ELF454 (%"444444(-(-(-((\`<-<<HHH Ptd +  \\Qtd/lib/ld-linux.so.2GNU     (!yIkK~`  >A29|$y3jlibstdc++.so.6__gmon_start___Jv_RegisterClasses__gxx_personality_v0libm.so.6libgcc_s.so.1libc.so.6_IO_stdin_usedexitsrandfopenperrorputstimeprintffclosemallocfscanfgettimeofday__libc_start_mainfreeCXXABI_1.3GLIBC_2.1GLIBC_2.0 ӯk`ii ii $48<@DHLP T X \ ` dhlptUS[ð8t.X[5,%0%4h%8h%<h%@h%Dh %Hh(%Lh0%Ph8p%Th@`%XhHP%\hP@%`hX0%dh` %hhh%lhp%phx%th1^PTRhhQVhnU=t ҡuÐU8tt $8ÐU]EEEE]m}EÐUSE$EEE]E $EE;E|ًE[]ÐUE$EEEEEE;E|EUEEPET$$HEEEEEE E(E0E8E@0EE8E@EHE PE(XE0`E80E@hEE@EXEpE xE(E0E8hE@E E HE pE E E (E 0E 8E @EEPExEE E(ȪE0ЪE8E@تEEXEEE ȪE(E0E8تE@EE`EEE ЪE(E0E8E@EE0EhEE E(تE0E8E@E$6‹E E E E E E E (E 0E 8EÐUhhl7?EUM]]]ȋE$EE$EE$oEE$^EEQE E EEEEEEEEEEE;E|EEFEMEEEEEE EEE;E|EMEEEEEEUEEEEEEE]ȃEE;E1EcEEEAEMEEEEEEEEE;E|EE;E|]E$EEEEE]EE;E|Eu]E\E E E EEEMEUEEEEMEE;E|]E$EEEEE]EE;E|EmwgEu]E]E,EUEEEEMEE;E|̋EPEE;E.E$E$E$E$ÐU-t] ]EUS4$ED$$۞vE$‹E EPET$$EEpEYEEEXEE$>]؋E$-]E$M}EE;E}EE;E}EE EEE;EEEEEE^EEE EEEEEEE EEE;EEE;EcE4[]ÐU$2$4ED$$۞E$‹E EPET$$EEzEcE;Eu+EEEPEP$d$,EEEEEEE;E}EE;ExEE EEE;EEEEEE^EEE EEEEEEE EEE;EEE;EcEU$hf$*ED$$۞E~΋EƋEÐUE$E$E0ED$$٢EED$$zEE;E|ȋEÐU($ED$$۞CEPET$$E${EYEBED$ED$$%EEED$$EE;EEE;E$2E=ED$$MEEED$$aEE;EEU$X$g`ED$$۞E~΋EƋEÐUHE$pED$$۞$d0D$E$UED$T$ ED$E D$E$D$E؉$c$U؋E)P$d$]U܋E)P$d$E]$$LE$E‹E \$$#EE;EыE‹E \$$#UE9}ED$$0ED$$|E\$$EEE$PEE;E|E$9E $.U(D$$ BE}t$,$ED$D$۞E$bEET$D$$EPET$$EE$‹E EFE/EEED$D$E$EE;EǃEE;EE1EEED$D$E$EE;EE)E ED$D$E$FEE;E͋E$EUVS@$$,$4ED$$۞mEPET$$EEEE;EuKEEEE(E)ƉukEe)‰UEE;E}}EEE]-E(E)ƉukEe)‰UEMEEE EEEEE;EEE;EE}EEEELEEE EEEEEEEE;EEE;EuE@[^]ÐL$qUQ4$ĨE'E}UE$EE$qEE}t<} }t}t<}tMED$E$EED$E$CEkED$E$ETEKE$EE$YE-ED$E$NE$E(}EUD$T$E$DE4Y]aÐU]Ít&'UWVSO- c)t$1ED$E D$E$9uރ [^_]Ë$ÐUS(t1Ћ$u[]ÐUS[à\Y[Give Pascal matrix[NXN] dimension N (e.g. 100,500,1000) : %d The specific symmetric and positively defined matrix is designed with the following formula: if the elements i,j of the matrix are on the diagonial then A[i][j] = N , N is the size of the matrix else A[i][j] = 1/(i+j-1) This pattern was given from the Cholesky method solvable matrices in adjustment 2.a.6 from exercise 1 Give matrix[NXN] dimension N(e.g. 100,500,1000) : Specific matrices LIST Switch the specific matrix to solve a linear system as given from exercise ask3_CG: 1. Pascal Matrix of dimensions 8X8 (adjustment 2.a.4 from exercise 1) 2. Pascal Matrix of dimensions NXN, where N given by you with values 100,500,1000 and system solution: x=(1,1,...,1,1)^T(adjustment 2.a.5 from exercise 1) 3. Matrix of dimensions NXN, where N given by you with values 100,500,1000 and system solution: x=(1,1,...,1,1)^T (adjustment 2.a.6 from exercise 1) 4. Select if you want to return to MAIN MENU.INPUT : Give vector X data below (e.g (1,1,1,1,1)^T for a 5X5 matrix) :X[%d] = %lfGive matrix[NXN] dimension N : Insert A matrix data below:A[%d][%d] = Give vector b data below:b[%d] = MAIN MENU Switch your method of giving a system: 1. User Input: you are about to insert the A matrix and the b vector directly from keyboard 2. Use specific matrices: you are about to switch from a list of given matrices 3. Use ramdom matrices: you are about to select only the size of the matrix you want and the matrix will be generated randomly 4. File input: you are about to give a text file with your matrices in it. The file name must have the name:'ask3_CG.txt' 5. Select if you want to quit.INPUT: Give the maximum number of iterations that you want to be applied so that a system solution will be computed Suggestion : If you type a big number(e.g. 100) probably you will find a solution(e.g. if you chose a 10X10 matrix type 