilled. This happens because 1 − Fk:n and IEXk:n

is the reliability and the expected time to failure of an (n + 1 − k)-out-of-n system,
respectively, and the condition MAS(j) reads as ”parallel homogeneity of order j of the
components”.

[15] Unified variance bounds and a Stein-type identity.
This work was presented in the Conference in honor of Professor Theophilos Cacoullos,
3–6 June 1999 at Athens, Greece. It is shown that for any absolutely continuous r.v.
X with finite variance σ2, there exists a unique r.v. X∗ (viewed as a transformation on
X), such that the generalized Stein identity is fulfilled, that is,

Cov[X, g(X)] = σ2 IEg′(X∗)

for any absolutely continuous function g defined on the convex hull of the support of X,
provided that IE |g′(X∗)| < ∞. The properties of this transformation are investigated in
detail, and it is shown that the same r.v. X∗ appears to both upper and lower bounds for
Varg(X). Moreover, we investigate the inverse transform, and we show a convolution-
type identity, which in the case where X1, X2, . . . , Xn are i.i.d., simplifies to

(X1 +X2 + · · ·+Xn)
∗ d
= X∗

1 +X2 + · · ·+Xn.



[16] An application of a density transform and the local limit theorem.
We present a generalization of [3], showing that for any two r.v.’sX and Y , with densities
f , g, means µ, m, and variances σ2, s2,

dTV (X,Y ) ≤ 2

∫ ∣∣∣∣f(x)− σ2g(x)

s2g∗(x)
f ∗(x)

∣∣∣∣ dx+ cY |µ−m|,

where f ∗, g∗, are the densities of X∗, Y ∗ (see [15]), and the constant cY can be chosen
as cY = 2/IE |Y − m|. In the interesting case where Y = Z is standard normal and
σ = s, the bound simplifies to

dTV ((X − µ)/σ, Z) ≤ 3dTV (X,X∗) +

√
π

σ
√
2
|µ−m|,

and it is shown that for a sequence of absolutely continuous r.v.’sXn with means µn → µ
and variances σ2

n → σ2 > 0,

dTV ((Xn − µ)/σ, Z) → 0 if and only if dTV (Xn, X
∗
n) → 0.

Based on this result and using the convolution-type identity of [15], a simple proof of
the local limit Theorem in its full generality, i.e., without assuming an interval support,
is given. The original result is due to Prohorov, Dokl. Acad. Nauk. SSSR (1952)83,
797-800 (in Russian). We note here that at least three proofs of this Theorem appeared
during the last decades (Barron, Ann. Probab. (1986)14, 336–342, Mayer–Wolf, Ann.
Probab. (1990)18, 840–850, Cacoullos, Papathanasiou and Utev, Ann. Probab. (1994)22,
1607–1618); however, none of them treats the completely general case.

[17] The use of spacings in the estimation of a scale parameter.
The Best Linear Unbiased Estimators, BLUE, where defined by Lloyd, Biometrika
(1952)39, 89–95. They are linear estimators of the form

∑n
i=1 ciXi:n, where X1:n ≤

X2:n ≤ · · · ≤ Xn:n is the order sample, unbiased for the location or the scale parameter
of a location-scale family, and they have minimal variance. In the present paper we use
the spacings Zi = Xi+1:n−Xi:n, i = 1, 2, . . . , n−1, in order to obtain a simple alternative
form for these estimators. The simplified version enable us to provide a partial positive
answer to the open question if the scale estimator is non-negative with probability one.
Note that the question remains unsolved in its full generality. Moreover, our technique
provides simple forms for the estimators when we deal with censored samples from the
Uniform location-scale family.

[18] Poisson approximation for a sum of dependent indicators: an alternative appro-
ach.
We introduce the notion of Totally Negatively Dependent (TND for short) r.v.’s as follo-
ws: the r.v.’s X1, X2, . . . , Xn are called TND if for each i = 1, 2, . . . , n, the r.v.’s Xi and
X(i) =

∑
j ̸=iXj are Negatively Quadrant Dependent, i.e., if Cov[f(Xi), g(X

(i))] ≤ 0 for
any pair of non-decreasing functions f, g : IR → IR, for which the covariance is finite.



Assume that X1, X2, . . . , Xn are 0–1 indicators, IEXi = pi = IP[Xi = 1], and set
W =

∑n
i=1Xi, µ = IEW and σ2 = VarW . One of the results is the following: If

X1, X2, . . . , Xn are TND and Pλ denotes a Poisson r.v. with mean λ ≥ µ,

dTV (W,Pλ) ≤ (1− e−λ)

(
1− σ2

λ

)
+min

{
1,

(2/e)1/2

λ1/2

}
(λ− µ),

where dTV (X,Y ) denotes the total variation distance of X and Y .

