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Abstract. Asymmetric fingerprinting schemes — introduced by Pfitz-
mann and Schunter in Eurocrypt 1996 — enable the transmission of
a file stored in a server to a set of users so that each user obtains a
variation of the file. The security considerations of these schemes are as
follows: if any (appropriately bounded) subset of users collude to produce
a “pirate” copy of the file, it is always possible for the server to prove
to a third party judge the implication of at least one of them, while a
malicious server can never implicate innocent users.
Given that asymmetric fingerprinting is supposed to distribute files of
substantial size (e.g., media files including video and audio) any commu-
nication rate (defined as the size of the file over the total transmission
length) less than 1 would render them practically useless. The existence
of such schemes is currently open. Building on a rate close to 1 oblivious
transfer (constructed from recently proposed rate optimal homomorphic
encryption), we present the first asymmetric fingerprinting scheme that
is communication optimal, i.e., its communication rate is arbitrarily close
to 1 (for sufficiently large files) thus resolving this open question. Our
scheme is based on Tardos codes, and we prove our scheme secure in an
extended formal security model where we also deal with the important
but previously unnoticed (in the context of asymmetric fingerprinting)
security considerations of accusation withdrawal and adversarial aborts.

Keywords: Asymmetric Fingerprinting, Tardos Code, Rate Optimal,
Group Accusation

1 Introduction

In a fingerprinting scheme, cf. [4], a server (or service provider SP) distributes a
file to a set of users. The server has the flexibility to furnish a different version
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of the file to each user. This is done by splitting the file into segments and
offering at least two variations per segment. Given these segments, the file can
be assembled in a fingerprinted fashion: at each segment the variation obtained
corresponds to a symbol over an alphabet. Therefore, each user’s file determines
a string over that alphabet - the user’s fingerprint (e.g., the data M is divided
into n blocks, for each block i, there are two versions m0

i ,m
1
i , a user assigned

with a binary codeword b1, . . . , bn will receive his versions as mb1
1 || . . . ||mbn

n ).
The objective here is that if the users collude to produce a “pirate” version of
the file by combining their segments, the server is still capable of discovering (at
least some) of the identities of the colluding users.

If the SP alone generates the fingerprints for users and directly transmits
them the fingerprinted files, we have what is known as a symmetric fingerprinting
scheme. As the server is fully trusted in this setting, the security requirement
is that malicious users cannot collude to frame any innocent user or evade the
tracing algorithm. The subtle issue in this case is that the server and the user
are both able to produce a pirate file so when a pirate copy is brought to light,
an honest SP cannot provide an “undeniable” proof that a user is at fault and
symmetrically an honest user cannot defend herself against a malicious SP that
frames her (say, due to e.g., an insider attack on the SP side).

In order to resolve the above issue, [21] introduced asymmetric fingerprinting
schemes in which no one (even the server) should be capable to implicate an
innocent user. Thus when a dispute happens, the server can provide a convincing
proof that a guilty user is at fault. It follows that the server should not be fully
aware of the fingerprint of each user (otherwise it is capable of impersonating
them) and hence this suggests that the download of the fingerprinted file should
be performed in an oblivious manner from the servers’ point of view. Now in
this case, the Judge could resolve the dispute between the server and a user (i.e.,
guilty users will be found guilty by the judge while the server will not be able
to implicate an innocent user in the eyes of the judge).

In the original papers [21,22,23] the file transfer stage was treated generi-
cally as an instance of secure two party computation. Unfortunately, even with
“communication efficient” secure two-party computation [20,8,10,14] the com-
munication overhead of the resulting protocol is prohibitively high (e.g., even
with the most communication efficient generic protocols, [10,14], the communi-
cation rate — the size of the file over total number of bits transmitted — will be
at most 0.5 and their use will impose the additional cost of a prohibitively large
CRS which needs to be known a-priori to both client and server). With the dis-
covery of optimal length binary fingerprinting codes by Tardos [26], Charpentier
et al. [6] observed that oblivious transfer could be used as a building block for
a Tardos-based asymmetric fingerprinting. Their proposed solution however is
sub-optimal (it has a rate still at most 0.5) and in order to achieve the finger-
print generation it relies on commutative encryption, a primitive not known to
be constructible in a way that the resulting scheme can be shown provably se-
cure. Furthermore no complete security analysis is provided in [6] which leaves a
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number of important security issues unaddressed (specifically “accusation with-
drawals” and “selective aborts” – see below).

Achieving rate close to 1 is the most critical open question in the context of
asymmetric fingerprinting from an efficiency point of view. Indeed, any asym-
metric fingerprinting is particularly sensitive to its communication overhead: the
file to be transmitted by the sender can be quite large (e.g., a movie file) and
thus any scheme whose communication rate is not close to 1 is likely to be useless
in a practical setting. We note that efficient asymmetric fingerprinting schemes
can enable more complex applications; e.g., as building blocks for “anonymous
buyer-seller watermarking” [25,24]; these systems rely on asymmetric finger-
printing schemes to enable copyright protection (but they do not consider the
implementation of such fingerprinting schemes explicitly).

Furthermore, analyzing the security of an asymmetric fingerprinting scheme
is involved as the security requirements require that the SP cannot frame an
innocent user, while at the same time the malicious users should still not be
able to escape from tracing. The analysis should rely both on the security of the
protocol and on the property of the code, specifically, no user should be able
to produce a pirate file that makes the SP and the judge disagree. Given that
Tardos tracing accuses a subset of the users (based on a threshold condition)
it is possible for the judge and the SP to disagree on some users. This type of
attack has not been considered before; we call it accusation withdrawal as it
forces the SP to withdraw an originally made accusation since the judge cannot
support it. Ensuring that no accusation withdrawal happens protects the SP
from starting accusation procedures that are not going to succeed with high
probability. Finally, during the file transfer stage the user may abort. Given that
these file transfer procedures can be lengthy (due to the large size of the files to
be downloaded) the possibility of an adversary exploiting aborting and restarting
as an attack strategy is important to be included in the security model (and in
fact we show an explicit attack if many aborts are permitted — see below).