20) : Execution of CG method for linear system Ax = b resolution started... Execution of CG method for linear systems Ax = b resolution ended... LINEAR SYSTEM SOLUTION : x = ( %7.3lf, %7.3lf )^T APPROXIMATE LINEAR SOLUTION FOR THE MATRIX WAS FOUND AFTER %d ITERATIONS APPROXIMATE LINEAR SOLUTION FOR THE MATRIX WAS NOT FOUND AMONG %d ITERATIONS. LAST APPROXIMATE SOLUTION WAS PRINTED. Execution time of CG system : %.4lf ms rask3_CG.txtFILE ERROR : Either the file with name 'ask3_CG.txt' does not exist or it is placed in a wrong directoryDimensions given from the file are %dX%d LINEAR SYSTEM RESOLUTION OF Ax = b SYSTEMS USING CG METHOD HOPE THAT YOU ENJOYED USING MY PROGRAM FOR FINDING LINEAR SYSTEM SOLUTIONS FOR SYSTEMS OF TYPE Ax = b USING THE CG METHOD. REGARDS NIKOLAOS BEGETIS UNDERGRADUATE STUDENT OF DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS, UNIVERSITY OF ATHENS 2011-2012ќRp @@@@@@@B@$@.@5@<@^@4@A@L@U@t@Q@_@@j@@o@|@К@@Ъ@#@@@;X Px 0TxDNzP| $ p  H(  lE  :i    E    И (Dd  8pnc    HR` l |hoh( (܄ooob<…҅"2BRbr4GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu3)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu3)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu4)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu4)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu3)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu4)GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu3)$l"|$!u_IO_stdin_usedug$ZUi7intPpAOK'/build/buildd/glibc-2.7/build-tree/i386-libc/csu/crti.S/build/buildd/glibc-2.7/build-tree/glibc-2.7/csuGNU AS 2.18.0] /build/buildd/glibc-2.7/build-tree/i386-libc/csu/crtn.S/build/buildd/glibc-2.7/build-tree/glibc-2.7/csuGNU AS 2.18.0% $ > $ > $ > 4: ; I?  &IU%U%# init.cN /build/buildd/glibc-2.7/build-tree/i386-libc/csucrti.Sl!/!=Z!gg//|(!/!=Z!xN /build/buildd/glibc-2.7/build-tree/i386-libc/csucrtn.S !!!!!!GNU C 4.2.4 (Ubuntu 4.2.4-1ubuntu3)short unsigned intshort int_IO_stdin_usedlong long unsigned intunsigned char/build/buildd/glibc-2.7/build-tree/glibc-2.7/csuinit.clong long intl|.symtab.strtab.shstrtab.interp.note.ABI-tag.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rel.dyn.rel.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.ctors.dtors.jcr.dynamic.got.got.plt.data.bss.comment.debug_aranges.debug_pubnames.debug_info.debug_abbrev.debug_line.debug_str.debug_ranges44#HH 5hh1o$; ((@ChhKobb(XoPg ܄p  yll0t ||   +\||+((-00-88-<<-$$.((.Pxx. ..&/P0%%01o";2).0d39 4@`4Gp;$8 A,4Hh(hb܄  l   | |(08<$(x !(,0:8G ]ls  ,4$8P (((<x #:i 4`E U \И srQ   d  |D-  #2>JZAkxxć> 2D, |Z 9 ( p &6B Y|kE E $  J !nc &l init.cinitfini.ccrtstuff.c__CTOR_LIST____DTOR_LIST____JCR_LIST____do_global_dtors_auxcompleted.5843p.5841frame_dummy__CTOR_END____DTOR_END____FRAME_END____JCR_END____do_global_ctors_auxask3_CG.cpp_GLOBAL_OFFSET_TABLE___init_array_end__init_array_start_DYNAMICdata_start_Z11userInput_Xisrand@@GLIBC_2.0__libc_csu_fini_start_Z13fileInput_AxbPiPPd_Z14allocateMatrixii__gmon_start___Jv_RegisterClasses_fp_hw_Z13randomInput_APi_fini__libc_start_main@@GLIBC_2.0_Z9factoriali_Z16PascalMatrix_8X8PiPPdperror@@GLIBC_2.0_IO_stdin_usedgettimeofday@@GLIBC_2.0free@@GLIBC_2.0scanf@@GLIBC_2.0__data_startfclose@@GLIBC_2.1_Z13randomInput_Xifopen@@GLIBC_2.1_Z4signv__dso_handle__libc_csu_initprintf@@GLIBC_2.0_Z11userInput_APi_Z10Matrix_NXNPiPPd_Z16PascalMatrix_NXNPiPPdtime@@GLIBC_2.0__bss_start_Z9CG_MethodPPdS0_iiPimalloc@@GLIBC_2.0_Z21list_specificMatricesv_Z4menuv_endputs@@GLIBC_2.0rand@@GLIBC_2.0fscanf@@GLIBC_2.0_edata__gxx_personality_v0@@CXXABI_1.3_Z2CGPPdS_iexit@@GLIBC_2.0__i686.get_pc_thunk.bxmain_init