
An improved lower bound for the randomized
decision tree complexity of recursive majority⋆ ⋆⋆

Nikos Leonardos

National and Kapodistrian University of Athens
Department of Informatics and Telecommunications

nikos.leonardos@gmail.com

Abstract. We prove that the randomized decision tree complexity of the
recursive majority-of-three is Ω(2.55d), where d is the depth of the recur-
sion. The proof is by a bottom up induction, which is same in spirit as the
one in the proof of Saks and Wigderson in their 1986 paper on the com-
plexity of evaluating game trees. Previous work includes an Ω

(

(7/3)d
)

lower bound, published in 2003 by Jayram, Kumar, and Sivakumar. Their
proof used a top down induction and tools from information theory. In
2011, Magniez, Nayak, Santha, and Xiao, improved the lower bound to
Ω
(

(5/2)d
)

and the upper bound to O(2.64946d).

Keywords: Boolean functions, randomized computation, decision tree
complexity, query complexity, lower bounds, generalized costs

1 Introduction

In this paper we will be working with the decision tree model. We prove a lower
bound on the randomized decision tree complexity of the recursive majority-of-
three function. Formally, maj1(x1, x2, x3) is 1 if and only if at least two of x1,
x2, x3 are 1. Letting yi = (x(i−1)3d+1, . . . , xi3d), for i = 1, 2, 3, define for d > 0,

majd+1(x1, . . . , x3d+1) = maj(majd−1(y1),majd−1(y2),majd−1(y3)).

We write maj for maj1. The function can be represented by a uniform ternary
tree. In particular, let Ud be a tree of depth d, such that every internal node has
three children and all leaves are on the same level. The function computed by
interpreting Ud as a circuit with internal nodes labeled by maj-gates is majd.

This function seems to have been given by Ravi Boppana (see Example 1.2
in [7]) as an example of a function that has deterministic complexity 3d, while
its randomized complexity is asymptotically smaller. Other functions with this
property are known. A notable example is the function nandd, first analyzed by
Snir [10]. This is the function represented by a uniform binary tree of depth d,
with the internal nodes labeled by nand-gates. A simple randomized framework
that can be used to compute both majd and nandd is the following. Start at the
root; as long as the output is not known, choose a child at random and evaluate
it recursively. Algorithms of this type are called in [7] directional. For majd the

⋆ This research was partly supported by ERC project CODAMODA.
⋆⋆ Available online at ECCC: http://eccc.hpi-web.de/report/2012/099/.

2 Nikos Leonardos

directional algorithm computes the output in (8/3)d queries. It was noted in [7]
that better algorithms exist for majd. Interestingly, Saks and Wigderson show
that the directional algorithm is optimal for the nandd function, and show that
its zero-error randomized decision tree complexity is Θ

(

(1+
√
33

4)d
)

. Their proof
uses a bottom up induction and generalized costs. Their method of generalized
costs allows them to charge for a query according to the value of the variable.
Furthermore, they conjecture that the maximum gap between deterministic and
randomized complexity is achieved for this function.

Inspired by their technique we prove an Ω(2.55d) lower bound on majd that
also holds for algorithms with bounded-error. (The bound of [7] for nandd was
extended to bounded-error algorithms by Santha in [8].) In contrast to the ex-
act asymptotic bounds we have for nandd, there had been no progress on the
randomized decision tree complexity of majd for several years. However, recent
papers have narrowed the gap between the upper and lower bounds for recursive
majority. An Ω

(

(7/3)d
)

lower bound was showed in [4]. Jayram, Kumar, and
Sivakumar, proved their bound using tools from information theory and a top
down induction. Furthermore, they presented a non-directional algorithm that
improves the O

(

(8/3)d
)

upper bound. Magniez, Nayak, Santha, and Xiao [6],

significantly improved the lower bound to Ω
(

(5/2)d
)

and the upper bound to
O(2.64946d). (Both of these lower bounds hold for the case that the randomized
decision tree is allowed to err.)

