Inter-Process Communications (IPCs):
Message Queues
Shared Memory
Semaphores

May 2011

1/73

IPCs (System V)

> Three types of IPCs:
» Message Queues
» Shared Memory

» Semaphores

» Each IPC structure is referred to by a non-negative integer
identifier.

» When an IPC is created, the program responsible for this
creation provides a key of type key_t.

» The Operating System converts this key into an IPC identifier.

2/73

Keys in the IPC Client-Server Paradigm

= Keys can be created in three ways:

1. The “server" program creates a new structure by specifying a
private key that is IPC_PRIVATE.

» Client has to become explicitly aware of this private key.
» This is often accomplished with the help of a file generated by
the server and then looked-up by the client.

2. Server and client do agree on a key value (often defined and
hard-coded in the header).

3. Server and client can agree on a pathname to an existing file
in the file system AND a project-ID (0..255) and then call
ftok() to convert these two values into a unique key!

73

Keys

» Keys help identify resources and offer access to the internal

structures of the 3 IPC mechanisms (through systems calls):

> struct msqid_ds // for message queues
> struct shmid_ds // for shared segments
> struct semid_ds // for semaphores

» Wrongly accessing resources returns -1

> Access rights for IPC mechanisms: read/write stored in
struct ipc_perm

» Included header files:
#include <sys/ipc.h>
#include <sys/types.h>

73

The ftok() system call

> converts a pathname and a project identifier to a (System V)
IPC-key

» key_t ftok(const char *pathname, int proj_id)
» _
» The file /tmp/ad.tempfile must be accessible by the invoking

process.

5/73

Message Queues

» Message queues allow for the exchange of messages between
processes.

» The dispatching process sends a specific type of message and
the receiving process may request the specific type of
message.

» Each message consists of its “type” and the “payload”.

» Messages are pointers to stuctures:

» Header needed: #include <sys/msg.h>

6/73

The system call msgget() - creating/using a queue

int msgget(key_t key, int msgflg)

> returns (creates) a message queue identifier associated with
the value of the key argument.

> A new message queue is created if key has the value
IPC_PRIVATE.

» If key isn't IPC_PRIVATE and no message queue with the
given key exists, the msgflg must be specified to IPC_CREAT
(to create the queue).

> If a queue with key key exists and both /PC_CREAT and
IPC_EXCL are specified in msgflg, then msgget fails with
errno set to EEXIST.

73

Use-cases of msgfilg

» Upon creation, the least significant bits of msgfig define the
permissions of the message queue.

» These permission bits have the same format and semantics as
the permissions specified for the mode argument of open().

» The various use-cases of msgfig are:

PERMS PERMS | IPC_.CREAT PERMS | IPC_CREAT | IPC_EXCL

resource use use error
exists resource resource

resource create and create and

does not error use new use new

exist resource resource

73

System call msgsnd() - sending a message to a queue

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg)

» send msgp (pointer to a record — see below) to message queue
with id msqid.

» sender must have write-access permission on the message
queue to send a message.

9/73

System call msgrecv() — fetching a message from a queue

ssize_t msgrev(int msqid, void *msgp, size_t msgsz, long msgtyp,
int msgflg);

>

>

receive a message msgp from a message queue with id msqid
msgtyp is a strictly positive integer value.

if msgtyp is zero, the first message is retrieved regardless its

type.
This value can be used by the receiving process for message
selection.

mesgsz specifies the size of the field mtext.

By and large, msgfig is set to 0.

10/73

The role of msgtyp in msgrev()

msgtyp specifies the type of message requested as follows:

» if msgtyp=0 then the first message in the queue is read.

» if msgtyp > 0 then the first message in the queue of type
msgtyp is read.

» if msgtyp < 0 then the first message in the queue with the
lowest type value is read.
» Assume a queue has 3 messages with mtype 1, 40, 554 and
and msgtyp is set to -554; If msgrcv is called three times, the
messages will be received in the following order: 1, 40, 554.

11/73

The msgctl() call - controling a queue

int msgctl(int msqid, int cmd, struct msqid_ds *buf)

» performs the control operation specified by cmd on the
message queue with identifier msqid

» The msqid_ds structure is defined in <sys/msg.h> as:

12/73

Operating with msgctl() on message queues

» [PC_STAT: Copy information from the kernel data structure
associated with msqid into the msqid_ds structure pointed to
by buf.

