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Abstract

Information-theoretic methods have proven to be a very powerful tool in commu-
nication complexity, in particular giving an elegant proof of the linear lower bound
for the two-party disjointness function, and tight lower bounds on disjointness in the
multi-party number-in-the-hand (NIH) model. In this paper, we study the applicabil-
ity of information theoretic methods to the multi-party number-on-the-forehead model
(NOF), where determining the complexity of disjointness remains an important open
problem.

There are two basic parts to the NIH disjointness lower bound: a direct sum theorem
and a lower bound on the one-bit AND function using a beautiful connection between
Hellinger distance and protocols revealed by [BYJKS04]. Inspired by this connection,
we introduce the notion of Hellinger volume. We show that it lower bounds the in-
formation cost of multi-party NOF protocols and provide a small toolbox that allows
one to manipulate several Hellinger volume terms and lower bound a Hellinger volume
when the distributions involved satisfy certain conditions. In doing so, we prove a new
upper bound on the difference between the arithmetic mean and the geometric mean
in terms of relative entropy. We then apply these new tools to obtain a lower bound
on the informational complexity of the ANDk function in the NOF setting. Finally, we
discuss the difficulties of proving a direct sum theorem for information cost in the NOF
model.

1 Introduction

One of the most important research areas in communication complexity is proving lower
bounds in the multi-party number-on-the-forehead (NOF) model. The NOF model was in-
troduced in [CFL83], where it was used to prove lower bounds for branching programs.
Subsequent papers revealed connections of this model to circuit complexity [BT94, HG90,
Nis94, NW91] and proof complexity [BPS05]. In particular, an explicit function which re-
quires super-polylogarithmic complexity in the NOF model with polylogarithmically many
players would give an explicit function outside of the circuit complexity class ACC0.

Essentially all lower bounds on the general NOF model have been shown using the dis-
crepancy method following [BNS92]. This method has been able to show lower bounds
of Ω(n/2k) for explicit functions [BNS92, CT93, Raz00, FG05], and lower bounds on the
disjointness function for k-players of the form n1/k/22k

[LS09, CA08] and 2Ω(
√

logn/
√
k)−k

[BHN09]. An upper bound of O(k2n/2k) for the disjointness function follows from work of
Grolmusz [Gro94], and resolving the NOF complexity of disjointness remains an important
open problem.

In this paper we are interested in how information-theoretic methods might be applied to
the NOF model. Information-theoretic methods have been very successful in the number-in-
the-hand (NIH) multi-party model, in particular giving tight lower bounds on the disjointness
function. The first use of information theory in communication complexity lower bounds can
be traced to [Abl96]. In [CSWY01] the notions of information cost and informational com-
plexity were defined explicitly. Building on their work, a very elegant information-theoretic
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framework for proving lower bounds in NIH communication complexity was established in
[BYJKS04].

In [BYJKS04] a proof of the linear lower bound for two-party disjointness was given.
The proof has two main stages. In the first stage, a direct-sum theorem for informa-
tional complexity is shown, which says that the informational complexity of disjointness,
DISJn,2(x, y) =

∨n
j=1 AND2(xj , yj), is lower bounded by n times the informational complex-

ity of the binary AND2 function. Although it is not known how to prove such a direct-sum
theorem directly for the classical randomized complexity, Bar-Yossef et al. prove it for the
informational complexity with respect to a suitable distribution. A crucial property of the
distribution is that it is over the zeroes of disjointness. At this point we should point out a
remarkable characteristic of the method: even though the information cost of a protocol is
analyzed with respect to a distribution over zeroes only, the protocol is required to be correct
over all inputs. This requirement is essential in the second stage, where a constant lower
bound is proved on the informational complexity of AND2. This is achieved using properties
of the Hellinger distance for distributions. Bar-Yossef et al. reveal a beautiful connection
between Hellinger distance and NIH communication protocols. (More properties of Hellinger
distance relative to the NIH model have been established in [Jay09].)