1.1 Our contributions.

Rate-optimality. We propose the first rate-optimal (rate is defined as the size
of the actual data over the size of total communication) asymmetric fingerprint-
ing scheme. Our scheme is based on Tardos codes [26]. To achieve this property,
we use a rate optimal 1-out-of-2 oblivious transfer ((2,1)-OT), and a new rate-
optimal 1-out-of-2 strong conditional oblivious transfer ((2, 1)-SCOT, [3]). Both
are constructed in [16], and they are built on the rate-optimal homomorphic
encryption scheme developed in the same paper. Based on these rate optimal
protocols, we propose a rate-optimal fingerprinted data transfer protocol (tai-
lored specifically for bias-based codes including Tardos codes).

More precisely, in a fingerprinted data transfer protocol, the sender has as
private input two pairs of messages and biases. The sender and the receiver
simulate two private biased coin tosses using SCOT and the receiver obtains one
message from each pair (which one of the two it receives, is determined by the
outcome of the biased coin flip). The actual message transmission is based on the
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rate optimal OT protocol. Furthermore the sender selects randomly one of the
two SCOT-s and revokes its receiver security, i.e., the sender will learn which
one of the two versions the receiver has obtained in this SCOT. This partial
revocation of receiver-security will enable the sender to correlate “pirate” files
that are generated by coalitions of malicious users. Our final scheme inherits the
communication efficiency of the underlying SCOT and OT protocols and thus it
is communication-optimal: the rate of each data transfer is asymptotically 1.

A complete security analysis in the (extended) Pfitzmann-Schunter
model: we analyze the security of our construction in an extended version of
the Pfitzmann-Schunder model [22]. The extension we present is two-fold: first
we extend the model to capture the setting of multiple accusations. In the origi-
nal modeling only a single colluder was required to be accused. In the extended
model we allow a set of users to be accused. This accommodates accusation al-
gorithms that are based on Tardos fingerprinting [26] that have this capability.
Group accusation in asymmetric schemes needs special care from a security point
of view: it makes the system prone to accusation withdrawal, the setting where
the server will have to withdraw an accusation because the judge is unable to
verify it. We demonstrate (through actual implementation experiments, see Fig
2) that the straightforward application of Tardos identification (as may naively
be inferred from the description of [6]) does not preclude accusation withdrawal.
We subsequently show how to modify the accusation algorithm between judge
and server so that no accusation withdrawal can take place. Our second model
extension concerns the explicit treatment of the abort operation within the secu-
rity model: all known asymmetric fingerprinting schemes rely on two-party coin
tossing. Given that fair coin tossing is known to be unattainable [7] it follows
that it may be possible for an adversarial set of users to exploit this weakness
and utilize a transmission abort strategy with the purpose of evading detection.
We demonstrate that an explicit treatment of this in the security model is essen-
tial as if one enables users to restart after an abort, it is possible to completely
break server security! (this fact went entirely unnoticed before). By properly
controlling aborts and restarts we show how security can be maintained.

2 Rate-Optimal OT and SCOT Protocols

We recall that an oblivious transfer (OT) protocol and a strong conditional
oblivious transfer (SCOT, [3]) protocol for predicate Q (s.t. Q(x, y) ∈ {0, 1})
implement securely the following functionalities respectively (W.l.o.g., assume
|m0| = |m1|):

fOT(b, (m0,m1)) = (mb,⊥), fQ−SCOT(x, (y,m0,m1)) = (mQ(x,y),⊥) .

Here, we will use the rate optimal OT and SCOT protocols derived in [16]
from their recently developed rate optimal large-output branching program ho-
momorphic encryption (LHE) scheme. We recall that their LHE scheme enables
the receiver to compute on ciphertexts the value f(x, y), where x is his input,
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y is sender input, and f is an arbitrary function that can be evaluated by a
polynomial-size (integer-valued) branching program. In the LHE scheme of [16],
the receiver encrypts (by using a variant of the Damg̊ard-Jurik cryptosystem [9])
his input x, and sends the ciphertext Encr(x) to the sender. The sender evalu-
ates privately large-output branching programs like in [15,19], but does it in a
communication-preserving manner. Let the output of the evaluation be denoted
as Eval(P,Encr(x)), where P is a large-output branching program that evaluates
f(·, y) on input x. The sender returns a single “ciphertext” to the receiver, who
then (multiple-)decrypts it as in [15,19]. The rate of the LHE scheme is defined
as r = (|x|+ |P (x)|)/(|Encr(x)|+ |Encr(P (x))|). Assuming |f(x, y)| is large, [16]
showed by using an intricate analysis how to achieve a rate 1 − o(1). We refer
to [16] for more information.

Rate-optimal OT. As shown in [16], one can define a rate-optimal (2, 1)-
oblivious transfer protocol as follows. Let the server have a database (m0,m1)
and assume that P [x, (m0,m1)] = mx for x ∈ {0, 1}. Thus, the size of P is
1. Since rate-optimal (2, 1)-OT has many applications, we will call it oblivious
download (OD). Let ODs[Encr(x), (m0,m1)] denote the server side computation
in this protocol, given client ciphertext Encr(x) and server input (m0,m1).

