ELF4M4 (%"444444DDD`dDHHH PtdB\\Qtd/lib/ld-linux.so.2GNU    (!yIkK~`  >A29|$y3ІjLlibstdc++.so.6__gmon_start___Jv_RegisterClasses__gxx_personality_v0libm.so.6libgcc_s.so.1libc.so.6_IO_stdin_usedexitsrandfopenperrorputstimeputcharprintffclosemallocfscanfgettimeofday__libc_start_mainfreeCXXABI_1.3GLIBC_2.1GLIBC_2.0 ӯk`ii ii      US[Ot.D(X[5%%h%h%h%h%h %h(%h0%h8p%h@`%hHP%hP@%hX0%h` %hh%hp%hx%h%h1^PTRhhQVhU=t ҡuÐUtt $ÐUSE$EEE]E $EE;E|ًE[]ÐUE$EEEEEE;E|EUE EPET$$HEEEEEE E(E0E8E@EHEPE EEEE E(E0E8E@EHEP(E0E EEE E(E0E8E@EHEP8E E 0E  E E E (E 0E 8E @E HE P8EEE0E E E(E0E8E@EHEP8EEEE0E  E(E0E8E@EHEP8EEEEE 0E( E0E8E@EHEP8EEEEE E(0E0 E8E@EHEP8E E E E E E (E 00E 8 E @E HE P@E$E$E$E$E$ E$(E$0E$80E$@ E$HE$PHE$F‹E E E E E E E (E 0E 8E @E HEÐUEEPET$$EEE E0EE E(HEEE E0E E(@EEEE E 0E(8E E E E E  E ((EEEEE E(E$‹E E E E E E EÐUEEEEEEE Ehl7?EUME$EE$EE$EE$EE$EE$EE$E܋E$E؋E$sEEyEEEEEEEEEEEEEEEEEEEE;E{EfEMEEEEEEEEEEŰE)Љ1M)U}t=}}tEM܋EEEE;E~%EMEEEuEM؋EEEPE;E~%EMEEE#EMԋEEEEE;EEE;EC]EvE(uaEUEEEEEEɋEEEEEEEMeEEɋEEEEEEɋEEEEEEMEeEEEEEEɋEEEEEEEEEEEEɋEEEEEEEEEEEMEMEEEEE EɋEEEEE EE E‹EEEEEEMEUEEEE;E~E(PE(ESE EEEEw"E EEE]EE;E|Emw@E!EME EEE;E|׋E(;E$E$E$E$E$E$wE$lE܉$aE؉$VEԉ$KÐU$P$jED$$'E~΋EƋEÐUH$į0ED$$$A$ED$$$ED$$$E؉D$$$EЉD$$eE$‹E EPET$$iEE EUE)Љ1M)Ũ}t2}tn}tEEEE;E~EEEEwEEEEZE;E~EEEE5EEEEEEEEE;EEE;EEE EEE;EEEEEE^EEE EEEEEEE EEE;EEE;EcEU$$FED$$E~΋EƋEÐUE$*E$+E0ED$$EED$$EE;E|ȋEÐU($ED$$_EPET$$zE$4EYEBED$ED$$`;EEED$$EE;EEE;E$mE=ED$$EEED$$}EE;EEU$$|ED$$9E~΋EƋEÐUt] P]EUEE$ED$$eE}_}"}t/$D$ED$$p$E؉D$$QD$E$$UEEɍED$ T$\$\$ ED$E D$E$ D$E$$E8E] |DžxVUUUx|ы|)É]EE|)‰UE`]M]Ee]ExE]EE]{‰ )P$d$`]LM]AEe]1ExE]EE]E\$$E\$E\$E\$ E\$$+EPET$$EEEUE)Љ1M)U}t/}tg}tEEEEE;E~EEEEqEEEEVE;E~EEEE3EEEEEEEEE;EEE;EE}EEEELEEE EEEEEEEE;EEE;EuEĴ[]ÐL$qUQ4$eEE}UE$QEE$EE}t<} }t}t<}tMED$E$ EED$E$'EkED$E$:ETEKE$EE$E-ED$E$E$Ⱦ]E(}EUD$T$E$E4Y]aÐU]Ít&'UWVSO' )t$1ED$E D$E$9uރ [^_]Ë$ÐUSt1Ћu[]ÐUS[P'Y[IMPLEMENTATION MENU Switch how you want to use the PSD iterative method: 1. Experimental verification of correctness of PSD algorithm for resolution of the linear system Ax=b with x given x=(1,1,...,1)^T 2. Experimental study of convergence of the PSD iterative method with t, w given in [0.1, 1.9] with step 0.1 3. Select if you want to quit.INPUT: %dGive pentadiagonial matrix[NXN] dimension N(e.g. 100,1000,10000) : Now give the matrix parameters a, b, c, d respectively in this order with a, b, c, d in 0.1(0.1)1.9 (e.g. a=1.2, b=0.9, c=0.6, d=0.3) :a = %lfb = c = d = Specific matrices LIST Switch the specific matrix to solve a linear system as given from exercise ask2_PSD: 1. Pentadiagonial matrix of dimensions 5X5 (adjustment 1.i) 2. Pentadiagonial matrix of dimensions 10X10 (adjustment 1.ii) 3. Pentadiagonial matrix of dimensions NXN, where N, a, b, c and d given by you with values 100,1000,10000(for N) and 0.1-1.9(for each of a,b,c,d), and system solution: x=(1,1,...,1,1)^T (adjustment 2) 4. Select if you want to return to MAIN MENU.INPUT : Give vector X data below (e.g (1,1,1,1,1)^T for a 5X5 pentadiagonial matrix) :X[%d] = Give pentadiagonial matrix[NXN] dimension N : Insert A pentadiagonial matrix data