ELF4I4 (%"444444@@@`d@HHH Ptd>\\Qtd/lib/ld-linux.so.2GNU    (!yIkK~`  >A29|$y3Іjlibstdc++.so.6__gmon_start___Jv_RegisterClasses__gxx_personality_v0libm.so.6libgcc_s.so.1libc.so.6_IO_stdin_usedexitsrandfopenperrorputstimeputcharprintffclosemallocfscanfgettimeofday__libc_start_mainfreeCXXABI_1.3GLIBC_2.1GLIBC_2.0 ӯk`ii ii      US[Kt.*X[5%%h%h%h%h%h %h(%h0%h8p%h@`%hHP%hP@%hX0%h` %hh%hp%hx%h%h1^PTRh@hPQVhȮU=t ҡuÐUtt $ÐUEEEEEEm}EU ESE>E EEEEEEE;E|EE;E|EuEY]E;EELE;Et@E EEEEEE]EE;E|EEE EEEeELE;Et@E EEEEEE]EE;E|E EE EEEeEEEEE;EEE;EE>E)E;E~EEEEE;E|σEE;E|EeEPE;EuE EE%E;E}E EEEE;E|EE;E|UE]E/EEEwEE]EE ;E}EU(E $EEL]E$EEEE]EE;E |ԋEEEEE;E |E D$E$"]E$EÐU8E$*EEo]E/EEEEE E]EE;E|ɋEMEEEeEE;E|ED$E$e]ED$E$P]؋E$EuU(E$VEE)EUEE EEEE;E|ϋED$E$]ED$E $]E$EuUSE$EEE]E $EE;E|ًE[]ÐU8ED$E$EED$E$EESE>E;EuEEEEEEEE;E|EE;E|EEEEEE`EEE EEEEEEEE EEE;E|EE;EgEE;EKE]EHEEE EEEEEEEE;E|EE;E|ED$E$]؋ED$E$]E*EE$!EE$EE;E|΋E$E$EuU(ED$E$PEE]EHEEE EE EEEEEE;E|EE;E|ED$E$]ED$E $]EEE$EE;E|E$EuUE$BEEEEEE;E|EUE E$‹E EPET$$EEGE0EEEEEEE;E}ƃEE;E}E8EuE EE EEE;EEEEEE^EEE EEEEEEE EEE;EEE;EcEÐUEEPET$$~EEEEEE E(E0E8E@ȽEнEؽEEE E(E0E8E@EEEEнE E(E0E8E@E E E E E E (E 0E 8E @EE EEE E(E0E8E@(EEE0EE E(E0E8E@8EEE@EE E(E0E8E@HEEEEE E(E0E8PE@XE$B‹E E E E E E E (E 0E 8EÐUEEPET$$EEEEEE E(EEEнEE E(`EEEEE E(ؽE E E E E нE (hEPEEEpE 0E((E$|‹E E E E E E EÐUxE$EE$EE$EED$E$EED$E$EED$E$EEEEEE;E|D$E$ $EEEED$ ED$ED$E$JEEEE]E4EEE‹EEE]ЃEE;E|ċEMEEeЋE‹EEEE;EnEEHEEE‹EEEE]ЋEE4EEE‹EEE]ЃmE;EċEMEEeЋE‹EEm}nE$EEE‹EEEE;E|ԋEEEE;E}x}n$SFEKE*EEE\$$_EE;E|΃E$ BE;E|$fEKE*EEE\$$_vEE;E|΃E$ E;E|ED$E$]ȋED$E$s]ED$E D$E$\$$xED$ E D$ED$E$u\$$EM\$$$}$SEKE*EEE\$$_fEE;E|΃E$ E;E|$fEKE*EEE\$$_EE;E|΃E$ bE;E|ED$E$ EEEEEEE`EEE EEEEEEEEEEE;E|EE;EgEE;EK$$(EKE*EEE\$$_EE;E|΃E$ $E;E|$8D$E$-UE)P$d$x]UE)P$d$xE]$^E\$$E4E‹E$E‹E$EE;E|ċE$E$E$uE$jE$_EUhE$EE$EED$E$EED$E$ED$E$$,YED$ ED$ED$E$;EEEEE]E4EEE‹EEE]؃EE;E|ċEMEEEe؋E‹EEEE;EcEEHEEE‹EEEE]؋EE4EEE‹EEE]؃mE;EċEMEEe؋E‹EEm}n$ENE*EEE\$$_EE;E˃E$ E;E|$EPE/E‹EE\$$_EE;E|ɃE$ E;E|$´EPE/E‹EE\$$_BEE;E|ɃE$ E;E|$ϴB$ܴEEE\$$EE;E֋EE\$$$$EEE\$$yEE;E֋EE\$$LED$E D$E$\$$#ED$ E D$ED$E$\$$TED$E$)]D$D$ ED$ED$E$EED$E$]EM\$$D$E$$UE)P$d$x]UE)P$d$xE]$UE\$$EGE‹E$E‹E$EE$EE;E|E$oE$dE$YE$NE $CE$8U(D$$LE}t$($ED$D$E$lEET$D$$EPET$$)EE$‹E EFE/EEED$D$¶E$EE;EǃEE;EE1EEED$D$¶E$EE;EE)E ED$D$¶E$PEE;E͋E$EU$ȶED$$E$‹E EPET$$EEzEcE;Eu+EEEPEP$d$,EEEEEEE;E}EE;ExEE EEE;EEEEEE^EEE EEEEEEE EEE;EEE;EcEU$@$ϸED$$E~΋EƋEÐUE$E$ظE0ED$$#EED$$¶TEE;E|ȋEÐU($,`ED$$EPET$$xE$LUEYEBED$ED$$iEEED$$¶EE;EEE;E$vE=ED$$EEED$$¶;EE;EEU$v$:ED$$E~΋EƋEÐUVS $$V$,ED$$EPET$$EEaEJEEEEQE)ƉukEd)‰UEEE;EEE;EE}EEEELEEE EEEEEEEE;EEE;EuE [^]ÐL$qUQ4$E'E}U\E$EE$qEE}UtED$E$uEED$E$EED$E$EkED$E$ETEKE$EE$mE-ED$E$E$E(}EUD$T$E$E4Y]aÐU]Ít&'UWVSO)! ')t$1ED$E D$E$9uރ [^_]Ë$ÐUSt1Ћu[]ÐUS[Ü ,Y[ Execution of LU method(with partial pivoting) to compute A^-1 matrix started... Matrix A :%7.2lf Matrix A^-1 : The approximate relative fault of A and A^-1 is : %.20lf The