The proof is based on a refinement of the methodology used in [16], and the bound
extends a classic result in Poisson approximation (see Barbour, Holst and Janson, Pois-
son Approximation (Oxford Studies Prob. 2), Oxford University Press, 1992, Corollary
2.C.2) to TND 0–1 indicators. Note that the classic result was shown only for Negatively
Related (NR) 0–1 indicators, and that the class of NR 0–1 indicators is strictly smaller
than the class of TND 0–1 indicators.

The paper includes an application to a generalized birthday problem, investigating
the rate of convergence. Moreover, some results comparing different notions on negative
relations are given.

[19] Bounds on expectation of order statistics from a finite population.
Consider a simple random sample X1, X2, . . . , Xn, arising from sampling without re-
placement from a finite ordered population Π = {x1 ≤ x2 ≤ · · · ≤ xN}, and let
X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the corresponding ordered sample (n ≤ N). Define
µ = N−1

∑N
i=1 xi and σ2 = N−1

∑N
i=1(xi − µ)2 to be the population mean and varia-

nce, respectively, noting that the Xi’s have mean µ and variance σ2, but they are not
independent (they are, merely, exchangeable).

In the present article we obtain the best possible upper and lower bounds for IEXi:n

and IE[Xn:n − X1:n] in terms of µ and σ2, and we characterize the populations that
attain the equality in the bounds. Similar results are obtained for the covariance in the
simplest case where n = 2. An interesting future is that, as N → ∞, the bounds (and
the corresponding optimal populations) approximate the classic well-known results for
the i.i.d. case.

[20] Multivariate covariance identities with an application to order statistics.
We show multivariate covariance identities of the form

Cov[hj(X), g(X)] = IE[zj(X)gj(X)], j = 1, 2, . . . , n,

where X = (X1, X2, . . . , Xn)
′ is an absolutely continuous random vector, g : IRn → IR

a function with partial derivatives gj(x) = ∂g(x)/∂xj, and each zj : IRn → IR is a
function depending on the density of X and the given function hj : IRn → IR.

These identities generalize the results of Cacoullos and Papathanasiou, J. Multi-
variate Anal. (1992)43, 173–184, and improve the so called, Siegel’s identity, Siegel, J.
Amer. Statist. Assoc. (1993)88, 77–80. Some applications to order statisics arizing from
an arbitrary multivariate normal are also given.



[21] Bounds on expectations of L-statistics from without replacement samples.
Consider an ordered sample X1:n ≤ X2:n ≤ · · · ≤ Xn:n from a finite ordered population
of size N ≥ n, taken without replacement – see [19]. Let

L = L(c1, c2, . . . , cn) =
n∑

i=1

ciXi:n

be the general form of an L-Statistic. Applying a suitable projection technique, we
obtain upper and lower bounds for IEL. These bounds are, in most cases, optimal. The
results are applied to some interesting cases, including trimmed means.

[22] Heteroscedastic one-way ANOVA and lack of fit tests.
It is well-known that in the one-way ANOVA case, the statistic F = MST/MSE has
asymptotically, under the null hypothesis H0 : µ1 = µ2 = · · · = µa, a χ2 distribution,
provided that the number of observations in every cell tends to infinity, while the number
of cells, say a, remains bounded. In the present work we assume that the number of
cells, a, tends to infinity, while the number of observations in each cell remains bounded.
This situation is common in practical problems with many levels, and also applies to
lack-of-fit tests, where, e.g., an unknown link function should be estimated from a small
number of observations falling in a small neighborhood of its domain, and this situation
is very common even if the sample size is large.

In the present work we apply a projection method in order to simplify the investi-
gation of the asymptotic distribution of the statistic

√
a (MSE)(F − 1) =

√
a (MST −

MSE), as a → ∞. Under general conditions it is shown that the statistic converges
to a particular normal distribution. We also investigate the heteroscedastic case (the
variances are different in every cell), as well as the unbalanced case where the number
of observations is allowed to be different from one cell to another. Moreover, we obtain
the asymptotic distribution under local alternatives. The power of the test as well as
the rate of convergence to its limiting distribution is studied via simulations.