Rate-optimal SCOT.Also, as shown in [16], one can use the LHE of to con-
struct an efficient SCOT protocol for the functionality fQ−SCOT(x, (y,m0,m1)),
where Q has a polynomial-size branching program (i.e., Q ∈ L/poly), as follows.
Let P ′ be an efficient branching program that evaluates the predicate Q(x, y).
Let P be a large-value branching program, obtained from P ′ by just replacing
the leaf value 0 with m0 and 1 with m1. The LHE scheme (and thus also the
resulting SCOT protocol) will have computation, linear in the size of P ′, and
communication (1 + o(1))(|x| + |m0|) and thus rate 1 − o(1). In the rest of the
paper we will need the next instantiation of a new rate-optimal SCOT protocol.

Rate-optimal SCOT for the LEQ predicate. Denote LEQ(x, y) := [x ≤ y].
It is easy to see that LEQ can be evaluated by a branching program of size and
length ` := max(|x|, |y|). Thus, one can implement fLEQ−SCOT securely in time
Θ(`) and rate 1 − o(1). Let us denote server computation in this protocol as
LEQs[Encr(x), (y,m0,m1)].

Remark. The security of the OD,SCOT protocols are simple corollaries of the
security proofs from [15,16]. Also, one can also use an arbitrary efficient — with
communication o(|mi|) — millionaire’s protocol, like the one in [12,3,18] to find
out b = [x < y], and then use the oblivious download protocol to implement an
optimal-rate SCOT protocol for the LEQ predicate. However, we think that the
use of optimal-rate LHE from [16] (instead of composing a millionaire’s protocol
and an OD protocol) is more elegant.

3 Fingerprinted Data Transfer for Bias-Based Codes

In this section, we will introduce the main building block of our Tardos-based
asymmetric fingerprinting scheme, which we call fingerprinted data transfer.
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As our fingerprinting scheme relies on the properties of fingerprinting codes
(we only focus on binary codes here), let us first recall the basics about fin-
gerprinting codes. A binary fingerprinting code [17] is a pair of algorithms
(gen, trace), where gen is a probabilistic algorithm taking a number N , an op-
tional number (upper-bound on the detected coalition size) t ∈ [N ] = {1, . . . , N}
and security parameter ε as input and outputs N bit-strings C = {C1, . . . , CN}
(called codewords), where Ci = ci1 . . . c

i
n for i ∈ [N ] and a tracing key tk. trace

is a deterministic algorithm inputting the tracing key tk and a “pirate” code-
word C∗, and outputting a subset Uacc ⊆ [N ] of accused users. A code is called
bias-based [2] if each codeword Cj = cj1 . . . c

j
n is sampled according to a vector

of biases 〈p1, . . . , pn〉, where ∀j ∈ [N ]∀i ∈ [n],Pr[cji = 1] = pi, and pi ∈ [0, 1].
A fingerprinting code is called t−collusion resistant (fully collusion resistant

if t = N) if for any adversary A who corrupts up to t users (whose indices form
a set Ucor ⊂ {1, · · · , N}), and outputs a pirate codeword C∗ = c∗1 . . . c

∗
n (which

satisfies the marking assumption, i.e., for each i ∈ [n], c∗i = cji for some j ∈ Ucor),
Pr[Uacc = ∅ or Uacc 6⊆ Ucor : Uacc ← trace(tk, C∗)] ≤ ε (i.e., the probability that
no users are accused or an innocent user is accused is bounded by ε).

We also recall the Tardos code [26] Fntε here, it has length n = 100t2k,
with k = log 1

ε . The gen algorithm generates a codeword as follows. For each
segment index j ∈ [n], it chooses a bias pj ∈ [0, 1] according to a distribution
µ (see [26] for the definition of µ). Each bias satisfies 1

300t ≤ pj ≤ 1 − 1
300t ,

where t is the collusion size. For each codeword C = c1 . . . cn outputted by gen,
Pr[cj = 1] = pj , and Pr[cj = 0] = 1 − pj for all j ∈ [n]. Regarding security,
there is a trace algorithm such that, for any coalition of size at most t, with
probability at least 1 − εt/4 accuses a member of the coalition, while any non-
member is accused with probability at most ε.

3.1 Definitions of fingerprinted data transfer

Now we define our main building block of fingerprinted data transfer (FDT
for short). Recall that each user should receive a fingerprinted copy of the file
according to his codeword. In the case of asymmetric fingerprinting, the segments
of the file will be transferred in an oblivious fashion so that the server should
be aware of only half of the user fingerprinting code. To be more specific, all
segments are transmitted using oblivious transfer to enable the user to receive
one of the versions, and for each pair of segments (2i− 1, 2i), where i ∈ [n], the
server will know one of the segments, the version that the user receives.

Intuitively, if we double the length of the fingerprinting code (dividing the file
into 2n segments), each user is essentially assigned two codewords, one is known
to the server, thus the trace algorithm can be executed to identify malicious
users; the other one is unknown to the server, and will be revealed to the judge
only when dispute happens. A user will be accused only when both codewords
are considered contributing to a pirate file. In this way, a malicious SP S frames
an honest user unless innocent users may be accused in the fingerprinting code.

We also need to be careful that if malicious users know which half of the
codeword is known to the server, they may collude in a way that every codeword
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in the collusion only contribute to half of the file thus no one will be accused on
both fingerprints. Thus for the segments (2i − 1, 2i) for i ∈ [n], the index that
the segment version is revealed to the server is also oblivious to the user.

