ELFP494 (%"444444l1l1l1lldh1HHH Ptdh/hh\\Qtd/lib/ld-linux.so.2GNU    (!yIkK`  R>A29|$}3$nlibstdc++.so.6__gmon_start___Jv_RegisterClasses__gxx_personality_v0libm.so.6powlibgcc_s.so.1libc.so.6_IO_stdin_usedexitsrandfopenperrorputstimeputcharprintffclosemallocfscanfgettimeofday__libc_start_mainfreeCXXABI_1.3GLIBC_2.0GLIBC_2.1 ӯkH ii dii ii hx|     US[Ì<t.pX[5p%t%xh%|h%h%h%h %h(%h0%h8p%h@`%hHP%hP@%hX0%h` %hh%hp%hx%h%h%h1^PTRhhQVhDU=t ҡuÐU|tt $|ÐUEEEEEEm}EU ESE>E EEEEEEE;E|EE;E|EuEY]E;EELE;Et@E EEEEEE]EE;E|EEE EEEeELE;Et@E EEEEEE]EE;E|E EE EEEeEEEEE;EEE;EE>E)E;E~EEEEE;E|σEE;E|EeEPE;EuE EE%E;E}E EEEE;E|EE;E|UE]E/EEEwEE]EE ;E}EU(E $EEL]E$EEEE]EE;E |ԋEEEEE;E |E D$E$"]E$EÐU8E$EEo]E/EEEEE E]EE;E|ɋEMEEEeEE;E|ED$E$e]ED$E$P]؋E$EuU(E$JEE)EUEE EEEE;E|ϋED$E$]ED$E $]E$xEuUSE$EEE]E $EE;E|ًE[]ÐU8ED$E$EED$E$EESE>E;EuEEEEEEEE;E|EE;E|EEEEEE`EEE EEEEEEEE EEE;E|EE;EgEE;EKE]EHEEE EEEEEEEE;E|EE;E|ED$E$]؋ED$E$]E*EE$EE$EE;E|΋E$E$EuU(ED$E$PEE]EHEEE EE EEEEEE;E|EE;E|ED$E$]ED$E $]EEE$ EE;E|E$EuUED$E$bEEUED$E$BEE~EiE;Eu+EEEE2EEEEEEE;E|EE;EvEÐUED$E$EEEEEEE EE(EEE0E8E E (E 8E EUED$$KEE0E@EHE0E@EEPE@EHEPEEXE 0E @E XE EÐUxE$EE$EE$EED$E$EED$E$EED$E$EEEEEE;E|D$E$$QEEEED$ ED$ED$E$&EEEE]E4EEE‹EEE]ЃEE;E|ċEMEEeЋE‹EEEE;EnEEHEEE‹EEEE]ЋEE4EEE‹EEE]ЃmE;EċEMEEeЋE‹EEm}nE$EEE‹EEEE;E|ԋEEEE;E}n$ EKE*EEE\$$EE;E|΃E$ E;E|$&EKE*EEE\$$PEE;E|΃E$ E;E|ED$E$n]ȋED$E$Y]ED$E D$E$\$$8ED$ E D$ED$E$[\$$tEM\$$$}$EKE*EEE\$$ԥ@EE;E|΃E$ E;E|$ܥ@EKE*EEE\$$ԥEE;E|΃E$ ,E;E|ED$E$EEEEEEE`EEE EEEEEEEEEEE;E|EE;EgEE;EK$EKE*EEE\$$EE;E|΃E$ E;E|$D$E$UE)P$d$`]UE)P$d$`E]$l8E\$$E4E‹E$E‹E$|EE;E|ċE$eE$ZE$OE$DE$9EU(D$$JE}t$$ED$D$qE$jEET$D$$tEET$$6EEET$$‹E EFE/EEED$D$E$EE;EǃEE;EEKE4E EED$D$E${EE;EƒEE;EE$EÐU$ED$$qEET$$EEJE0EEEEEEE;EÃEE;EEÐU$ܨHED$$qEET$$oEE_EHE;Eu$EEE‹EP$d$EEEEE;EEE;EEÐU$$ªED$$qCE~΋EƋEÐU(ED$E$E$̪gEWEBED$ED$$ EEED$$EE;E|EE;E|EU($ED$$quEPET$$E$EYEBED$ED$$9QEEED$$EE;EEE;EEU$H*$ªED$$qE~΋EƋEÐUVS $$$ED$$q[EPET$$EEaEJEEEEQE)ƉukEd)‰UEEE;EEE;EE [^]ÐUVSPED$E$&EE0EEEE4EEP$d$\$$]EE$P$d$E]EE$bP$d$E]ȋEEP$d$]ЋE$0ËE$ P$d$\$$sE]؋UE)Љ$P$d$E]UE)Љ$P$d$M}EE;EEE;EEP[^]ÐL$qUQDE$\EDEԃ}UԋԮE$bEE$EmE؃}tC} }t}tJ}tbE$EE$wEE$`EE$EyE$EE$E[ERE$EE$=EE-ED$E$E$hE\}}u&EUD$ D$T$E$#ED$ D$ED$E$vEЃDY]aÐU]Ít&'UWVSOQ )t$1ED$E D$E$9uރ [^_]Ë$ÐUSlt1Ћhu[]ÐUS[Y[ Execution of LU method(with partial pivoting) to compute A^-1 matrix started... Matrix A :%7.2lf Matrix A^-1 : The approximate relative fault of A and A^-1 is : %.20lf The approximate relative modulo of A and A^-1 is : %.20lf Condition number of A matrix : %lf %12.2lf Matrix A^-1 : Matrix A*A^-1 : Due to the fact that in random matrices we don't know