[23] The q-factorial moments of discrete q-distributions and a characterization of the
Euler distribution.
For 0 < q < 1 and x ∈ IR, the q-number of x is defined by [x]q = (1 − qx)/(1 − q),
Similarly, the q-factorial of order k of x is defined as [x]k,q = [x]q[x− 1]q · · · [x− k+ 1]q.
These numbers are related to the so called q-distributions, appearing in the study of
sums of n independent 0–1 indicators having different success probabilities (q-binomial,
which as, n → ∞, converges to Heine distribution). They also appear in the study
of the number of failures before the k-th success (q-Pascal, which converges to Euler
distribution as k → ∞). In the present work we define the k-th order q-factorial moment
of a random variable X taking values in IN, and we give expressions that connect the q-
factorial moments with the usual factorial moments of X. The expressions are applied
to q-distributions, showing that their q-factorial moments are simple, in contrast to
their (usual) moments. Moreover, a moment characterization of the Euler distribution
is given. According to this, if IE[Xλ]2,q = {IE[Xλ]q}2 for every λ in a power-series family
Xλ then X follows the Euler distribution.



[24] Characterizations of discrete distributions using the Rao-Rubin condition.
This work has been presented in the conference 5th Lattice Path Combinatorics and
Discrete Distributions, June 2002, Athens, Greece, and contains characterizations of
discrete distributions. Specifically, assume that (N1, N2, . . . , Nk) is a random vector
with values in INk, and that the Rao–Rubin partial independence condition is satisfied,
namely,

IP[N2 = n2|N1 = 0] = IP[N2 = n2], n2 ∈ IN.

Using a well-known Lemma of Shanbhag, J. Appl. Probab. (1977)14, 640–646, it is
shown that if

IP[N1 = n1, N2 = n2 . . . , Nk = nk|N = n] =
1

c(n)

k∏
j=1

aj(nj),

where N = N1 + · · · + Nk, and c, a1, . . . , ak : IN → IR+ are arbitrary, then the r.v.’s
N1, N2, . . . , Nk are independent and they follow distributions of particular forms.

Applying the result we obtain some characterizations of Poisson and Negative Bino-
mial, similar to those given by Rao and Srivastava, Sankhyā Ser. A (1979)41, 124–128.

[25] On Rychlik’s expectation bound for L-estimates based on identically distributed
variates.
This work provides a simple convenient proof of the well-known result of Rychlik, Sta-
tistics (1993)24, 9–15, regarding optimal bounds on expectations of L-statistics, L =∑n

i=1 ciXi:n, from possibly dependent identically distributed samples X1, X2, . . . , Xn,
in terms of the common marginal distribution F of Xi. The key idea goes as follo-
ws: Consider an r.v. I(j, n), uniformly distributed in {j, . . . , n} and independent of the
Xi’s. Furthermore, consider another r.v. U(j, n), uniformly distributed in the interval
[(j − 1)/n, 1]. Setting F−1(u) = inf{x : F (x) ≥ u}, 0 < u < 1, it is proved that the
r.v.’s

X = XI(j,n):n and Y = F−1(U(j, n))

are stochastically ordered: X ≤st Y . Therefore, it follows at once that

1

n− j + 1

n∑
i=j

IEXi:n = IEX ≤ IEY =
n

n− j + 1

∫ 1

(j−1)/n

F−1(u)du.

The above inequality yields Rychlik’s result. The present technique generalizes to other
situations; e.g., when we cannot assume identical marginals for X1, X2, . . . , Xn.

[26] The discrete Mohr and Noll inequality with applications to variance bounds.
Mohr and Noll, Math. Nachr. (1952)7, 55–59, obtained an interestind extention of the

Cauchy-Schwarz inequality, (
∫ b

a
g(t)dt)2 ≤ (b − a)

∫ b

a
(g′(t))2dt, involving higher order

derivatives of g. In the present paper we obtain a discrete analogue of this inequa-
lity, replacing derivatives with forward differences. Using the discrete inequality, we
obtain variance bounds for an arbitrary function g(X) of an integer-valued r.v. X. The



complicated bounds are simplified considerably when X belongs to the Ord family of
distributions (discrete Pearson system). In this case, the typical bound has the form

(−1)nVarg(X) ≤ (−1)n
n∑

k=0

(−1)k

(k + 1)!
∏k

j=0(1− jδ)
IEq[k+1](X)(∆k+1g(X))2,

where q[k+1](x) = q(x)q(x + 1) . . . q(x + k), ∆k+1g is the (k + 1)-th forward difference
of g, and q(x) = δx2 + βx + γ is the characteristic polynomial of the probability mass
function p of X, for which∑

j≤k

(µ− j)p(j) = p(k)q(k), k ∈ Z (µ = IEX).