In this work we provide tools for accomplishing the second stage in the NOF model. We
introduce the notion of Hellinger volume of m ≥ 2 distributions and show that it can be useful
for proving lower bounds on informational complexity in the NOF model, just as Hellinger
distance is useful in the NIH model. However, as we point out in the last section, there are
fundamental difficulties in proving a direct-sum theorem for informational complexity in the
NOF model. Nevertheless, we believe that Hellinger volume and the related tools we prove,
could be useful in an information-theoretic attack on NOF complexity.

2 Preliminaries and notation

Hellinger volume. We introduce the notion of Hellinger volume of m distributions. In the
next section we show that it has properties similar in flavor to the ones of Hellinger distance.

Definition 1. The m-dimensional Hellinger volume of distributions p1, . . . , pm over Ω is

hm(p1, . . . , pm) = 1−
∑
ω∈Ω

m
√
p1(ω) · · · pm(ω).

Notice that h2(p1, p2) in the case m = 2 is the square of the Hellinger distance between
distributions p1 and p2.

The following fact follows from the arithmetic-geometric mean inequality.

Fact 1. For any distributions p1, . . . , pm over Ω, hm(p1, . . . , pm) ≥ 0.

Random variables and distributions. We consider discrete probability spaces (Ω, ζ),
where Ω is a finite set and ζ is a nonnegative valued function on Ω summing to 1. If
(Ω1, ζ1), . . . , (Ωn, ζn) are such spaces, their product is the space (Λ, ν), where Λ = Ω1×· · ·×Ωn
is the Cartesian product of sets, and for ω = (ω1, . . . , ωn) ∈ Λ, ν(ω) =

∏n
j=1 ζj(ωj). In the

case that all of the (Ωi, ζi) are equal to a common space (Ω, ζ) we write Λ = Ωn and ν = ζn.
We use uppercase for random variables, as in Z, D, and write in bold those that represent

vectors of random variables. For a variable X with range X that is distributed according
to a probability distribution µ, i.e. Pr[X = x] = µ(x), we write X ∼ µ. If X is uniformly
distributed in X , we write X ∈R X .

Information theory. Let X,Y, Z be random variables on a common probability space,
taking on values, respectively, from finite sets X ,Y,Z. Let A be any event. The entropy
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of X, the conditional entropy of X given A, and the conditional entropy of X given Y are
respectively (we use log for log2)

H(X) = −
∑
x∈X

Pr[X = x] · log Pr[X = x],

H(X |A) = −
∑
x∈X

Pr[X = x |A] · log Pr[X = x |A],

H(X |Y ) =
∑
y∈X

Pr[Y = y] ·H(X |Y = y).

We will need the following facts about the entropy. (See [CT06, Chapter 2], for proofs and
more details.)

Proposition 2. Let X,Y, Z be random variables.

1. H(X) ≥ H(X |Y ) ≥ 0.

2. If X is the range of X, then H(X) ≤ log |X |.

3. H(X,Y ) ≤ H(X) +H(Y ) with equality if and only if X and Y are independent. This
holds for conditional entropy as well. H(X,Y |Z) ≤ H(X |Z) + H(Y |Z) with equality
if and only if X and Y are independent given Z.

The relative entropy or divergence of distributions P and Q over Ω is

D(P ||Q) =
∑
x∈Ω

P (x) log
P (x)
Q(x)

.

The mutual information between X and Y is

I(X;Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X).

Notation. We write [n] = {1, 2, . . . , n}. For a sequence (a1, . . . , an) we let, for j ∈ [n],
a<j = (a1, . . . , aj−1), and a−j = (a1, . . . , aj−1, aj+1, . . . , ak). We will denote subsets of
{0, 1}k as follows: I = {0, 1}k; for j ∈ [k], Ij is the set of points in I such that the j-th
coordinate is set to zero, i.e. Ij = {z ∈ I | zj = 0}; IOZ (resp. IEZ) is the set of points in I
with an odd (resp. even) number of zeros.