The asymmetric fingerprinting scheme will essentially be running FDT (de-
fined below) in parallel for all pairs of the segments (2i−1, 2i), thus it is enough
for us to illustrate the idea by considering only the sub-protocol for one pair of
segments. As Tardos code is binary, there are only two versions for each segment.
Consider two parties, a sender S and a receiver R. The sender has two pairs of
messages, two rational valued “biases” in [0, 1] and one bit c as inputs. The
receiver has no input. After the execution of the FDT protocol, R will sample
one message from each of the two pairs following the binary probability distri-
bution defined by the two biases and S will learn the output of the receiver for
the c-th pair. This describes the ideal operation of the primitive for the case of
one pair of segments. It is straightforward to extend to an arbitrary number of
pairs. The following is the formal definition of the fingerprinted data transfer for
bias-based codes including our main target Tardos code [26]. And following the
standard simulation base paradigm [13], we can also define the security of the
FDT protocol, and we defer it to the full version.

Definition 1. A fingerprinted data transfer functionality Π involves two par-
ties, a sender S and a receiver R. The sender inputs two biases p0, p1 ∈ [0, 1],
four messages (m0

0,m
1
0), (m0

1,m
1
1), and a bit c ∈ {0, 1}; at the end of the protocol,

R outputs {mbi
i } for i, bi ∈ {0, 1} such that Pr[bi = 1] = pi; while S outputs bc.

We can express this (probabilistic) functionality as:

Π[⊥, ((p0, p1), (m0
0,m

1
0,m

0
1,m

1
1), c)] = [(mb0

0 ,m
b1
1 ), bc],where Pr[bi = 1] = pi

Somewhat similar functionalities have been used for completely different ap-
plications, see, e.g. [11,1]. The FDT protocol of Sect. 3.2 might be modified so
as to be used in these applications; we omit further discussions.

3.2 A Communication-Optimal Fingerprinted Data Transfer
Protocol

On the receiver R side, for each pair of messages, say pair 0, FDT will enable an
oblivious sampling of one message from (m0

0,m
1
0) according to the bias p0, i.e., R

receives m1
0 with probability p0. To enable efficient oblivious sampling, suppose

p0 ≈ t0/T for some t0, where T = 2` and ` is the precision level (this provides an
exponentially good approximation). To run a coin tossing protocol to generate
a random coin u, R and the SP S can utilize a SCOT protocol (e.g., [3]) to
transmit the data in a way that the user receives m1

0 iff u ≤ t0. Doing this will
allow the receiver to get m1

0 with probability close to p0 = t0/T . Furthermore,
they can run such procedure twice for the two pairs, and then run a (2, 1)-OT
protocol to reveal one of the bit to the SP.

Unfortunately, directly applying the SCOT protocol from, e.g, [3] will result
in a communication rate as low as 1/`, as the sender has to send ` ciphertexts
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with similar size to m0
i . Moreover, a malicious user may abort after receiving

the file without revealing half of his bits. To deal with these concerns, our pro-
tocol will be divided into two phases, the first (the handshake phase) samples
only the codewords according to the biases that are specified by the sender; the
second (the content-transfer phase) transfers the actual content according to the
codewords that have been drawn. In our implementation, we will only use the
SCOT protocol to sample the distribution (transfer only short messages) and
then employ a rate-optimal OT protocol (we call oblivious download, OD for
short)to execute the content-transfer after the OT protocol is run in which the
SP is the receiver and the SP sees one of the bits. We assume that during the
hand-shake phase, the sender and receiver exchange their public keys with the
corresponding certificates.

Now we proceed to construct the new fingerprinted data transfer protocol.
Suppose the sender has p0 = t0

T , p1 = t1
T ; these determine two distributions over

{0, 1}. The sender also has two pairs of messages as inputs (m0
0,m

1
0), (m0

1,m
1
1),

and prepares another two pairs of (h00, h
1
0), (h01, h

1
1), where hbi = H(mb

i )|i|b for
i, b ∈ {0, 1}. We assume that H is a collision resistant hash function shared by
the sender and the receiver, and Com is a secure (binding and hiding) commit-
ment scheme. We choose Encr and Encs to be good rate additive homomorphic
encryption schemes (e.g. using the Damgard-Jurik [9] encryption to encrypt the
message bit by bit as in [16]). Here, R knows the secret key of Encr and S
knows the secret key of Encs. Recall that LEQs[Encr(x), (y,m0,m1)] denotes the
sender computation in a concrete SCOT protocol that implements fLEQ−SCOT,
and ODs[Encr(x), (m0,m1)] denote the computation of the server in this proto-
col, given client ciphertext Encr(x) and server input (m0,m1) (defined in Section
2). The full protocol of FDT is presented in Fig 1.

We can estimate the communication rate α of our FDT protocol as follows:

1

α
≈ 2(|Com(r0)|+ |Encr(s0)|+ |Encr(h

b0
0 )|) + |Encs(c)|+ |Encs(h

bc
c )|+ 2|Encr(m

b0
0 )|

2|mb0
0 |+ 1

≈ o(|mb0
0 |)

2|mb0
0 |

+
|Encr(b0)|+ |Encr(m

b
0)|

|b0|+ |P [b0, (m0
0,m

1
0)]|
→ 1

r
,when m→∞ ,

where m is the message size and r is the rate as defined in Sect. 2. We can
group several terms into o(|mb0

0 |) as all those are encryptions (or commitments)
of fixed size short messages. Thus, when the LHE scheme is rate optimal as [16],
our FDT protocol (and further our asymmetric fingerprinting scheme, see next
section) is also rate optimal.