» [PC_SET: Write the values of some members of the msqid_ds
structure pointed to by buf to the kernel data structure
associated with this message queue, updating also its
msg_ctime element.

» IPC_RMID: Immediately remove the message queue,
awakening all waiting reader and writer processes (with an
error return and errno set to EIDRM).

13/73

The server in a message-queue communication

The server in a message-queue communication

15/73

Client (1) in the message-queue communication

Client (2) in the message-queue communication

Running the application

The server:

ad@ad -desktop:~/SysProMaterial /Set008/src$./msg-server
Creating message queue with identifier 65536
Sent message: A message from server

Client 1:

ad@ad -desktop:~/SysProMaterial /Set008/src$./msg-clientl
Accessing message queue with identifier 65536

Received message: A message from server

Sent message: A message from client 1

ad@ad -desktop:~/SysProMaterial /Set008/src$

Server status:

ad@ad -desktop:~/SysProMaterial /Set008/src$./msg-server
Creating message queue with identifier 65536

Sent message: A message from server

Received message: A message from client 1

18/73

Running the application

Client 2:

ad@ad -desktop:~/SysProMaterial /Set008/src$./msg-client2
Accessing message queue with identifier 65536

Sent message: A message from client 2

ad@ad -desktop:~/SysProMaterial /Set008/src$

Server:

19/73

Developing a Priority Queue

» Implement a Queue in which Jobs have Priorities

> A server gets the items from the queue and and in some way
(pick one) “processes” these items.

20/73

21/73

"init_queue.c”

22/73

"etest.c”

— gcc enter.c init_queue.c etest.c -o etest

24/73

"serve.c”

25/73

— gcc stest.c serve.c init_queue.c -0 stest

Running the “priority queue” program(s)

27/73

Shared Memory

» A shared memory region is a portion of physical memory that

is shared by multiple processes.

memory map of Process A

0

0x30000

0x50000

shared memory

region

0

memory map of process B

0x50000

0x70000

» In this region, structures can be set up by processes and

others may read/write on them.

» Synchronization (when it is required) is achieved with the help

of semaphores.

28 /73

Creating a shared segment with shmget()
> #include <sys/ipc.h>
#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg)

> returns the identifier of the shared memory segment
associated with the value of the argument key.

» the returned size of the segment is equal to size rounded up
to a multiple of PAGE_SIZE.

» shmflg helps designate the access rights for the segment
(IPC_CREAT and IPC_EXCL are used in a way similar to that
of message queues).

» If shmflg specifies both IPC_CREAT and IPC_EXCL and a shared
memory segment already exists for key, then shmget() fails with
errno set to EEXIST.

29/73

Attach- and Detach-ing a segment:shmat()/shmdt()

void *shmat(int shmid, const void *shmaddr, int shmflg)

» attaches the shared memory segment identified by shmid to
the address space of the calling process.

» |f shmaddris NULL, the OS chooses a suitable (unused)
address at which to attach the segment (frequent choice).

» Otherwise, shmaddr must be a page-aligned address at which
the attach occurs.

int shmdt(const void *shmaddr)

» detaches the shared memory segment located at the address
specified by shmaddr from the address space of the calling
process.

30/73

The system call shmctl()

int shmctl(int shmid, int cmd, struct shmid_ds *buf)

» performs the control operation specified by cmd on the shared
memory segment whose identifier is given in shmid.

» The buf argument is a pointer to a shmid_ds structure:

31/73

The system call shmctl()

Usual values for cmd are:

» [PC_STAT: copy information from the kernel data structure
associated with shmid into the shmid_ds structure pointed to
by buf.

» [PC_SET: write the values of some members of the shmid_ds
structure pointed to by buf to the kernel data structure
associated with this shared memory segment, updating also its
shm_ctime member.

» IPC_RMID: mark the segment to be destroyed. The segment
will be destroyed after the last process detaches it (i.e.,
shm_nattch is zero).