Communication complexity. In this work we will be dealing with the multi-party private-
coin randomized number-on-the-forehead communication model, introduced by [CFL83].
There are k players, numbered 1, . . . , k, trying to compute a function f : Z → {0, 1}, where
Z = Z1 × · · · × Zk. On input z ∈ Z, player j receives input zj (conceptually, placed on
his forehead), but he has access only to z−j . They wish to determine f(z), by broadcasting
messages according to a protocol Π. Let the random variable Π(z) denote the transcript
of the communication on input z (where the probability is over the random coins of the
players) and Πout(z) the outcome of the protocol. We call Π a δ-error protocol for f if, for
all z, Pr[Πout(z) = f(z)] ≥ 1 − δ. The communication cost of Π is max |Π(z)|, where the
maximum is over all inputs z and over all coin tosses of the players. The δ-error randomized
communication complexity of f , denoted Rδ(f), is the cost of the best δ-error protocol for f .
(See [KN06] for more details.)

Communication complexity lower bounds via information theory. The informa-
tional complexity paradigm, introduced by [CSWY01], and used in [SS02, BYJKS02, CKS03,
BYJKS04, JKS03], provides a way to prove lower bounds on communication complexity via
information theory. We are given a k-party function f and we want to show that any δ-error
randomized NOF protocol Π for f requires high communication. We introduce a probability
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distribution over the inputs to the players. We then analyze the behavior of Π when run on
inputs chosen randomly according to the distribution. The informational complexity is the
mutual information of the string of communicated bits (the transcript of Π) with the inputs,
and provides a lower bound on the amount of communication.

More precisely, let Ω = (Ω, ζ) be a probability space over which are defined random
variables Z = (Z1, . . . , Zk) representing the inputs. The information cost of a protocol Π
with respect to ζ is defined to be I(Z; Π(Z)), where Π(Z) is a random variable following the
distribution of the communication transcripts when the protocol Π runs on input Z ∼ ζ. The
δ-error informational complexity of f with respect to ζ, denoted ICζ,δ(f), is minΠ I(Z; Π(Z)),
where the minimum is over all δ-error randomized NOF protocols for f . The relevance of
informational complexity comes from the following proposition.

Proposition 3. Rδ(f) ≥ ICζ,δ(f).

Proof. For any protocol Π, ICζ,δ(f) ≤ I(X,Y; Π(X,Y)) = H(Π(X,Y))−H(Π(X,Y)|X,Y).
Applying in turn parts (1) and (2) of Proposition 2 gives ICζ,δ(f) ≤ H(Π(X,Y)) ≤ Rδ(f).

For a collection of distributions η = {ζ1, . . . , ζk}, we define the δ-error informational
complexity of f with respect to η, denoted ICη,δ(f), to be Ej [ICζj ,δ(f)], where j is uniformly
distributed over [k].

Remark. This definition of information cost as an average, is equivalent to the (standard)
conditional information cost. We choose this definition, because we think it makes the
exposition cleaner.

3 An upper bound on the difference between the arith-
metic and geometric mean.

For a nonnegative real sequence α = (α1, . . . , αm), let A(α) and G(α) denote its arithmetic
and geometric mean respectively. That is

A(α) =
1
m

∑
αj and G(α) = m

√∏
αj .

Theorem 1. For any distribution p over [m],

A(p)−G(p) ≤ ln 2 ·D(p||u),

where u is the uniform distribution over [m].

Proof. Let xj = mp(j), x = (x1, . . . , xn), and define

f(x) =
∑

xj lnxj + m

√∏
xj .

Theorem 1 is equivalent to showing that, for x1, . . . , xn ≥ 0, if
∑
xj = m, then f(x) ≥ 1.