Security analysis. We briefly explain the properties of our protocol in the semi-
honest model. Correctness follows from the coin tossing and the property of the
LHE [16]. For instance, µ0 = Encr(h

1
0), C0 = Encr(m

1
0), if r0 ⊕ s0 ≤ t0, in this

case, Pr[b0 = 1] = t0/T = p0. For security, as we are working in the semi-honest
model for now, the sender and receiver views can be simulated easily to preserve
the consistency with the output. For detailed proofs, we refer to the full version.
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Receiver R Sender S
S selects r0, r1 ←r ZT , and

Com(r0),Com(r1)←−−−−−−−−−−−−−− computes commitments Com(r0),Com(r1)

R selects s0, s1 ←r

ZT

Encr(s0),Encr(s1)−−−−−−−−−−−−−−→

S computes c0 = Encr(r0 ⊕ s0)
S computes c1 = Encr(r1 ⊕ s1)
S computes µ0 = LEQs[c0, (t0, h

1
0, h

0
0)]

µ0,µ1,Encs(c)←−−−−−−−−−−−−−− S computes µ1 = LEQs[c1, (t1, h
1
1, h

0
1)]

R retrieves hb00 , h
b1
1

and computes uc =

ODs[Encs(c), (h
b0
0 , h

b1
1 )]

uc−−−−−−−−−−−−−−→
S decrypts uc and checks the validity
S computes Encr(b0) = LEQs[c0, (t0, 1, 0)]
S computes Encr(b1) = LEQs[(c1, (t1, 1, 0)]
S computes C0 = ODs[Encr(b0), (m0

0,m
1
0)]

C0,C1←−−−−−−−−−−−−−− S computes C1 = ODs[Encr(b1), (m0
1,m

1
1)]

R checks the validity,

outputs: mb0
0 ,m

b1
1 S outputs bc (as inferred by hbcc )

Fig. 1. Fingerprinted Data Transfer. {(m0
b ,m

1
b), pb = tb

T
)}b=0,1, c are inputs of S

Lemma 1. Our protocol shown in Fig. 1 securely implements the fingerprinted
data transfer functionality. Specifically, it is correct; and it satisfies receiver se-
curity if the underlying encryption Encr is IND-CPA secure; it satisfies sender
security if the underlying commitment scheme Com(·) is computationally hiding,
and the encryption Encs is IND-CPA secure.

Work in the malicious model. Ultimately, we would like to design proto-
cols to defend against malicious adversaries who may arbitrarily deviate from
the protocol. The general method that in every step, both parties deploy zero-
knowledge proofs to show that they follow the protocol, could be inefficient. Note
that our protocol is highly structured, user misbehaviors can be easily detected
by the SP with some routine checks about the consistency in the transcripts. In
the 2nd round in coin tossing phase, the user could not learn any extra informa-
tion by not following protocol, as simulation for malicious user is not influenced
by the choices of s0, s1. While in the 4th round, the SP checks the validity of
hbcc = H(mbc

c )||c||bc, if uc is not calculated as in the protocol and passes the
checking, it means the malicious user finds a value equal to H(m1−bc

c ). As the
message segment m1−bc

c has sufficient entropy thus h1−bcc is also unpredictable,
otherwise, the user could easily find a collision by randomly sample messages
from the distribution of m1−bc

c . To be more specific, suppose M is the space of
m1−bc
c and D is its distribution, and H(M) = {H(m) : m ∈M}, D will induce a

distribution H on H(M). Suppose the sender can predict h(m1−bc
c ) with proba-

bility δ, then the maximum probability of H is no less than δ. Let us use h0 to
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denote the most probable value in H(M). The adversary A simply sample mi

randomly according to D, and computes the hash value. Following the Chernoff
bound, using O( 1

δ2 ) many samples, A will almost certainly reach h0 twice. At
the same time, the probability that there are two same messages appear in the
sampled messages is exponentially small, as the most probable message from D
appears with negligible probability. Based on these two facts, A found a collision.

Regarding malicious SP, the user can also do some simple checks of the
consistency of the hash values. Note that there is a trusted judge that makes the
final decision about the set of accused users. We will show in next section (as the
judge is not involved with the FDT protocol) how we can take advantage of this
third-party to “force” the SP to follow the protocol, by adding some simple and
efficient “proofs of behavior”. We require the SP signs on each round of messages
she sends together with the user identity, and the user also signs on each round
of messages he sends. We also let user store part of the transcripts and reveal
them to the judge in case of dispute. Through a careful analysis of Tardos code
property together with these simple mechanisms, we can argue security of our
asymmetric fingerprinting scheme in the malicious model.

4 An Optimal Asymmetric Fingerprinting Scheme Based
on Tardos Code

Pfitzmann and Schunter [22] define an asymmetric fingerprinting scheme to be a
collection of four protocols 〈key gen, fing, identify, dispute〉. The algorithm key gen
can be used by a user to produce a public and a secret-key. The protocol fing is a
two-party protocol between a user and an SP that will result in the user obtain-
ing the fingerprinted copy of the file and the SP receiving some state of the user
codeword. The algorithm identify is an algorithm that, given a pirate copy and
the state of the SP, outputs a non-empty set of public keys (corresponding to
the accused user identities). Finally the algorithm dispute is a 3-party protocol
between the judge (or arbiter as it is called in [22]), the user and the SP that
either accepts the SP’s accusation or rejects it (depending on the evidence pre-
sented by the involved parties). For brevity we refer to [22] for the full syntax of
the scheme. Regarding the security model, an asymmetric fingerprinting scheme
should satisfy two security properties: (i) security for the SP, that states that
no malicious coalition of less than t users can escape the accusation of one of its
members from the identify algorithm as well as the validation of this accusation
by the dispute protocol, and (ii) security for the user, that states that an inno-
cent user cannot be implicated by a malicious SP (who can also corrupt other
users) in being responsible for a certain pirate copy. For formal definitions of an
asymmetric fingerprinting scheme, we refer to the full version.

In addition to the above basic requirements, we put forth two additional
properties that will be of interest.