We note that the above bounds are applicable in statistical problems. As an illustrative
example, we obtain upper and lower bounds for the variance of the UMVU estima-
tor of log p in samples from the Geometric distribution with parameter p, showing its
asymptotic efficiency.

It is worth pointing out that the discrete inequality, proved in the present paper,
is strictly better than the original Mohr and Noll inequality – see Remark 3.1 and, for
more details, see the corresponding Technical Report.

[27] An extended Stein-type covariance identity for the Pearson family, with appli-
cations to lower variance bounds.
We investigate a class of Bessel-type variance bounds for functions of discrete and conti-
nuous Pearson r.v.’s. These bounds are based on the orthogonal polynomials Pk obtained
from Rodrigues formula,

Pk(x) =
(−1)k

p(x)
∆k[q[k](x− k)p(x− k)], or Pk(x) =

(−1)k

f(x)

dk

dxk
[q(x)kf(x)],

for discrete (with probability mass function p) or continuous (with density f) Pearson
r.v. First, it is shown that the following inversion formula holds:

q(x)kf(x) =
(−1)k

(k − 1)!

∫ x

−∞
(x− y)k−1Pk(y)f(y)dy

=
1

(k − 1)!

∫ +∞

x

(y − x)k−1Pk(y)f(y)dy;

a similar result is true for the discrete case. Using these inversion formulae, we show
that the Fourier coefficients of g can be expressed in terms of its derivatives/differences,
namely

IEPk(X)g(X) = IEq(X)kg(k)(X), or IEPk(X)g(X) = IEq[k](X)∆kg(X),

provided that X has finite 2k-th moment and the RHS’s are finite. The lower bound
(which is, just, a finite form of Bessel’s inequality) takes the form

Varg(X) ≥
n∑

k=1

IE2q(X)kg(k)(X)

k!IEq(X)k
∏2k−2

j=k−1(1− jδ)
,



and it is quite similar to the corresponding bound in [26], obtained from a Mohr and
Noll-type inequality. We emphasize that in applying the bound it is not necessary to
have an infinite sequence of orthogonal polynomials (it is not even necessary for X to
have moments of any order); in fact, the inequality is valid for any fixed n, provided
that 2n moments exist. Hence, the bound is applicable to, e.g., student’s t-distribution
or to F -distribution of Fisher-Snedecor. As illustrative examples, the paper contains
two statistical applications in point estimation of parametric functions. Moreover, it
contains a simple proof for the completeness of orthogonal polynomial systems in every
Pearson/Ord distribution possessing finite moments of any order.

[28] On matrix variance inequalities
Olkin and Shepp, J. Statist. Plann. Inference 130(2005), 351–358, showed that Cher-
noff’s inequality (for the normal) can be extended to a matrix-valued analogue, and the
same is true for the Gamma distribution. In this note we extend these results, obtai-
ning Poincare-type and Bessel-type inequalities for matrices of arbitrary order, and for
a large class of continuous and discrete distributions.

[29] Linear estimation of location and scale parameters using partial maxima.
Consider the partial maxima sequence, Xn:n = max{X1, . . . , Xn}, arising from an i.i.d.
sequence of r.v.’s X1, X2, . . . with common distribution F (x; θ1, θ2) = F0((x − θ1)/θ2).
Here we assume that both parameters, the location parameter θ1 ∈ IR, and the scale
parameter θ2 > 0, are unknown. We also assume that F0 has finite variance. As in the
order statistics setup, for estimation purposes we construct the Best Linear Unbiased
Estimators, BLUE’s; these are estimators of the form

∑n
i=1 ciXi:i, they are unbiased (for

θ1 or θ2) and their variance is minimal. However, in contrast to the order statistics setup,
the consistency of these estimators is no longer obvious. The reason is that we have
a substantial loss of information, since we only record the largest current observation
in every step. This work concerns with the point estimation of the scale parameter.
The main result provides sufficient conditions in F0, guarantying that the BLUE of θ2,
T2 = T n

2 , is a weekly consistent estimator of θ2, that is, T n
2 → θ2 in probability, as

n → ∞.

We give an idea of the main result in its simplest form: Assume that F0 has fini-
te second moment and a logconcave density f0 (or a logconvex density with support
bounded from below), and suppose that

lim
x→ω−

f0(x)

(1− F0(x))γ[− log(1− F0(x))]δ
= L ∈ (0,+∞),

where ω = ω(F0) = inf{x : F0(x) = 1} is the upper end-point of the support of F0 and
γ, δ are constants such that (γ, δ) ∈ (−∞, 3/2)× {0} ∪ (1/2, 1]× (0,+∞). Then, there
exists a constant C = C(F0), such that

IE[T n
2 − θ2]

2 ≤ C

log n
.