Our proof of the lower bound is simpler than the aforementioned ones; it
doesn’t require a background in information theory and it only uses induction.
Note that, Landau, Nachmias, Peres, and Vanniasegaram [5], showed how to re-
move the information theoretic notions from the proof in [4], keeping its under-
lying structure the same. Our proof can be even more simplified, if one requires
the known Ω(2.5d) lower bound. A simpler proof of this bound seems to have
been already known to Jonah Serman [9] in 2007.

We note that both majd and nandd, belong to the class of read-once func-
tions. These are functions that can be computed by read-once Boolean formulae,
that is, formulae such that each input variable appears exactly once. Heiman,
Newman, and Wigderson [2] showed that read-once formulae with threshold
gates have zero-error randomized complexity Ω(n/2d) (here n is the number of
variables and d the depth of a canonical tree-representation of the read-once func-
tion). Heiman and Wigderson [3] managed to show that for every read-once func-
tion f we have R(f) ∈ Ω(D(f)0.51), where R(f) and D(f) are the randomized
and deterministic complexity of f respectively. Note that the conjecture of Saks
and Wigderson states that for every function f we have R(f) ∈ Ω(D(f)0.753...).

2 Definitions and notation

In this section we introduce basic concepts related to decision tree complexity.
The reader can find a more complete exposition in the survey of Buhrman and
de Wolf [1].

2.1 Definitions pertaining to decision trees

A deterministic Boolean decision tree Q over a set of variables Z = {zi | i ∈ [n]},
where [n] = {1, 2, . . . , n}, is a rooted and ordered binary tree. Each internal

A lower bound for recursive majority 3

node is labeled by a variable zi ∈ Z and each leaf with a value from {0, 1}. An
assignment to Z (or an input to Q) is a member of {0, 1}n. The output Q(σ) of Q
on an input σ is defined recursively as follows. Start at the root and let its label
be zi. If σi = 0, we continue with the left child of the root; if σi = 1, we continue
with the right child of the root. We continue recursively until we reach a leaf.
We define Q(σ) to be the label of that leaf. When we reach an internal node, we
say that Q queries or reads the corresponding variable. We say that Q computes
a Boolean function f : {0, 1}n → {0, 1}, if for all σ ∈ {0, 1}n, Q(σ) = f(σ). The
cost of Q on input σ, cost(Q;σ), is the number of variables queried when the
input is σ. The cost of Q, cost(Q), is its depth, the maximum distance of a leaf
from the root. The deterministic complexity, D(f), of a Boolean function f is
the minimum cost over all Boolean decision trees that compute f .

A randomized Boolean decision tree QR is a distribution p over deterministic
decision trees. On input σ, a deterministic decision tree is chosen according to p
and evaluated. The cost of QR on input σ is cost(QR;σ) =

∑

Q p(Q) cost(Q;σ).
The cost of QR is maxσ cost(QR;σ). A randomized decision tree QR computes
a Boolean function f , if p(Q) > 0 only when Q computes f . A randomized
decision tree QR computes a Boolean function f with error δ, if, for all inputs
σ, QR(σ) = f(σ) with probability at least 1 − δ. The randomized complexity,
R(f), of a Boolean function f is the minimum cost of any randomized Boolean
decision tree that computes f . The δ-error randomized complexity, Rδ(f), of a
Boolean function f , is the minimum cost of any randomized Boolean decision
tree that computes f with error δ.

We are going to take a distributional view on randomized algorithms. Let µ
be a distribution over {0, 1}n and QR a randomized decision tree. The expected
cost of QR under µ is

costµ(QR) =
∑

σ µ(σ) cost(QR;σ).

The δ-error expected complexity under µ, Rµ
δ (f), of a Boolean function f , is the

minimum expected cost under µ of any randomized Boolean decision tree that
computes f with error δ. Clearly, Rδ(f) ≥ Rµ

δ (f), for any µ, and thus we can
prove lower bounds on randomized complexity by providing lower bounds for
the expected cost under any distribution.