We proceed using Lagrange multipliers. We first need to check that f(x) ≥ 1 when x is
on the boundary, i.e. xj = 0 for some j ∈ [n]. Without loss of generality, assume x1 = 0. By
the convexity of t ln t, the minimum is attained when x2 = · · · = xm = m/(m− 1). Thus,

f(x) ≥ (m− 1)
m

m− 1
ln

m

m− 1
> m

(
1− m− 1

m

)
= 1.

According to [Lue03, Theorem on page 300], it suffices to show that f(x) ≥ 1 for any x that
satisfies the following system of equations.

∂f/∂xj = 1 + lnxj + σ/(mxj) = λ, for j ∈ [m], (L)
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where σ = m
√
x1 · · ·xm 6= 0. Without loss of generality, since

∑
xj = m, we may assume

xm ≤ 1. The system (L) implies

m−1∑
j=1

xj(∂f/∂xj) = m− xm +
m−1∑
j=1

xj lnxj + σ(m− 1)/m = λ(m− xm),

(m− 1)xm(∂f/∂xm) = (m− 1)(xm + xm lnxm + σ/m) = (m− 1)λxm.

Subtracting the second from the first we get

m−1∑
j=1

xj lnxj − (m− 1)xm lnxm = m(λ− 1)(1− xm).

We also have ∑
xj(∂f/∂xj) = m+ f(x) = mλ.

Suppose x = (x1, . . . , xm) satisfies the system (L). Since xm ≤ 1, we have xm lnxm ≤ 0, and
using the last two equations we have

f(x) = m(λ− 1) ≥
∑m−1
j=1 xj lnxj
1− xm

≥
∑m−1
j=1 xj(1− 1/xj)

1− xm
= 1.

This completes the proof.

Corollary 2. For any nonnegative real sequence α = (α1, . . . , αm),

A(α)−G(α) ≤
∑

αj ln
αj
A(α)

.

Proof. Apply Theorem 1 with p(j) = αj
/∑

j αj .

Remark. Let α̂ to be a normalized version of α, with α̂j = αj
/∑

αj . Let also u denote
the uniform distribution on [m]. Then, the right-hand side takes the form

∑
αj ln(mα̂j) =

mA(α)
∑
α̂j ln(α̂j/uj), and the above inequality becomes

A(α)−G(α)
A(α)

≤ m ln 2 ·D(α̂||u).

4 Properties of Hellinger volume

Hellinger volume lower bounds mutual information. The next lemma shows that
Hellinger volume can be used to lower bound mutual information.

Lemma 3. Consider random variables Z ∈R [m], Φ(Z) ∈ Ω, and distributions Φz, for
z ∈ [m], over Ω. Suppose that given Z = z, the distribution of Φ(Z) is Φz. Then

I(Z; Φ(Z)) ≥ hm(Φ1, . . . ,Φm)
m ln 2

.

Proof. The left-hand side can be expressed as follows (see [CT06, page 20]),

I(Z; Φ(Z)) =
∑
j,ω

Pr[Z = j ] ·Pr[Φ(Z) = ω |Z = j ] · log
Pr[Φ(Z) = ω |Z = j ]

Pr[Φ(Z) = ω ]

=
∑
j,ω

1
m

Φj(ω) log
Φj(ω)

1
m

∑
j Φj(ω)

,

5



and the right-hand side

hm(Φ1, . . . ,Φm) =
∑
ω

(
1
m

∑
j

Φj(ω)−
(∏
j

Φj(ω)
) 1

m

)
.

It suffices to show that for each ω ∈ Ω,∑
j

1
m

Φj(ω) log
Φj(ω)

1
m

∑
j Φj(ω)

≥ 1
m ln 2

(
1
m

∑
j

Φj(ω)−
(∏
j

Φj(ω)
) 1

m

)
.