approximate relative modulo of A and A^-1 is : %.20lf Condition number of A matrix : %lf Matrix A^-1 : Matrix A*A^-1 : Due to the fact that in random matrices we don't know the Χ inverted vector faults are not computed, as you can see, and so alternatively we compute the inverted matrix B=A^-1 and also the multiplication of A*B = A*A^-1 so that we can proove that method LU worked well. We can reach to this conclusion if the printed A*B is the unit matrix(I). Execution of LU method(with partial pivoting) to compute A^-1 matrix ended... Execution time of LU to compute A^-1 : %.4lf ms Execution of LU method(with partial pivoting) for linear system Ax = b resolution started... Matrix A with vector b in last column : Matrix L : Matrix U : Vector y :y =( %7.2lf, %7.2lf )^T LINEAR SYSTEM SOLUTION : x = ( The approximate relative fault of system is : %.20lf The approximate relative modulo of system is : %.20lf Execution of LU method(with partial pivoting) for linear system Ax = b resolution ended...Execution time of LU system : %.4lf ms rask1_LU_1_a.txtFILE ERROR : Either the file with name 'ask1_LU_1_a.txt' does not exist or it is placed in a wrong directory%dDimensions given from the file are %dX%d %lfGive matrix[NXN] dimension N(e.g. 100,500,1000) : Specific matrices LIST Switch the specific matrix to solve a linear system as given from exercise ask1_LU.1.a: 1. Matrix of dimensions 5X5 (adjustment 1.a.1) 2. Matrix of dimensions 8X8 (adjustment 1.a.2) 3. Hilbert Matrix of dimensions 10X10 (adjustment 1.a.3) 4. Matrix of dimensions NXN, where N given by you with values 100,500,1000 and system solution: x=(1,1,...,1,1)^T (adjustment 1.a.4) 5. Select if you want to return to MAIN MENU.INPUT : Give vector X data below (e.g 1,2,3,1,2 for the first adjustment 1.a.1) :X[%d] = Give matrix[NXN] dimension N : Insert A matrix data below:A[%d][%d] = Give vector b data below:b[%d] = MAIN MENU Switch your method of giving a system: 1. User Input: you are about to insert the A matrix and the b vector directly from keyboard 2. Use specific matrices: you are about to switch from a list of given matrices 3. Use ramdom matrices: you are about to select only the size of the matrix you want and the matrix will be generated randomly 4. File input: you are about to give a text file with your matrices in it. The file name must have the name:'ask1_LU_1_a.txt' 5. Select if you want to quit.INPUT: LINEAR SYSTEM RESOLUTION OF Ax = b SYSTEMS USING LU DECOMPOSITION METHOD (WITH PARTIAL PIVOTING) HOPE THAT YOU ENJOYED USING MY PROGRAM FOR FINDING LINEAR SYSTEM SOLUTIONS FOR SYSTEMS OF TYPE Ax = b USING THE LU DECOMPOSITION METHOD (WITH PARTIAL PIVOTING) REGARDS NIKOLAOS BEGETIS UNDERGRADUATE STUDENT OF DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS, UNIVERSITY OF ATHENS 2011-2012 +үIc}$@@@@@&@6(@(3@ @@3.:@"@K@9@1@.