The conditions are easily verified for several location-scale families that are used in
statistics, like Normal, Exponential (Weibull), Logistic, Pareto, Power distribution.



[30] Self-inverse and exchangeable random variables.
An r.v. Z is called self-inverse if the r.v.’s Z and 1/Z have the same distribution. It
is shown that Z is self-inverse if and only if it can be expressed as Z = X/Y for some
exchangeable r.v.’s X,Y .

[31] A simple method for obtaining the maximal correlation coefficient and related
characterizations.
The maximal correlation coefficient of X, Y is a classic measure of dependence, defined
as

R = R(X, Y ) = sup ρ(g1(X), g2(Y )),

where the supremum is taken over functions g1, g2 : IR → IR such that 0 < Varg1(X) <
∞, 0 < Varg2(Y ) < ∞, and ρ(·, ·) is the usual Pearson correlation coefficient. It is
difficult to calculate R in general, and this is the reason that we know the value of R
only in some rare cases; e.g., for the bivariate normal N(µ1, µ2;σ

2
1, σ

2
2, ρ), R = |ρ|.

The present work provides a method to calculate R. The method is applicable when
X,Y have finite moments of any order, the polynomials are dense in the corresponding
L2(X), L2(Y ) spaces (e.g, whenever each ofX, Y has a finite moment generating function
in a neighborhood of zero), and the following polynomial regression property holds true:

IE(Xn|Y ) = AnY
n + Pn−1(Y ), IE(Y n|X) = BnX

n +Qn−1(Y ), n = 1, 2, . . . ,

where Pn, Qn are polynomials of degree at most n. It is shown that, under the above
conditions, 0 ≤ AnBn ≤ 1 for all n and

R = sup
n≥1

√
AnBn.

This result provides one-line proofs to known characterizations on order statistics (Ter-
rell, Ann. Probab. 11(1983), 823–826, Székely and Móri, Statist. Probab. Lett. 3(1985),
107–109, López-Blázquez and Castaño-Mart́ınez, J. Statist. Plann. Inference 136(2006),
43–52) and Records (Nevzorov, Math. Methods Statist. 1(1992), 49–54). Moreover, a
new characterization of the exponential distribution, based on a novel Splitting-Record
model, is given.

[32] Some counterexamples concerning maximal correlation and linear regression.
Due to some old results of Sarmanov (Dokl. Akad. Nauk SSSR 121 (1958) 52–55 (in
Russian); Mathematical Statistics and Probability, Vol. 2, Amer. Math. Soc., 1962, 207–
210; Dokl. Akad. Nauk SSSR 120(1958) 715–718 (in Russian); Mathematical Statistics
and Probability, Vol. 4, Amer. Math. Soc., 1963, 271–275; also in Selected Translations),
it was believed for some time that whenever X, Y have linear regression to each other,
that is, IE(X|Y ) = a1Y + a0 and IE(Y |X) = b1X + b0, then (cf. [31])

R(X, Y ) = |ρ(X, Y )|.

This incorrect implication was used in several papers and books, e.g., Rohatgi and
Székely, J. Stat. Comput. Simul. 40(1992), 260–262; Arnold, Balakrishnan and Nagara-
ja, Records, Wiley, 1998, p. 101; Székely and Gupta,Math. Methods Statist. 7(1998), 122;



David and Nagaraja, Order Statistics, Wiley, 2003, p. 74; Ahsanullah, Record Values –
Theory and Applications, Univ. Press Amer. Inc., 2004, p. 23; Barakat, Arab J. Math.,
1(2012), 149–158, to mention a few. In the present note we construct counterexamples
to show that the implication is incorrect even if the linear regressions are non-trivial,
i.e., a1b1 ̸= 0. One of the examples is just a mixture of two bivariate normals.

[33] An extension of the disc algebra, II
The present work belongs to the area of complex analysis, and concerns uniform appro-
ximation of functions by polynomials. We define a new compactification of the complex
plane, different of the usual one that uses Riemann’s sphere. Under the new compa-
ctification, the points at infinity (extended complex numbers, say) have an angle, e.g.,
z = ∞eiθ, so that the point z = +∞ corresponds to θ = 0, while z = −∞ corresponds
to θ = π. The distance of two (extended or not) points is defined in terms of the usual
distance of their images into the unit disc, according to a suitable homeomorphism:

d(z1, z2) =



∣∣∣∣ z1
1 + |z1|

− z2
1 + |z2|

∣∣∣∣ , if z1, z2 ∈ CC,

∣∣∣∣ z1
1 + |z1|

− eiθ
∣∣∣∣ , if z1 ∈ CC, z2 = ∞eiθ,

∣∣eiθ1 − eiθ2
∣∣ , if z1 = ∞eiθ1 , z2 = ∞eiθ2 .