below:A[%d][%d] = Give vector b data below:b[%d] = MAIN MENU Switch your method of giving a system: 1. User Input: you are about to insert the A pentadiagonial matrix and the b vector directly from keyboard 2. Use specific pentadiagonial matrices: you are about to switch from a list of given matrices 3. Use ramdom pentadiagonial matrices: you are about to select only the size of the pentadiagonial matrix you want and the matrix will be generated randomly 4. File input: you are about to give a text file with your pentadiagonial matrices in it. The file name must have the name:'ask2_PSD.txt' 5. Select if you want to quit.Give the maximum number of iterations that you want to be applied so that a system solution will be computed Suggestion : If you type a big number(e.g. 500) probably you will find a solution, but you will lack in time (e.g. if you chose a 5X5 matrix and you are about to choose t=0.1 & w=0.4 type 200, if t=0.1 & w=0.1 type 10) : Now give the t and w parameters respectively in this order with t, w in 0.1(0.1)1.9 (e.g. t=0.1, w=0.4) :t = w = Execution of PSD method for linear system Ax = b resolution started... Execution of PSD iterative method for linear systems Ax = b resolution ended... APPROXIMATE LINEAR SOLUTION FOR THE PENTADIAGONIAL MATRIX FOUND WITH PARAMETERS t=%2.1lf AND w=%2.1lf AFTER %d ITERATIONS APPROXIMATE LINEAR SOLUTION FOR THE PENTADIAGONIAL MATRIX WAS NOT FOUND AMONG %d ITERATIONS WITH PARAMETERS t=%2.1lf AND w=%2.1lf. LAST APPROXIMATE SOLUTION WILL BE PRINTED. Matrix A with vector b in last column :%7.1lf LINEAR SYSTEM SOLUTION : x = ( %7.3lf, %7.3lf )^T Execution time of PSD system : %.4lf ms The parameters t and w are iteratively selected in range [0.1, 1.9] in oder to find the optimal values of t and w Execution of PSD method for linear system Ax = b resolution with all the values of t and w in range started... BETTER PARAMETERS FOUND! The best parameters until this iterations are t_optimal = %2.1lf and w_optimal = %2.1lf Execution of PSD iterative method for linear systems Ax = b resolution with all the values of t and w in range ended... APPROXIMATE LINEAR SOLUTION FOR THE PENTADIAGONIAL MATRIX FOUND WITH OPTIMAL PARAMETERS t_optimal=%2.1lf AND w_optimal=%2.1lf AFTER %d ITERATIONS APPROXIMATE LINEAR SOLUTION FOR THE PENTADIAGONIAL MATRIX WAS NOT FOUND AMONG %d ITERATIONS WITH BEST PARAMETERS t_optimal=%2.1lf AND w_optimal=%2.1lf. LAST APPROXIMATE SOLUTION WILL BE PRINTED. The optimal t parameter is : %2.1lf The optimal w parameter is : %2.1lf The number of iterations executed with the optimal parameters t and w is : %d Execution of PSD method for linear system Ax = b resolution with all the values of t and w in range took : %.4lf ms Execution time of PSD system with the minimum number of iterations took : %.4lf ms HOPE THAT YOU ENJOYED USING MY PROGRAM FOR FINDING LINEAR SYSTEM SOLUTIONS FOR SYSTEMS OF TYPE Ax = b USING THE PSD ITERATIVE METHOD. REGARDS NIKOLAOS BEGETIS UNDERGRADUATE STUDENT OF DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS, UNIVERSITY OF ATHENS 2011-2012rask2_PSD.txtFILE ERROR : Either the file with name 'ask2_PSD.txt' does not exist or it is placed in a wrong directoryDimensions given from the file are %dX%d Give pentadiagonial matrix[NXN] dimension N(e.g. 100,1000,10000) : Pentadiagonial matrix parameters selected as follows: k=%2.1lf, l=%2.1lf, d=%2.1lf, r=%2.1lf, s=%2.1lf ڧڧڧڧڧTTTTT LINEAR SYSTEM RESOLUTION OF Ax = b SYSTEMS USING PSD ITERATIVE METHODM` 7@ɿ @333333ӿ333333 @ٿ@@ffffff @@@?