Let s =
∑
j Φj(ω), and ρ(j) = Φj(ω)/s, for j ∈ [m]; thus, for all j, ρ(j) ∈ [0, 1], and∑

j ρ(j) = 1. Under this renaming of variables, the left-hand side becomes ln 2· sm
∑
j ρ(j) log(mρ(j))

and the right one s
m · (

1
m −

m
√∏

ρ(j)). Thus, we need to show

ln 2 ·
∑
j

ρ(j) log(mρ(j)) ≥ 1
m
−
(∏
j

ρ(j)
) 1

m

.

Observe that the left-hand side is ln 2 ·D(ρ||u), and the inequality holds by Theorem 1.

Symmetric-difference lemma. Let P = {Pz}z∈Z be a collection of distributions over
a common space Ω. For A ⊆ Z, the Hellinger volume of A with respect to P , denoted by
ψ(P ;A), is

ψ(A;P ) = 1−
∑
ω∈Ω

(∏
z∈A

Pz(ω)
)1/|A|

.

The collection P will be understood from the context and we’ll say that the Hellinger volume
of A is ψ(A). Note that, from Fact 1, ψ(A;P ) ≥ 0.

The following lemma can be seen as an analog to the weak triangle inequality that is
satisfied by the square of the Hellinger distance.

Lemma 4 (Symmetric-difference lemma). If A,B satisfy |A| = |B| = |A∆B|, where A∆B =
(A \B) ∪ (B \A). Then

ψ(A) + ψ(B) ≥ 1
2
· ψ(A∆B).

Proof. By our hypothesis, it follows that A \B, B \A and A ∩B all have size |A|/2. Define
u, v, w to be the vectors in RΩ defined by

u(ω) =
(∏
z∈A\B

Pz(ω)
)1/|A|

,

v(ω) =
(∏
z∈B\A

Pz(ω)
)1/|A|

,

w(ω) =
(∏
z∈A∩B

Pz(ω)
)1/|A|

.

By the definition of Hellinger volume,

ψ(A) = 1− u · w,
ψ(B) = 1− v · w,

ψ(A∆B) = 1− u · v.

Thus the desired inequality is

2− (u+ v) · w ≥ (1− u · v)/2,
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which is equivalent to
3 + u · v ≥ 2(u+ v) · w. (1)

Since

ψ(A \B) = 1− u · u,
ψ(B \A) = 1− v · v,
ψ(A ∩B) = 1− w · w,

it follows that ‖u‖, ‖v‖ and ‖w‖ are all at most 1. Thus 2(u+ v) · w ≤ 2‖u+ v‖, and so (1)
follows from

3 + u · v ≥ 2‖u+ v‖.

Squaring both sides, it suffices to show

9 + 6u · v + (u · v)2 ≥ 4(‖u‖2 + ‖v‖2 + 2u · v)

Using the fact that ‖u‖ ≤ 1 and ‖v‖ ≤ 1 this reduces to

(1− u · v)2 ≥ 0,

which holds for all u, v.

Let sl, sr be two disjoint subsets of [k]. Let Il ⊆ I (resp., Ir) be the set of strings with odd
number of zeros in the coordinates indexed by sl (resp., sr). Let sp = sl∪sr and Ip = Il∆Ir.
It is not hard to see that Ip is the set of strings with odd number of zeros in the coordinates
indexed by sp. By the symmetric-difference lemma,

ψ(Il) + ψ(Ir) ≥
ψ(Ip)

2
. (2)

For each j ∈ [k], let Ij ⊆ I be the set of strings where the j-th coordinate is set to zero.
Applying the above observation inductively, we can obtain the following lemma.

Lemma 5. Let s ⊆ [k] be an arbitrary non-empty set and let Is ⊆ I be the set of strings
with odd number of zeros in the coordinates indexed by s. Then,∑

j∈s
ψ(Ij) ≥

ψ(Is)
2dlog |s|e .

Proof. We prove the claim via induction on the size of s. If s is a singleton set, it trivially
holds. Otherwise, assume that for any subset of [k] of size less than |s|, the claim is true.