Let D = {z : |z| < 1}, D = {z : |z| ≤ 1} and CC = CC ∪ {∞eiθ, θ ∈ IR}. The main result
of the paper shows that a function f : D → CC is the uniform limit of polynomials, with
respect to the metric d, if and only if

(a) either f is holomorphic in D and continuous (with respect to the metric d) on D,

(b) or f(z) = ∞eiθ(z) for some function θ : D → IR which is continuous (in the usual
sense) on D and harmonic in D.

[34] Strengthened Chernoff-type variance bounds.
The Pearson family of continuous distributions is defined by∫ x

−∞
(µ− t)f(t)dt = f(x)q(x),

where q(x) = δx2+βx+γ is a polynomial of degree at most 2, f is the density of X and
µ = IEX (assumed finite). This family contains several of the known distributions like
Beta, Gamma, Normal, and their negatives. Moreover, if δ ≤ 0, X has finite moments
of any order and the polynomials are dense in L2(X), see [26], [27]. In the present paper
we first define a class of real functions, Hn(X), as follows: g ∈ Hn(X) if

(a) g is defined in the interior of the support of X (which is always an interval),

(b) g is n− 1 times differentiable and g(n−1) is absolutely continuous, and

(c) IEqn(X)g(n)(X)2 < ∞.



Next, it is shown that the sequence Hn(X) is decreasing when δ ≤ 0. The main
result provides an inequality for the variance of g ∈ Hn(X) in terms of its derivatives.
Specifically, if δ ≤ 0,

Varg(X) ≤
n∑

k=1

IE2q(X)kg(k)(X)

k!IEq(X)k
∏2k−2

j=k−1(1− jδ)
+Rn

where

Rn =
1

(n+ 1)!
∏2n−1

j=n (1− jδ)

{
IEq(X)ng(n)(X)2 − IE2q(X)ng(n)(X)

IEq(X)n

}
.

The sum in the RHS of the inequality (without the remainder Rn) is exactly the lower
bound in [27]. Moreover, the inequality can be written in the form

inf ∥ g − pn ∥2 ≤
√

Rn

where the infimum is taken over polynomials pn of degree at most n, and ∥ g ∥2=( ∫
g(x)2f(x)dx

)1/2
. Thus, we have a simple upper bound for the L2-distance between

g and the polynomials, expressed in terms of the derivatives of g. Hence, the result may
be useful to the area of numerical analysis.

The main result provides an essential improvement of all previously known results
(Poincare-type inequalities) even if n = 1. For instance, if X is N(0, 1), the inequality
simplifies to

Varg(X) ≤ 1

2
IE2g′(X) +

1

2
IEg′(X)2,

while the classic Chernoff inequality (which is valid also for the class H1(X)) is

Varg(X) ≤ IEg′(X)2.

The difference of the above bounds is 1
2
Varg′(X) ≥ 0.

[35] Integrated Pearson family and orthogonality of the Rodrigues polynomials: A
review including new results and an alternative classification of the Pearson system.
In this work we present an extensive review of the Pearson family of distributions, as
they defined in [34]. We describe in detail all distributions that belong to this class,
It turns out that there are, essentially, six types of distributions, while the original
Pearson’s classification contains twelve types. This difference arises from the fact that
the integrated family is defined in terms of an integral equation, and not via Pearson’s
differential equation,

f ′(x)

f(x)
=

p1(x)

p2(x)
, deg pi ≤ i (i = 1, 2).

We show these two families are quite different. Specifically, the differential equation
may produce some uninteresting densities where, e.g., the Rodrigues polynomials,

hk(x) =
(−1)k

f(x)

dk

dxk

(
p2(x)

kf(x)
)
,



may not be orthogonal with respect to f . One of the results says that the orthogonality of
Rodrigues’ polynomials is valid if and only if the density f satisfies the integral equation.
Other results show that, for a density of the integrated family, useful quantities can be
calculated easily, like:

(a) The Fourier coefficients αn of g with respect to the orthonormal polynomials ϕn,

αn = IEϕn(X)g(X) =
IEq(X)ng(n)(X)(

n!IEq(X)n
∏2n−2

j=n−1(1− jδ)
)1/2 .