Communication efficiency. The communication rate of an asymmetric finger-
printing scheme is measured as the ratio of the length of the file that is distributed
to the users over the total communication complexity of the fing protocol. In a
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communication optimal asymmetric fingerprinting scheme it holds that the rate
approaches 1 as the length of the file becomes larger. All known schemes in the
literature [21,22,23,6] have rate at most 0.5.

Security for the SP under group accusations. In [22] the algorithm identify is
responsible for producing a single colluder whose implication is guaranteed to
be validated by the dispute algorithm. In [6] this is extended to group accusa-
tion, i.e., the identify algorithm produces a set of accused users as output (this
is possible given that the underlying fingerprinting code enables such group ac-
cusation). For SP security to be preserved under group accusations however, it
should be the case that for each accused user, its implication to the construction
of the pirate copy is validated by the dispute protocol. In the other case, the
SP will have to withdraw at least one accusation (something that may lead to
problems in a practical deployment). Therefore a protocol solution should guar-
antee in the setting of group accusation no accusation withdrawal can occur with
non-negligible probability. We refer the formal definitions to the full version.

4.1 Our construction.

We next describe our construction which satisfies the original security require-
ments of [22] as well as the two properties that we described above. Specifically it
is the first asymmetric fingerprinting scheme with both optimal communication
complexity and code length. And one can easily adapt our construction to other
asymmetric fingerprinting scheme from any bias-based code.

Recall the definition of Tardos code as explained in section 3, the main task is
the fing protocol, which will be constructed from our fingerprinted data transfer
protocol (see Fig 1) with some extra checks to achieve security in the malicious
model in which the adversary may not follow the protocol. To describe the
generation of the fingerprinted copy of each user in more detail, let us abstract
each variant of a segment mb

i with a value in {0, 1},where i ∈ [2n], b ∈ {0, 1}
and 2n is the length of the fingerprint. Thus, the fingerprinted file of each user
is a 2n-bit string, where each bit signifies which variant of the corresponding
segment the user received. It will be generated so that n bits from a set L ⊆ [2n]
will be known to the SP, while the other n bits (from [2n] \ L) will only be
known by the user. The user, however, will not know if a given location belongs
to L or not. Each of the parts L and [2n] \ L is an instance of the Tardos code
[26]. The two parts are produced by generating two segments at a time, using
the functionality achieved by the protocol in Figure 1, i.e., for the i-th pair of
segments (2i−1, 2i), where i ∈ [n], the user and the server runs the fingerprinted
data transfer with the SP taking [(p2i−1, p2i), (m

0
2i−1,m

1
2i−1), (m0

2i,m
1
2i), ci] as

inputs. Based on the security properties of this protocol, the user receives two
variants of two different segments, while the SP does not know one of them
and the user is oblivious regarding which one the SP knows. Our asymmetric
fingerprinting scheme proceeds as follows:

Key generation. The key gen for the user is simply the generation of two public-
secret key pairs (pk1, sk1), (pk2, sk2). The first is for a digital signature scheme
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(which we use as black-box), and the second is for the additively homomorphic
encryption Encr used in the fingerprinted data transfer.

The fing protocol. The user has as input its public and secret keys while the SP
has as input SP public keys, and system parameters, e.g., the level of precision
`. Furthermore, the protocol is stateful from the point of view of the SP. The
state of the SP contains the definition of the Tardos code parameters (e.g.,
probabilities {pi}). Also, the SP has as private inputs a set L = {c1, . . . , cn},
and a file that is divided in 2n segments for each one of which there are two
variations. The i-th segment, b-th variant is denoted by mb

i .

The fing protocol proceeds as follows: the SP and the user first carry out a
handshake protocol to prepare the system parameters including the exchange of
the public keys of each other; then for each i-th pair of segments with indices
(2i−1, 2i) where i ∈ [n], the user and the server runs the FDT with the SP taking
[(p2i−1, p2i), (m

0
2i−1,m

1
2i−1), (m0

2i,m
1
2i), ci] as inputs, and these n protocols are

run in parallel. Also in each round, if the SP sends out a message, she signs on
the message together with the user’s identity; if the user sends a message, he
signs it as well. During protocol execution each party verifies that the messages
they receive are proper and if they are not they will abort the protocol.

Furthermore some additional checks are in place to detect the malicious be-
havior within fing as explained at the end of section 3.2. These are as follows: The
user checks after receiving the actual data segments (in the last round) whether
they are consistent with the hash values (see Remark in section 3.2) he received
in the 3-rd round. The SP, checks the validity of the hash value she received in
the 4-th round. Also, both parties will store some information for input to the
dispute protocol. The user keeps the commitments received from the first round
and the hashed values and the encrypted bits of {Encsci} for i ∈ L, received in
the 4-th round; the SP keeps the encrypted random coins of the user received
in the 2nd round. Note that these checks do not enforce semi-honest behavior
- nevertheless we will show (see Theorem 1,2) they are sufficient for security
against malicious parties in the presence of the judge (which is assumed honest).

We see that our fing protocol essentially runs out FDT protocol in parallel
with only some extra signatures, thus it inherits the rate optimality from FDT.

The identify algorithm. This algorithm takes a pirate file M , and all users’
half codeword X1, . . . , XN together with the location indices L1, . . . , LN and
the vector of biases 〈p1, . . . , p2n〉 as inputs. It first extracts a codeword Y =
y1 . . . y2n ∈ {0, 1}2n from M (as we assume each bit is publicly computable from
the segment). For the ease of presentation, we describe the algorithm for one
user with stored codeword X = xc1 . . . xcn and L = {c1, . . . , cn}. For each j ∈ L,
it computes:

Uj =


√

1−pj
pj

, if xj = 1;

−
√

pj
1−pj , if xj = 0

as in [26]. The service provider calculates the score of the user over the locations
in L; S =

∑
j∈L yjUj , and if S > Z, where Z = 20tk, the SP reports this user to
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the judge. This is repeated for every user and a list of accused users is compiled
and reported to the judge.