@$@;X `x4N,Pt zP|І  E  D.  h E  Ri    ֝E  H   $@u 8hc    HR`  ,ho|,  ooo~օ&6FVfvƆֆGCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu3)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu3)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu4)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu4)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu3)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu4)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu3)$",$D!u_IO_stdin_usedug$ZUi7intPpALOK'/build/buildd/glibc-2.7/build-tree/i386-libc/csu/crti.S/build/buildd/glibc-2.7/build-tree/glibc-2.7/csuGNU AS 2.18.0] /build/buildd/glibc-2.7/build-tree/i386-libc/csu/crtn.S/build/buildd/glibc-2.7/build-tree/glibc-2.7/csuGNU AS 2.18.0% $ > $ > $ > 4: ; I?  &IU%U%# init.cN /build/buildd/glibc-2.7/build-tree/i386-libc/csucrti.S!/!=Z!gg//,(!/!=Z!xN /build/buildd/glibc-2.7/build-tree/i386-libc/csucrtn.S !!!D!!!GNU C 4.2.4 (Ubuntu 4.2.4-1ubuntu3)short unsigned intshort int_IO_stdin_usedlong long unsigned intunsigned char/build/buildd/glibc-2.7/build-tree/glibc-2.7/csuinit.clong long int,?DH.symtab.strtab.shstrtab.interp.note.ABI-tag.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rel.dyn.rel.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.ctors.dtors.jcr.dynamic.got.got.plt.data.bss.comment.debug_aranges.debug_pubnames.debug_info.debug_abbrev.debug_line.debug_str.debug_ranges44#HH 5hh1o$; ,,PC||Ko~~*XoPg p  y0t0<',,.HH.@B\BDDDDEETE EE&GP`G%G,Io"I).0J9K@KGR$8 `YR4Hh,|~     ,H !,:G  ]lsP   $Ri 5`F V ] ttQ E   Hu , . 5LD>\lH yAƇ> 2, Z 9 '3|E E `֝E in~̏ $І  N 0 Gc L init.cinitfini.ccrtstuff.c__CTOR_LIST____DTOR_LIST____JCR_LIST____do_global_dtors_auxcompleted.5843p.5841frame_dummy__CTOR_END____DTOR_END____FRAME_END____JCR_END____do_global_ctors_auxask2_PSD.cpp_GLOBAL_OFFSET_TABLE___init_array_end__init_array_start_DYNAMICdata_start_Z11userInput_Xisrand@@GLIBC_2.0__libc_csu_fini_start_Z13fileInput_AxbPiPPd_Z14allocateMatrixii_Z8PSD_menuv__gmon_start___Jv_RegisterClasses_fp_hw_Z13randomInput_APi_finiputchar@@GLIBC_2.0__libc_start_main@@GLIBC_2.0perror@@GLIBC_2.0_Z15pentaMatrix_NXNPiPPd_IO_stdin_usedgettimeofday@@GLIBC_2.0free@@GLIBC_2.0_Z3PSDPPdS_iscanf@@GLIBC_2.0__data_startfclose@@GLIBC_2.1_Z13randomInput_Xifopen@@GLIBC_2.1_Z4signv__dso_handle__libc_csu_initprintf@@GLIBC_2.0_Z11userInput_APitime@@GLIBC_2.0__bss_startmalloc@@GLIBC_2.0_Z21list_specificMatricesv_Z4menuv_endputs@@GLIBC_2.0_Z15pentaMatrix_5X5PiPPdrand@@GLIBC_2.0fscanf@@GLIBC_2.0_edata__gxx_personality_v0@@CXXABI_1.3_Z17pentaMatrix_10X10PiPPdexit@@GLIBC_2.0_Z19PSD_iterativeMethodPPdS0_iddiPi__i686.get_pc_thunk.bxmain_init