(b) The leading coefficients

lead(Pn) =
2n−2∏
j=n−1

(1− jδ)

of Rodrigues’ orthogonal polynomials

Pn(x) =
(−1)n

f(x)

dn

dxn

(
q(x)nf(x)

)
.

(c) The norm of Pn,

IEPn(X)2 = n!IEq(X)n
2n−2∏
j=n−1

(1− jδ).

(d) The quantity IEq(X)n that appears in (a), (c),

IEq(X)n =

∏n−1
j=0 (1− 2jδ)∏n−1

j=0 (1− (2j + 1)δ)

n−1∏
j=0

q

(
µ+ jβ

1− 2jδ

)
.

(e) Recurrent relations for the moments,

IEXn+1 =
(µ+ nβ)IEXn + nγ IEXn−1

1− nδ
, IEX0 = 1, IEX1 = µ,

IE(X − µ)n+1 =
nq′(µ)IE(X − µ)n + nq(µ)IE(X − µ)n−1

1− nδ
,

IE(X − µ)0 = 1, IE(X − µ)1 = 0.

(f) The k-th derivatives of the orthonormal polynomials are orthogonal polynomials
with respect to the density fk = qkf/IEqk, and this density belongs to the same type as
f . If ϕn are the orthonormal polynomials for f and ϕn,k the corresponding for fk, then
the two sets are related through:

dk

dxk
ϕn+k(x) =

(
(n+ k)!

∏n+2k−2
n+k−1 (1− jδ)

n!IEq(X)k

)1/2

ϕn,k(x).



We note that the results (a)–(f) are used in an essential way in [34].

[36] Maximizing the expected range from dependent observations under mean-varia-
nce information.
In this work we obtain the optimal upper bound for the expected range,

IERn = IE(Xn:n −X1:n),

when X1:n = min{Xi, 1 ≤ i ≤ n}, Xn:n = max{Xi, 1 ≤ i ≤ n}, arise from a random
vector (X1, . . . , Xn)

′ with known means, µi = IEXi, and known variances, σ2
i = VarXi >

0. The main result is:

sup IERn = inf
c∈IR, λ>0

{
−(n− 2)λ+

λ

2

n∑
i=1

U

(
µi − c

λ
,
σi

λ

)}
,

where the function U(·, ·) : IR × (0,∞) → IR is given by

U(x, y) =


2
√

x2 + y2, if x2 + y2 ≥ 4,

2 + 1
2
(x2 + y2), if 2|x| < x2 + y2 < 4,

|x|+ 1 +
√

(|x| − 1)2 + y2 if x2 + y2 ≤ 2|x| < 4.

For the proof we use convex optimization techniques that extend the proof of Bertsimas,
Natarajan and Teo, Prob. Engineer. Inform. Sci. 20(2006), 667–686 and Bertsimas,
Doan, Natarajan and Teo, Math. O. R. 35(2010), 580–602, to the case of expected
range. Moreover, we characterize all random vectors that attain the equality in the
bound (extremal vectors).

The results are based on a key deterministic inequality for the range, ant this ine-
quality can be viewed as the range-analogue of the inequality from Lai–Robbins, Proc.
Nat. Acad. Sci. USA 73(1976), 286–288.

Moreover, we provide a detail comparisson of the tight bound with the classic result
from Arnold and Groeneveld, Ann. Statist. 7(1979), 220–223, and we characterize the
cases where the Arnold–Groeneveld bound is optimal.

[37] On sequences of expected maxima and expected ranges.
Let X,X1, . . . be i.i.d. integrable (non-degenerate) r.v.’s and set Xn:n = max1≤i≤n{Xi}.
The problem we study in the present work is the following: Given a real sequence,
{µn}∞n=1, does there exist an r.v. X such that IEXn:n = µn for all n? Known results
relate this question to the well-known Hausdorff moment problem, and perhaps, the
simplest answer is provided by Kolodynski, Statist. Probab. Lett. 47(2000), 295–300:

The sequence {µn}∞n=1 is an expected maxima sequence (EMS for short) if and only
if it satisfies the following three conditions.

(a) (−1)k+1∆kµn > 0 for all n ≥ 1 and k ≥ 1,

(b) µn = o(n) as n → ∞, and



(c)
∑n

j=1(−1)j
(
n
j

)
µj = o(n) as n → ∞.