The dispute protocol. This is a protocol among the SP, the judge and a user.
The two parties first submit to the judge the protocol transcript they stored.
In more detail, the judge requires the user to submit SP’s commitments sent in
the 1st round and the hash values; also, the judge requires the SP to submit the
biases and the encryptions from the user in the 2nd round as well as openings
of her commitments. The judge first verifies the code parameters, then does the
following checks, (1). the validity of the segments, i.e., they should be one of
the versions. (2). the validity of all signatures, if any signature is invalid, accuse
the party who submits it. (3). Otherwise, the judge checks whether the user
codeword is generated properly, i.e., each bit of the codeword is consistent with
the coin-tosses – whether bi = [ri + si ≤ ti] where bi is the i-th bit, ri, si, ti are
as in the FDT (the notation [·] here denotes a predicate). To finish this check,
the judge requires the SP to open her commitments, and the user to reveal his
coins in the ciphertext {Encr(si)}and prove their validity. (4). Furthermore, the
judge requests from the user to submit the encrypted locations {Encs(ci)} and
requests the SP to decrypt it and prove a correct decryption, so that the judge
calculates the set of locations L. Any party failed to prove the correct decryption
will be accused.

If all the checks pass, the judge will recover user’s fingerprint x′ from the bits
{bi}, also he inspects the pirate content and extracts the fingerprint y′. Then
he computes the U ′ as in the identify algorithm for locations L′ = [2n]\L using
x′, y′ as inputs. Finally, for any user reported, the judge calculates his score over
the locations in L′; S′ =

∑
j∈L′ y

′
jU
′
j , and make decisions if S′ > Z ′, where

Z ′ = Z/2 = 10tk, he validates the accusation; otherwise, the user is acquitted.

Note that we are using a lower threshold on the judge-side, to counter-balance
the probability that a user is accused over L, but not over [2n] \ L. In fact this
is an essential feature of our scheme to ensure security for the SP under group
accusations. We in fact show that if Z ′ = Z it can happen with high probability
that the SP will have to withdraw an accusation; in Fig 2, we explore this exper-
imentally by having a coalition of 40 users where the pirate strategy is as follows:
the pirate content is formed via a majority strategy by the segments available
to the coalition of size t. For each segment with probability p (a parameter of
the strategy) the pirate segment is determined with probability p to be the ma-
jority of the segments of all t users or with probability 1− p the segment of the
first user. We variate the parameter p of the strategy and we demonstrate from
experimental data that for suitable choice of p the number of accusation with-
drawals can be as high as as a quarter of the coalition. One would expect that
in practice, such high level of accusation withdrawal would impact seriously the
credibility of the SP. In our construction, by appropriately differentiating the
tracing algorithm between the judge and the SP we circumvent this problem
entirely. It should be noted that this issue was not addressed in [6] where the
Tardos tracing algorithm was also used for determining the implication of users.

13



Fig. 2. The vertical axis represents the number of accusation withdrawals (i.e., for
how many users the service provider has to abandon its accusation); the total number
of colluding users is 40. The horizontal access is the parameter of the colluding strategy
p; for a suitably choice of p the accusation withdrawals reach 25% of colluders.

Remark: There are two phases when the judge requests one of the two parties to
prove a valid decryption of a bit. As we are using a variant of DJ encryption [9],
the prover can simply reveal the message together with the random coins used in
encryption as it decodes uniquely in this form. Specifically, if a message m is en-
crypted with random coin r, it results in a ciphertext c = (n+1)mrn

s

mod ns+1,

the prover can decrypts c to recover m and then obtains r = dn
−s mod φ(n)

mod n, where d = rn
s

mod n is computed from c · (n+ 1)−m mod (ns+1).

4.2 Security analysis.

We give here explain the intuitions about the security analysis of our asymmetric
fingerprinting scheme, for the details of the proofs, we refer to the full version.

Security for the innocent user. We will show that no innocent user will
be framed. In the case of a semi-honest SP, she follows the fingerprinted data
transfer protocol and the accusation procedure, but will try to make a pirate
copy to frame some innocent user. As the FDT protocol satisfies the simulation
based definition, from the composition lemma [5], A semi-honest SP will have
the similar behavior interacting with only an oracle which returns her half of the
codeword. In this case, the SP wins only when she is able to break the innocent
user security of Tardos code as shown in Theorem 2.1 in [26] that an innocent
user will be framed with a probability no bigger than ε regardless of what biases
are used and what is the pirate copy.
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Lemma 2. An innocent user will be accused with negligible probability by a semi-
honest service provider assuming that the encryption Encr used is IND-CPA
secure.

Now we consider a malicious SP who may arbitrarily deviate from the pro-
tocol. With the simple checks, there is only one class of deviations left (which is
not yet clear whether always detectable): the malicious SP submits different bi-
ases to the judge with those used during fing; This includes many subtle attacks,
e.g., in one instance of FDT, the malicious SP uses the same messages in each
pair to do the transmission, i.e., SP inputs (mb0

0 ,m
b0
0 ), (mb1

1 ,m
b1
1 ) (same for the

hash values). Doing this the malicious SP will know the complete codeword of
the user. Similarly, the SP could swap the messages in each pair, i.e., transmit
version 1 − bi if the code is bi. Both of these behavior can be seen as special
case of the above deviation. In the first case, the user codeword is essentially
generated using a vector of probabilities 〈p1, . . . , p2n〉, where each pi ∈ {0, 1},
while the latter case is that each pi = 1−p′i where p′i is the reported bias. As the
judge will check the constancy of the codeword with the coin tossing, the more
indices the SP reports different biases, the hight the probability she got caught.
Through a careful analysis, we manage to show that the probability of accusing
an innocent user and the probability of reporting different biases without being
detected can never be non-negligible simultaneously, which further implies that
either the malicious SP deviates without hurting the innocent user security, or
the deviation will be almost always detected by the judge.