32/73

Use Cases of Calls
e Only one process creates the segment:

e Every (interested) process attaches the segment:

e Every process detaches the segment:

e Only one process has to remove the segment:

33/73

Creating and accessing shared memory (" shareMem1.c”)

Creating and accessing shared memory (" shareMem2.c”)

Running the two programs:

e Starting off with executing "shareMem1":

e Executing "shareMem?2":

ad@ad -desktop:~/Set008/src/SharedSegments$./shareMem2 1769489
Id is 1769489

Attached. Mem contents 1

Changed mem is now 2

Detachment O

ad@ad -desktop:~/Set008/src/SharedSegments$

e Providing the final input to "shareMem1":

36/73

Semaphores

» Fundamental mechanism that facilitates the synchronization
of accessing resources placed in shared memory.

» A semaphore is an integer whose value is never allowed to fall
below zero.

» Two operations can be performed on a semaphore:
- increment the semaphore value by one (UP or V() ala
Dijkstra).
- decrement a semaphore value by one (DOWN or P() ala
Dijkstra). If the value of semaphore is currently zero, then the

invoking process will block until the value becomes greater
than zero.

37/73

System-V Semaphores

» In general, (System-V) system calls create sets of semaphores:

- The kernel warrants atomic operations on these sets.

- Should we have more than one resources to protect, we can
“lock” all of them simultaneously.

38/73

Creating a set of Semaphores

>

>

>

included files: <sys/types.h> <sys/ipc.h> <sys/sem.h>
int semget(key_t key, int nsems, int semflg)

returns the semaphore set identifier associated with the
argument key.

A new set of nsems semaphores is created if key has the value
IPC_PRIVATE OR if no existing semaphore set is associated
with key and IPC_CREAT is specified in semflg.

semflg helps set the access right for the semaphore set.

If semflg specifies both IPC_CREAT and IPC_EXCL and a
semaphore set already exists for key, then semget() fails with
errno set to EEXIST.

39/73

Structure of a Semaphore Set

index 0 index 1 index 2 index 3 index 4

‘ semval=2 ‘ semval=2 ‘ semval=3 ‘ semval=1 ‘ semval=4 ‘

nsems=5 /

Associated with each (single) semaphore in the set are the
following values:

» semval: the semaphore value, always a positive number.

» sempid: the pid of the process that last “acted” on the set (of
semaphores).

40/73

Operating on a Set of Semaphores

» int semop(int semid, struct sembuf *sops, unsigned nsops)

» performs operations on selected semaphores in the set
indicated by semid.

» each of the nsops elements in the array pointed to by sops
specifies an operation to be performed on a single semaphore
on the set.

41/73

Operating on a Set of Semaphores

» The elements of the struct sembuf have as follows:

» In the above:
- sem_num identifies the ID of the specific semaphore on the set
(0..nsemd-1) on which sem_op operates.

- The value of sem_op is set to:

» < 0 for locking
» > 0 for unlocking

- sem_flg often set to 0.

42/73

The semctl() system call

» int semctl(int semid, int semnum, int cmd, [union semun arg])

» performs the control operation specified by cmd on the
semnum-th semaphore of the set identified by semid.

» The forth parameter (if it exists) has the following layout:

43/73

The semid_ds structure

» The semaphore data structure semid_ds, is as follows:

4473

semctl()

Values for the cmd parameter:

>

IPC_STAT: copy information from the kernel data structure
associated with semid into the semid_ds structure pointed to by
arg.buf.

IPC_SET: write the values of some members of the semid_ds
structure pointed to by arg.buf to the kernel data structure
associated with this semaphore set updating also its sem_ctime
member.

IPC_SETALL: Set semval for all semaphores of the set using
arg.array, updating also the sem_ctime member of the semid_ds
structure associated with the set.

IPC_GETALL: Return to semval the current values of all semaphores
of the set arg.array.

IPC_RMID: remove the semaphore set while awakening all processes
blocked by the respective semop().