2.2 Introducing cost-functions

We are going to utilize the method of generalized costs of Saks and Wigderson
[7]. To that end, we define a cost-function relative to a variable set Z, to be a
function φ : {0, 1}n × Z → IR. We extend the previous cost-related definitions
as follows. The cost of a decision tree Q under cost-function φ on input σ is

cost(Q;φ;σ) =
∑

z∈S φ(σ; z),

where S = {z | z is queried by Q on input σ}. The cost of a randomized decision
tree QR on input σ under cost-function φ is

cost(QR;φ;σ) =
∑

Q p(Q) cost(Q;φ;σ),

4 Nikos Leonardos

where p is the corresponding distribution over deterministic decision trees. Fi-
nally, the expected cost of a randomized decision tree QR under cost-function φ
and distribution µ is

costµ(QR;φ) =
∑

σ µ(σ) cost(QR;φ;σ).

Fact 1. Let φ and ψ be two cost-functions relative to Z. For any decision tree
Q over Z, any assignment σ to Z, and any a, b ∈ IR, we have

a cost(Q;φ;σ) + b cost(Q;ψ;σ) = cost(Q; aφ+ bψ;σ).

For φ, ψ : {0, 1}n × Z → IR, we write φ ≥ ψ, if for all (σ, z) ∈ {0, 1}n × Z,
φ(σ, z) ≥ ψ(σ, z).

Fact 2. Let φ and ψ be two cost-functions relative to Z. For any decision tree Q
over Z and any assignment σ to Z, if φ ≥ ψ, then cost(Q;φ;σ) ≥ cost(Q;ψ;σ).

2.3 Definitions pertaining to trees

For a rooted tree T , the depth of a leaf is the number of edges on the path to
the root. The depth of the tree is the maximum depth of a leaf. We denote by
LT the set of its leaves and by VT the set of its internal nodes. Define the set
of leaf-parents of T , PT , as the set of all nodes in VT all of whose children are
leaves. For S ⊆ PT let LT (S) be the set of the leaves of the nodes in S. We
call a tree uniform if all the leaves are on the same level. A tree such that every
node has exactly three children is called ternary. For a positive integer d, let Ud

denote the uniform ternary tree of depth d.
In the following, let T denote a ternary tree with n leaves. We define a

distribution µT over {0, 1}n that is placing positive weight on inputs that we
consider difficult; we call these inputs reluctant, in accordance with [7]. Let

M0 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} and M1 = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}.

In the following definition we view T as a circuit with every internal node labeled
by a maj-gate. We denote the corresponding function by FT .

Definition 3. Call an input to a ternary tree reluctant, if it is such that the
inputs to every gate belong to M0∪M1. Let µT , the reluctant distribution for T ,
be the uniform distribution over all reluctant inputs. We write µd ≡ µUd

, and
µT (0) (µT (1)) for µT conditioned on the output of FT being 0 (1).

Suppose the inputs to a gate, under an assignment σ, belong to M0 (M1).
We call an input to this gate a minority under σ if it has the value 1 (0) and a
majority otherwise.

3 Proof outline and preliminaries

Our goal is to prove a lower bound on the expected cost of any randomized
decision tree QR that computes majd with bounded error δ. We now discuss

A lower bound for recursive majority 5

the outline of our proof. We start with the tree T ≡ Ud that represents majd,
the natural cost-function ψ that charges 1 for any query, and the reluctant
distribution µ ≡ µT . We define a process that shrinks tree T to a smaller tree
T ′ and a corresponding randomized decision tree Q′

R that computes FT ′ with
bounded error δ. The crucial part is to show that for a “more expensive” cost-
function ψ′, costµ(QR;ψ) ≥ costµ′(Q′

R;ψ
′), where µ′ ≡ µT ′ . Our goal is to apply

the shrinking process repeatedly to the leaves of Ud, until we obtain a recurrence
of the form

Rµd

δ (majd) ≥ λ · R
µd−1

δ (majd−1),

for some constant λ. The quality of our lower bound (i.e. the constant λ, since
the recurrence will lead to Rδ(majd) ∈ Ω(λd)) will depend on how much more
expensive ψ′ is than ψ.