In practice, however, it is difficult to check the validity of (a)–(c), even for simple seque-
nces like, e.g., µn =

√
n or µn = log(n). In the present paper we provide an alternative

method, relating the EMS sequences to some Bernstein functions of a particular form,
namely we consider those functions g : [0,∞) → [0,∞) that have the form

g(x) =

∫
(0,∞)

(1− e−xy)dµ(y), x ≥ 0,

for some measure µ in (0,∞) satisfying
∫
(0,∞)

min{1, y}dµ(y) < ∞.

We prove that the sequence {µn}∞n=1 is an EMS if and only if it can be written as

µn = µ1 + g(n− 1), n = 1, 2, . . . ,

with g as above and, moreover, the Bernstein function g and the measure µ are unique.
Similar results are obtained for sequences of expected ranges. The paper contains simple
sufficient conditions and a number of examples that verify the applicability of this
representation.

[38] A factorial moment distance and an application to the matching problem.
For two r.v.’s X,Y with values in IN and probability generating functions with radius
of convergence 1 + δ (for some δ > 0), we define the factorial moment distance,

dα(X, Y ) =
∞∑
k=1

αk−1

k!
|IE(X)k − IE(Y )k| , (α > 0)

where (c)k = c(c − 1) · · · (k − k + 1). This distance is useful whenever the factorial
moments admit closed forms. Moreover, the inequality

dTV (X, Y ) ≤ d2(X, Y )

is satisfied (dTV (X,Y ) = supA |IP(X ∈ A)− IP(Y ∈ A)| the total variation distance),
provided that both X,Y have probability generating functions with radius of converge-
nce greater than 2. Some applications to matching problems are given, estimating the
rate of convergence to the Poisson distribution.

[39] Orthogonal polynomials in the cumulative Ord family and its application to
variance bounds.
The (cumulative) Ord family of distributions (discrete Pearson) contains the integer-
valued r.v.’sX with probability mass function p and finite mean µ, satisfying the identity

k∑
j=−∞

(µ− j)p(j) = q(k)p(k), k ∈ ZZ,

where q(k) = δk2 + βk + γ is a polynomial of degree at most 2 (see [26], [27]).



In the present work we present a complete classification of these distributions, and
we show that there are, essentially, six types. Moreover, we present results regarding
the moments and the orthogonal polynomials, similar to those given in [35] for the
continuous case. Using these results, we obtain upper and lower bounds for Varg(X),
in terms of the forward differences, ∆kg. The bound for the Poisson distribution with
parameter λ reads as follows:

(−1)n (Varg(X)− Sm,n(g)) ≥ 0, n = 0, 1, . . . , m = 0, 1, . . . ,

where

Sm,n(g) =
m∑
i=1

λi

i!

(
m
i

)(
m+n

i

) IE2∆ig(X) +
n∑

i=1

(−1)i−1λ
i

i!

(
n
i

)(
m+n

i

) IE[∆ig(X)]2.

Moreover, the equality in the bound is attained if and only if the function g is a polyno-
mial of degree at most m+n. The proposed inequalities provide essential improvements
to the results in [26], [27], because they produce strengthened bounds like the ones in
[34]. For instance, if m = n = 1 and we apply the bound for the Poisson, we get

Varg(X) ≤ λ

2
IE2∆g(X) +

λ

2
IE[∆g(X)]2,

while the bound in [26] is
Varg(X) ≤ λIE[∆g(X)]2.

The difference of the above bounds is λ
2
Var∆g(X) ≥ 0.

(ii) Submitted for Publication

[40] On the limiting distribution of sample central moments.
Let {Xi, i ≥ 1} be i.i.d. non-degenerate r.v.’s with distribution function F and finite
2k-th moment for some k ≥ 2. Here we study the asymptotic (n → ∞) distribution of
the sample central moments,

Mk,n =
1

n

n∑
i=1

(Xi −Xn)
k, where Xn =

1

n

n∑
i=1

Xi,

in the particular special case where the limiting distribution is degenerate. Distributions
F having this property are called singular. It is shown that all singular distributions
have two or three supporting points. More specifically, for k even the family of singular
distributions contains only two-valued r.v.’s of a particular form, while for odd k, it
includes some two-valued and some three-valued distributions. We provide a complete
description for all two-valued singular distributions and a partial description for the
three-valued ones (which is exact for k = 3). Moreover, we prove a characterization
of normality which reads as follows: provided that all moments exist, the asymptotic
independence of sample mean and every sample central moment characterizes the normal
distribution.



Furthermore, using the Delta method, we obtain second order asymptotic results for
the sample central moments from singular distributions. It is shown that the second
order limiting distribution is (a) either a multiple of a χ2 r.v., or (b) a difference of two
multiples of two independent χ2-r.v.’s with one degree of freedom.
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