Partition s into two non-empty subsets sl, sr with the property that |sl| = d|s|/2e and
|sl| = b|s|/2c. Then dlog |s|e = 1 + max{dlog |sl|e, dlog |sr|e}. By the inductive hypothesis,∑

j∈sl

ψ(Isl
) ≥ ψ(Isl

)
2dlog |sl|e

and
∑
j∈sr

ψ(Isr
) ≥ ψ(Isr )

2dlog |sr|e
.

Thus, ∑
j∈s

ψ(Isl
) =

∑
j∈sl

ψ(Isl
) +

∑
j∈sr

ψ(Isr
)

≥ ψ(Isl
)

2dlog |sl|
+

ψ(Isr
)

2dlog |sr|e
by the Inductive Hypothesis,

≥ 1
2dlog |s|e−1

[ψ(Isl
) + ψ(Isr )] by the choice of sl and sr,

≥ 1
2dlog |s|eψ(Is) by Equation (2).
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Let IOZ ⊆ I be the set of strings which have odd number of zeros. The next corollary is
an immediate consequence of Lemma 5 when s = [k].

Lemma 6.
k∑
j=1

ψ(Ij) ≥
ψ(IOZ)
2dlog ke .

NOF communication complexity and Hellinger volume. It was shown in [BYJKS04]
that the distribution of transcripts of a two-party protocol on a fixed input is a product
distribution. The same is true for a multi-party NOF protocol.

Lemma 7. Let Π be a k-player NOF communication protocol with input set Z = Z1×· · ·×Zk
and let Ω be the set of possible transcripts. For each j ∈ [k], there is a mapping qj : Ω×Z−j →
R, such that for every z = (z1, . . . , zk) ∈ Z and ω ∈ Ω,

Pr[Π(z) = ω ] =
k∏
j=1

qj(ω; z−j).

Proof. Suppose |Π(z)| ≤ l. For i = 1, . . . , l, let Πi(z) denote the i-th bit sent in an execution
of the protocol. Let σi ∈ [k] denote the player that sent the i-th bit. Then

Pr[Π(z) = ω ] = Pr[Π1(z) = ω1, . . . ,Πl(z) = ωl ]

=
l∏
i=1

Pr[Πi(z) = ωi |Π<i(z) = ω<i ],

=
l∏
i=1

Pr[Πi(z−σi ;ω<i) = ωi ],

because every bit send by player j depends only on z−j and the transcript up to that point.
We set

qj(ω; z−j) =
∏
i:σi=j

Pr[Πi(z−j ;ω<i) = ωi ]

to obtain the expression of the lemma.

As a corollary, we have the following cut-and-paste property for Hellinger volume.

Lemma 8. Let IOZ ⊆ I be the set of inputs which have odd number of zeros, and let
IEZ = I \ IOZ . Then

ψ(IOZ) = ψ(IEZ).

Proof. Using the expression of the previous lemma, we have that for any ω ∈ Ω,

∏
v∈IOZ

Pv(ω) =
∏

v∈IOZ

k∏
j=1

qj(ω; v−j) =
∏

u∈IEZ

k∏
j=1

qj(ω;u−j) =
∏

u∈IEZ

Pu(ω).

The middle equality holds, because for each j ∈ [k] and v ∈ IOZ there is a unique u ∈ IEZ
such that v−j = u−j .

Lower bounding Hellinger volume. Eventually, we will need to provide a lower bound
for the Hellinger volume of several distributions over protocol transcripts. In the two-party
case, one lower bounds the Hellinger distance between the distribution of the transcripts on
an accepting input and the distribution of the transcripts on a rejecting input. The following
lemma will allow for similar conclusions in the multi-party case.
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Lemma 9. Let A ⊆ I be of size t ≥ 2. Suppose there is an event T ⊆ Ω, a constant
0 ≤ δ ≤ 1 and an element v in A such that Pv(T ) ≥ 1− δ and that for all u ∈ A with u 6= v,
Pu(T ) ≤ δ. Then

ψ(A) ≥
(
2− 4

√
δ(1− δ)

)
· 1
t
.