@2@@@;X xVz,~PtHzP|І  fp  D֡$  h    NE  i    E (@^i 8lȮk    HR`  ܰho|,  ooo~օ&6FVfvƆֆGCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu3)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu3)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu4)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu4)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu3)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu4)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu3)$"ܰ$!u_IO_stdin_usedug$ZUi7intPpAOK'/build/buildd/glibc-2.7/build-tree/i386-libc/csu/crti.S/build/buildd/glibc-2.7/build-tree/glibc-2.7/csuGNU AS 2.18.0] /build/buildd/glibc-2.7/build-tree/i386-libc/csu/crtn.S/build/buildd/glibc-2.7/build-tree/glibc-2.7/csuGNU AS 2.18.0% $ > $ > $ > 4: ; I?  &IU%U%# init.cN /build/buildd/glibc-2.7/build-tree/i386-libc/csucrti.S!/!=Z!gg//ܰ(!/!=Z!xN /build/buildd/glibc-2.7/build-tree/i386-libc/csucrtn.S !!!!!!GNU C 4.2.4 (Ubuntu 4.2.4-1ubuntu3)short unsigned intshort int_IO_stdin_usedlong long unsigned intunsigned char/build/buildd/glibc-2.7/build-tree/glibc-2.7/csuinit.clong long intܰ.symtab.strtab.shstrtab.interp.note.ABI-tag.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rel.dyn.rel.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.ctors.dtors.jcr.dynamic.got.got.plt.data.bss.comment.debug_aranges.debug_pubnames.debug_info.debug_abbrev.debug_line.debug_str.debug_ranges44#HH 5hh1o$; ,,PC||Ko~~*XoPg p  y0t0)ܰ00 >\ܾ>@@@@AATA AA&CP`C%C,Eo"E).0F9G@GGN$8 U 4Hh,|~     ܾܰ !,:G  ]lsP   'i 8`I@ Y `Q u   ^i ܰ֡$ R *t. 8JY>qAfp  :> 2& *PZ :9LЗ ` r`X | NE  E #L Ix fv$F І  Ȯk  init.cinitfini.ccrtstuff.c__CTOR_LIST____DTOR_LIST____JCR_LIST____do_global_dtors_auxcompleted.5843p.5841frame_dummy__CTOR_END____DTOR_END____FRAME_END____JCR_END____do_global_ctors_auxask1_LU_1_a.cpp_GLOBAL_OFFSET_TABLE___init_array_end__init_array_start_DYNAMICdata_start_Z11userInput_Xisrand@@GLIBC_2.0__libc_csu_fini_start_Z14allocateMatrixii_Z12fileInput_AXPiPPd__gmon_start___Jv_RegisterClasses_fp_hw_Z13randomInput_APi_finiputchar@@GLIBC_2.0__libc_start_main@@GLIBC_2.0_Z2LUPPdS_i_Z18apprRelativeModuloPPdS_S_i_Z9factorialiperror@@GLIBC_2.0_IO_stdin_usedgettimeofday@@GLIBC_2.0free@@GLIBC_2.0scanf@@GLIBC_2.0__data_start_Z11LU_invertedPPdS0_iiifclose@@GLIBC_2.1_Z10matrix_8X8PiPPd_Z13randomInput_Xifopen@@GLIBC_2.1_Z17apprRelativeFaultPdS_i__dso_handle__libc_csu_initprintf@@GLIBC_2.0_Z10matrix_5X5PiPPd_Z11userInput_APi_Z7maxNormPditime@@GLIBC_2.0__bss_startmalloc@@GLIBC_2.0_Z22LU_factorizationMethodPPdPS0_S1_i_Z21list_specificMatricesv_Z13maxMatrixNormPPdi_Z4menuv_endputs@@GLIBC_2.0_Z26apprRelativeFault_invertedPPdS0_i_Z19HilbertMatrix_10X10PiPPdrand@@GLIBC_2.0fscanf@@GLIBC_2.0_Z27apprRelativeModulo_invertedPPdS0_S0_i_edata__gxx_personality_v0@@CXXABI_1.3_Z10matrix_NXNPiPPdexit@@GLIBC_2.0__i686.get_pc_thunk.bxmain_init