the inverted vector faults are not computed, as you can see, and so alternatively we compute the inverted matrix B=A^-1 and also the multiplication of A*B = A*A^-1 so that we can proove that method LU worked well. We can reach to this conclusion if the printed A*B is the unit matrix(I). Execution of LU method(with partial pivoting) to compute A^-1 matrix ended... Execution time of LU to compute A^-1 : %.4lf ms rask1_LU_1_b.txtFILE ERROR : Either the file with name 'ask1_LU_1_b.txt' does not exist or it is placed in a wrong directory%dDimensions given from the file are %dX%d %lfGive Hilbert matrix[NXN] dimension N(e.g. 10,50,100) : Give Pei matrix[NXN] dimension N(e.g. 100,500,1000) : Specific matrices LIST Switch the specific matrix to compute the inverted matrix as given from exercise ask1_LU.1.b: 1. Matrix of dimensions 4X4 (adjustment 1.b.1) 2. Pei Matrix of dimensions NXN, where N given by you with values 100,500,1000 (adjustment 1.b.2) 3. Hilbert Matrix of dimensions NXN, where N given by you with values 10,50,100 (adjustment 1.b.3) 4. Select if you want to return to MAIN MENU.INPUT: Insert ^-1 matrix data below:A^-1[%d][%d] = Give matrix[NXN] dimension N : Insert matrix data below:A[%d][%d] = MAIN MENU Switch your method of giving a system: 1. User Input: you are about to insert the A matrix and the b vector directly from keyboard 2. Use specific matrices: you are about to switch from a list of given matrices 3. Use ramdom matrices: you are about to select only the size of the matrix you want and the matrix will be generated randomly 4. File input: you are about to give a text file with your matrices in it. The file name must have the name:'ask1_LU_1_b.txt' 5. Select if you want to quit. COMPUTATION OF INVERTED MATRICES USING LU DECOMPOSITION METHOD (WITH PARTIAL PIVOTING) HOPE THAT YOU ENJOYED USING MY PROGRAM FOR COMPUTATING INVERTED MATRICES USING LU DECOMPOSITION METHOD (WITH PARTIAL PIVOTING) REGARDS NIKOLAOS BEGETIS UNDERGRADUATE STUDENT OF DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS, UNIVERSITY OF ATHENS 2011-2012Di@Q@D1$@9@@@@ @"@@@;X x^,PPtzP|$  f  DPu  hƜ  j  E  f    E (@ 8lD    HVd ԅ ho 0  l<4oĄoo*:JZjzʆچ *:xGCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu3)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu3)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu4)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu4)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu3)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu4)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu3)$ԅ"$!u_IO_stdin_useduttg$ZUi7intPpAOK'/build/buildd/glibc-2.7/build-tree/i386-libc/csu/crti.S/build/buildd/glibc-2.7/build-tree/glibc-2.7/csuGNU AS 2.18.0] /build/buildd/glibc-2.7/build-tree/i386-libc/csu/crtn.S/build/buildd/glibc-2.7/build-tree/glibc-2.7/csuGNU AS 2.18.0% $ > $ > $ > 4: ; I?  &IU%U%# init.cN /build/buildd/glibc-2.7/build-tree/i386-libc/csucrti.Sԅ!/!=Z!gg//(!/!=Z!xN /build/buildd/glibc-2.7/build-tree/i386-libc/csucrtn.S !!!!!!GNU C 4.2.4 (Ubuntu 4.2.4-1ubuntu3)short unsigned intshort int_IO_stdin_usedlong long unsigned intunsigned char/build/buildd/glibc-2.7/build-tree/glibc-2.7/csuinit.clong long intԅ.symtab.strtab.shstrtab.interp.note.ABI-tag.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rel.dyn.rel.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.ctors.dtors.jcr.dynamic.got.got.plt.data.bss.comment.debug_aranges.debug_pubnames.debug_info.debug_abbrev.debug_line.debug_str.debug_ranges44#HH 5hh1o  $; 00`CKo,XoĄpg 44p << yԅ0t@PPL$$ hh/\į/ll1tt1||11hh2ll2X2 22&3PH4%m46o"6).079h8@8G? $8 F4Hh 0Ą4 < ԅ  P hįlt|hl !l,t:|G ]ls pxh|p lll 'f ?`P `Ɯ xP Q     E Pu =Z v ԇ. Ԡo > A*f Dj Xn8 q2 Z 9 X |,C = c yE  $  fF %,$M]j tD yԅ init.cinitfini.ccrtstuff.c__CTOR_LIST____DTOR_LIST____JCR_LIST____do_global_dtors_auxcompleted.5843p.5841frame_dummy__CTOR_END____DTOR_END____FRAME_END____JCR_END____do_global_ctors_auxask1_LU_1_b.cpp_GLOBAL_OFFSET_TABLE___init_array_end__init_array_start_DYNAMICdata_start_Z11LU_invertedPPdS0_iisrand@@GLIBC_2.0__libc_csu_fini_Z17HilbertMatrix_NXNPi_start_Z14allocateMatrixii__gmon_start___Jv_RegisterClasses_fp_hw_Z13randomInput_APi_finiputchar@@GLIBC_2.0pow@@GLIBC_2.0_Z30list_specificMatrices_invertedv_Z20fileInput_A_invertedPiPPPd__libc_start_main@@GLIBC_2.0_Z22PeiMatrix_NXN_invertedi_Z18apprRelativeModuloPPdS_S_i_Z9factoriali_Z26HilbertMatrix_NXN_invertediperror@@GLIBC_2.0_IO_stdin_usedgettimeofday@@GLIBC_2.0free@@GLIBC_2.0scanf@@GLIBC_2.0__data_start_Z20userInput_A_invertedi_Z13PeiMatrix_NXNPi_Z19matrix_4X4_invertedifclose@@GLIBC_2.1fopen@@GLIBC_2.1_Z17apprRelativeFaultPdS_i__dso_handle__libc_csu_initprintf@@GLIBC_2.0_Z11userInput_APi_Z7maxNormPditime@@GLIBC_2.0__bss_startmalloc@@GLIBC_2.0_Z10matrix_4X4Pi_Z22LU_factorizationMethodPPdPS0_S1_i_Z13maxMatrixNormPPdi_Z4menuv_endputs@@GLIBC_2.0_Z26apprRelativeFault_invertedPPdS0_irand@@GLIBC_2.0fscanf@@GLIBC_2.0_Z22randomInput_A_invertedi_Z27apprRelativeModulo_invertedPPdS0_S0_i_edata__gxx_personality_v0@@CXXABI_1.3exit@@GLIBC_2.0__i686.get_pc_thunk.bxmain_init