Proof. We need to show

1−
∑
ω∈Ω

∏
u∈A

Pu(ω)
1
t ≥

(
2− 4

√
δ(1− δ)

)
· 1
t
.

Let a = Pv(T ) =
∑
ω∈T Pv(ω) and b =

∑
ω∈T

1
t−1

∑
u6=v Pu(ω). Notice that by assumption

a ≥ 1− δ and b ≤ δ.
Recall Hölder’s inequality: for any nonnegative xk, yk, k ∈ m,

m∑
k=1

xkyk ≤
( m∑
k=1

xtk

) 1
t
( m∑
k=1

y
t

t−1
k

) t−1
t

.

We first treat the sum over ω ∈ T .∑
ω∈T

∏
u∈A

Pu(ω)
1
t =

∑
ω∈T

Pv(ω)
1
t

∏
u 6=v

Pu(ω)
1
t

≤
(∑
ω∈T

Pv(ω)
) 1

t
(∑
ω∈T

∏
u 6=v

Pu(ω)
1

t−1

) t−1
t

≤
(∑
ω∈T

Pv(ω)
) 1

t
(∑
ω∈T

1
t− 1

∑
u6=v

Pu(ω)
) t−1

t

= a
1
t b

t−1
t ,

where we first used Hölder’s inequality and then the arithmetic-geometric mean inequality.
We do the same steps for the sum over ω 6∈ T to find∑

ω 6∈T

∏
u∈A

Pu(ω)
1
t ≤ (1− a)

1
t (1− b)

t−1
t .

Hence, ∑
ω∈Ω

∏
u∈A

Pu(ω)
1
t ≤ a 1

t b
t−1

t + (1− a)
1
t (1− b)

t−1
t .

Let g(a, b, x) = axb1−x + (1 − a)x(1 − b)1−x. We will show that under the constraints
a ≥ 1 − δ and b ≤ δ where δ < 1/2, for any fixed 0 ≤ x ≤ 1/2, g(a, b, x) is maximized for
a = 1− δ and b = δ. The partial derivatives for g(a, b, x) with respect to a and b are

ga(a, b, x) = x[ax−1b1−x − (1− a)x−1(1− b)1−x] = x
[( b
a

)1−x
−
( 1− b

1− a

)1−x]
gb(a, b, x) = (1− x)[axb−x − (1− a)x(1− b)−x] = (1− x)

[( b
a

)−x
−
( 1− b

1− a

)−x]
Under our constraints, b

a < 1 < 1−b
1−a , 1 − x > 0 and −x ≤ 0, thus, ga(a, b, x) < 0 and

gb(a, b, x) ≥ 0 for any such a, b, and x. This implies that for any fixed b, g(a, b, x) is
maximized when a = 1− δ and similarly for any fixed a, g(a, b, x) is maximized when b = δ.
Therefore, for all a, b, and 0 ≤ x ≤ 1, g(a, b, x) ≤ g(1− δ, δ, x).

For 0 ≤ x ≤ 1/2, let

f(δ, x) = 1− g(1− δ, δ, x) = 1− (1− δ)xδ1−x − δx(1− δ)1−x.

Since f(δ, x) is convex for any constant 0 ≤ δ ≤ 1,

f(δ, x) ≥ f(δ, 1/2)− f(δ, 0)
1/2− 0

· x = 2
(
1− 2

√
δ(1− δ)

)
· x.
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5 An application

In this section we show how to derive a lower bound for the informational complexity of
the ANDk function. Define a collection of distributions η = {ζ1, . . . , ζk}, where, for each
j ∈ [k], ζj is the uniform distribution over Ij . Recall that Ij ⊆ I = {0, 1}k for j ∈ [k] is the
set of k-bitstrings whose j-th bit is 0. We prove the following lower bound on the δ-error
informational complexity of ANDk with respect to η.