45 /73

A server program using Semaphores

A server program using Semaphores (continued)

A client program using semaphore

A client program using semaphore (continued)

Running the server and the client

The server:

The client:

ad@ad -desktop:~/SysProMaterial /Set008/src/V-Sems$./sem-client
Accessing shared memory with ID: 22511641

Accessing semaphore with ID: 327688

Attaching shared memory segment

Asking for access to shared memory region

50/73

Running the programs

® Server:

® Client:

ad@ad -desktop:~/src/V-Sems$./sem-client

Accessing shared memory with ID: 22511641

Accessing semaphore with ID: 327688

Attaching shared memory segment

Asking for access to shared memory region

Reading from shared memory region: THIS IS A TEST ONLY A TEST
Releasing shared segment with identifier 22511641

Releasing semaphore with identifier 327688

ad@ad -desktop:~/src/V-Sems$

51/73

Access to Critical Section

Access to Critical Section

53/73

Access to Critical Section

Access to Critical Section

Access to Critical Section

— outcome of execution:

ad@ad -desktop:~/src/V-Sems$./access-criticalsection
I am the parent process with process id: 9256
I am the child process with process id: 9257
(9257) : trying to access the critical section
(9257) : accessed the critical section

(9257) : value of shared memory is now: 1
(9257) : getting out of the critical section
(9257) : got out of the critical section

(9256) : trying to access the critical section
(9256) : accessed the critical section

(9256) : value of shared memory is now: 2
(9256) : getting out of the critical section
(9256) : got out of the critical section

ad@ad -desktop:~/src/V-Sems$

56 /73

POSIX Semaphores

» #include <semaphore.h>
» sem_init, sem_destroy, sem_post, sem_wait, sem_trywait
» int sem_init(sem_t *sem, int pshared, unsigned int value);
» The above initializes a semaphore.
» Compile either with -Irt or -Ipthread

» pshared indicates whether this semaphore is to be shared
between the threads of a process, or between processes:

> zero: semaphore is shared between the threads of a process;
should be located at an address visible to all threads.

> non-zero: semaphore is shared among processes and should
be located in a region of shared memory.

57 /73

POSIX Semaphore Operations

> sem_wait(), sem_trywait()

> int sem_wait(sem_t *sem);

int sem_trywait(sem_t *sem);

Perform P(s) operation.

sem_wait blocks; sem_trywait will fail rather than block.

vV vVvYyy

> sem_post()
> int sem_post(sem_t *sem);
» Perform V(s) operation.

» sem_destroy()

> int sem_destroy(sem_t *sem);
» Destroys a semaphore.

58 /73

Creating and using a POSIX Semaphore

Executing the Program

60/73

Initialize and Open a named Semaphore

> sem_t *sem_open(const char *name, int oflag);
sem_t *sem_open(const char *name, int oflag,
mode_t mode, unsigned int value);

> creates a new POSIX semaphore OR opens an existing
semaphore whose name is name.

» oflag specifies flags that control the operation of the call
- O_CREAT creates the semaphore;
- provided that both O_CREAT and O_EXCL are specified, an
error is returned if a semaphore with name already exists.

» if oflagis O_CREAT then two more arguments have to be
used:
- mode specifies the permissions to be placed on the new
semaphore.
- value specifies the initial value for the new semaphore.

61/73

Named POSIX Semaphore

Named Posix Semaphore

63/73

Execution Outcome

64/73

Locking a file

» Imposing read/write locks on files (or sections of files) is
essential at times.

» #include <fnctl.h>
int fnctl(int filedes, int cmd, struct flock *Idata)

» File filedes must be opened with O_RDONLY or O_WRONLY.

» The cmd can be one of the three:
» F_GETLK: get lock from data returned from /data
» F_.SETLK: apply lock to a file; return immediately if this is not
feasible.
» F_SETLKW: apply lock to a file. Sleep if lock blocked by a
previous lock owned by another process.

65/73

The flock structure

» The flock structure is defined in <fnctl.h> and includes:

66 /73

Locking a file

file pointer

Segment to
be locked

abcdefghijklmnopgrstuvwxyz....

|_start [len

[_whence== SEEK CUR

» [_whence: can be SEEK_SET, SEEK_CUR or SEEK_END.

[_start: start position of the segment.
I_len: segment in bytes.
» The I_type (lock type) can be:
» F_RDLCL: lock to be applied is read
» F_WRLCL: lock to be applied is write
» F_UNLCL: lock on specified segment to be removed.

67 /73

Locking a file

68/73

Locking a file

Execution Outcome

70/73

Possible Deadlock

Possible Deadlock

Execution Outcome

73/73