Theorem 1. A malicious service provider can frame an innocent user without
being detected by the judge with negligible probability if the underlying encryption
Encr is IND-CPA secure, the commitment scheme is computationally binding,
the digital signature scheme we use as black-box is existentially unforgeable, and
the hash function is collision resistant.

Security for the SP under group accusations. The analysis for the effec-
tiveness of the accusation procedure will also proceed in two steps. We first deal
with semi-honest users who will follow the fing protocol and the accusation pro-
cedure, but they will try to make a pirate copy and avoid being accused. From
the half fingerprint known to the SP, the SP can always identify colluders. As
the FDT satisfies the simulation based security, the behavior of the adversary
is essentially the same as the one interacting with only an oracle returning the
codewords of corrupted users, while no information about which half of the code-
words are known to the SP is leaked. Further we can show that by relaxing the
threshold on the judge side, whoever accused by the SP using the half fingerprint
will also be accused by the judge using another half fingerprint.

Lemma 3. Suppose Ucor, with |Ucor| ≤ t, is a coalition of users. If all users are
semi-honest during the fing protocol execution. The probability that no user is
accused or an accused user is acquitted by the judge is ε1/16+εt/4+ε0, where ε is
the parameter from the Tardos code, ε0 is negligible (to the security parameter),
if the underlying commitment scheme Com(·) is computationally hiding, and the
encryption Encs is IND-CPA secure.
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The case that malicious users can arbitrarily deviate from the protocol are
easier to analyze than Theorem 1 due to the simple checks. It is easy to see that
in each round, the user is forced to be behave honestly, otherwise the deviation
will be detected with overwhelming probability.

Theorem 2. Suppose Ucor, with |Ucor| ≤ t, is a coalition of users. Assuming
Encs is IND-CPA secure, the commitment scheme Com(·) is computationally
hiding and the signature scheme used is existentially unforgeable, and the hash
function is collision resistent. Then the probability that no user is accused or an
accused user is acquitted by the judge is ε1/16 + εt/4 + ε0, where ε is the error
probability from the Tardos code, ε0 is negligible (to the security parameter).

5 Security Implications of Protocol Restarts

In the following, we consider the original Tardos code with length m = 100t2k
and threshold Z = 20tk, where c is the number of colluders and k = log 1

ε the
security parameter. For simplicity, we take t equal to the number of users n.

If the colluders are allowed restarts, they can act as follows. They do (µ− 1)
restarts each to receive a total of µmn bits. For the pirate codeword, they output
a zero whenever they can. Formally, for any j ∈ [m], let x be the number of ones
the pirates have received collectively at location j. They set yj , the bit of the
pirate copy at j, as follows.

yj =

{
1 if x = µn;

0 otherwise.

We are going to show that with this simple strategy, each pirate escapes with
high probability. To that end, let p denote the bias-vector, X denote the code-
word of an arbitrary pirate, Y the pirate copy generated by the aforementioned
strategy, and

Uj =


√

1−pj
pj

, ifXj = 1;

−
√

pj
1−pj , ifXj = 0.

The score of the pirate can be expressed as S =
∑
j∈[m] YjUj . Our task is to

upper-bound Pr[S > Z]. We’ll use ex ≤ 1 + x + x2, valid for x ≤ 1. Since
|Uj | <

√
300n, choosing α < 1

10n we have

E[eαS ] = E[
∏
eαYjUj ] =

∏
E[eαYjUj ] ≤

∏
E[1 + αYjUj + α2Y 2

j U
2
j ]

≤
∏

(1 + αE[YjUj ] + α2E[U2
j ]) =

∏
(1 + αE[YjUj ] + α2).

For any j ∈ [m] we have

E[YjUj ] = Epj
[
pµnj

√
1−pj
pj

]
=

1

π/2− 2t′

∫ π/2−t′

t′
sin2µn−1r cos r dr

=
1

π/2− 2t′
· 1

2µn
· sin2µnr

∣∣∣∣π/2−t′
t′

=
(1− t)µn − tµn

(π − 4t′)µn
≤ 1

3µn
.
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Putting things together, and using 1 + x ≤ ex, we obtain E[eαS ] ≤
∏

(1 +

α/(3µn) + α2) ≤ eα
2m+αm/(3µn). An application of Markov’s inequality now

gives that:

Pr[S > Z] <
E[eαS ]

eαZ
≤ eα

2m+αm/(3µn)−αZ .

For m = 100n2k, Z = 20nk, k = log(1/ε), α = 1
10n (1− 5

3µ ), µ > 1,

Pr[S > Z] < ε(1−
5
3µ )

2

.

Thus, even allowing a single restart per user, is sufficient for the pirates to
escape with high probability. Another way to view this, is that an instantiation of
Tardos code that can handle a coalition of size t, is not secure against a coalition
of size 2t. The simple way around this, is to instantiate the code so as to handle
coalition size µt, and allow each user at most µ− 1 restarts.

6 Conclusion

In this paper, we constructed the first communication optimal asymmetric fin-
gerprinting scheme, (i.e., the total number of bits transmitted in the protocol
is almost the same as the length of the files), based on Tardos code. This is
an appealing feature, especially for fingerprinting schemes in which large data
(like movies) are transmitted. Besides rate optimality, we also considered two
properties: security against accusation withdrawal and security under adversar-
ial aborts, which are overlooked in previous asymmetric fingerprinting schemes.
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