Remark. The choice of the collection η is not arbitrary, but is suggested by the way the
direct-sum theorem for informational complexity is proved in [BYJKS04] for the two-party
setting. In particular, two properties of η seem crucial for such a purpose. First, for each
j ∈ [k], ζj is a distribution with support only on the zeroes of ANDk. Second, under any ζj ,
the input of each player is independent of any other input.

Theorem 10.
ICη,δ(ANDk) ≥ log e ·

(
1− 2

√
δ(1− δ)

)
· 1
k2 4k−1

.

Proof. Let Π be a δ-error protocol for ANDk. By Lemma 3 we have that,

I(Z; Π(Z)) ≥ 1
2k−1 ln 2

· ψ(Ij),

where Z ∼ ζj , for any j ∈ [k], Thus, by the definition of ICη,δ(ANDk),

ICη,δ(ANDk) ≥
k∑
j=1

1
k 2k−1 ln 2

· ψ(Ij).

Applying in turn Lemmas 6, 8, and 9 we have

ICη,δ(ANDk) >
ψ(IOZ)
k2 2k ln 2

=
ψ(IEZ)
k2 2k ln 2

≥ log e ·
(
1− 2

√
δ(1− δ)

)
· 1
k2 4k−1

,

where the application of Lemma 9 is with A = IEZ , t = 2k−1, T the set of transcripts that
output “1”, and v the all-one vector in I.

It is of interest to note, that

ICη,δ(ANDk) ≤ 1
k
·H(1/2k−1) = O(1/2k).

This is achieved by the following protocol. The players, one by one, reveal with one bit
whether they see a 0 or not. The communication ends with the first player that sees a 0.
The amount of information revealed is H(1/2k−1) under ζ1 and 0 otherwise.

6 Difficulties in proving a direct-sum theorem

There seem to be fundamental difficulties in proving a direct-sum theorem on informational
complexity in the NOF model. The reader familiar with the techniques of Bar-Yossef, Jayram,
Kumar & Sivakumar [BYJKS04], should recall that in the first part of the method a direct-
sum for informational complexity of disjointness is proved. In particular, it is shown that
with respect to suitable collections of distributions η and ζ for DISJn,2 and AND2 respectively,
the information cost of DISJn,2 is at least n times the informational complexity of AND2 :
ICη,δ(DISJn,2) ≥ n · ICζ,δ(AND2). This is achieved via a simulation argument in which the
players, to decide the AND2 function, use a protocol for disjointness by substituting their
inputs in a special copy of AND2 and using their random bits to generate the inputs for the
rest n − 1 copies of AND2. In the NOF model the players can no longer perform such a
simulation. This is because, with private random bits, they cannot agree on what the input
on the rest of the copies should be without additional communication. This problem can be

10



overcome if we think of their random bits as being not private, but on each player’s forehead,
just like the input. However, In such a case, although the direct-sum theorem holds, it is
useless. This is because ICζ,δ(ANDk) = 0, as is shown by the protocol we describe in the
next paragraph.

We describe a protocol that computes ANDk on every input, with one-sided error. It has
the property that for any distribution over the zeroes of ANDk, no player learns anything
about his own input. We give the details for three players. Let x1, x2, x3 denote the input.
Each player has two random bits on his forehead, denoted a1, a2, a3 and b1, b2, b3. The first
player does the following: if x2 = x3 = 1, he sends a2 ⊕ a3, otherwise he sends a2 ⊕ b3. The
other two players behave analogously. If the XOR of the three messages is ‘0’, they answer
‘1’, otherwise they know that the answer is ‘0’. Notice that any player learns nothing from
another player’s message. This is because the one-bit message is XOR-ed with one of his
own random bits, which he cannot see.
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