The main ingredient in this framework is the shrinking process. A natural
choice would be to shrink T by removing three leaves u, v, w so that their
parent s would become a leaf in T ′. Then, if we had a good algorithm Q for
FT we could design an algorithm Q′ for FT ′ as follows. On input σs, Q′ would
simulate Q on one of the inputs σ01s, σ10s, σ0s1, σ1s0, σs01, σs10, with equal
probability. We will show in the next section that such a shrinking process can
give an alternate—and simpler—proof of the Ω(2.5d) lower bound of Magniez,
Nayak, Santha, and Xiao [6].

To improve their bound we are going to shrink nine leaves to three at a time
instead of three to one. This is made precise by the following definition.

Definition 4 (shrink(T ; s)). For a ternary tree T , let s be the parent of u, v, w ∈
PT . Define shrink(T ; s) as the tree with the children of u, v, w removed.

After shrinking our initial tree T to T ′ ≡ shrink(T ; s) (notice that u, v, w ∈
LT ′), we need to define a randomized decision tree Q′

R that will compute FT ′

with error at most δ. We do so by defining for each deterministic tree Q that
QR may choose, a randomized tree Q′.

Definition 5. Let Q be any deterministic decision tree for FT . We define a
randomized decision tree Q′ for FT ′ , where T ′ ≡ shrink(T ; s). The algorithm Q′

on input σuvw chooses σu, σv, σw independently and uniformly at random from
{x01, x10, 0x1, 1x0, 01x, 10x}, where x is u, v, w respectively. Then, Q′ simulates
Q on input σ̂ = σσuσvσw. This induces a randomized algorithm Q′

R for FT ′ .

Fact 6. If QR is a δ-error randomized decision tree for FT , then Q
′
R is a δ-error

randomized decision tree for FT ′ .

It will be useful to express costµ′(Q′;ψ′), for some cost-function ψ′, in terms
of Q. We have the following proposition.

Proposition 7. For a ternary tree T and s the parent of u, v, w ∈ PT , let
T ′ ≡ shrink(T ; s). Let ψ′ be a cost-function on T ′, such that ψ′(σ; z) = λ for all
σ ∈ {0, 1}|LT′ | and z ∈ {u, v, w}. Then

costµ′(Q′;ψ′) = costµ(Q;ψ∗),

6 Nikos Leonardos

where (µ, µ′) is any of (µT , µT ′), (µT (0), µT ′(0)), (µT (1), µT ′(1)), and

ψ∗(σ; z) =

ψ′(σ; z), if z ∈ LT \ LT (u, v, w);
0.5 · λ, if z ∈ LT (u, v, w) and z is a majority under σ;
0, if z ∈ LT (u, v, w) and z is a minority under σ.

(1)

Proof. Observe that by the definition of Q′, Pr[σ̂ = σ] = µ(σ). Furthermore,
each σ is encountered 23 times over the random choices of Q′. For (i, j, k) ∈ [3]3

define cost-functions for T as follows.

ψ(i,j,k)(σ; z) =

0, if z ∈ LT (u, v, w) \ {ui, vj , wk};
λ, if z ∈ {ui, vj , wk};
ψ′(σ; z), otherwise.

The indices i, j, k are going to play the role of x in Definition 5. We have

costµ′(Q′;ψ′) =
∑

σ µ(σ)
1
23

∑

(i,j,k)∈Iσ
cost(Q;ψ(i,j,k);σ),

where Iσ = {(i, j, k) ∈ [3]3 |ui, vj , wk are majorities under σ}. The proposition
follows since for any σ in the support of µ and any z, we have ψ∗(σ, z) =
∑

(i,j,k)∈Iσ
1
23ψ(i,j,k)(σ, z). ⊓⊔

4 The Ω(2.5d) lower bound and a toy problem

We sketch a proof of the Ω(2.5d) lower bound of Magniez, Nayak, Santha, and
Xiao [6], by applying the proof outline discussed in the previous section coupled
with a simple shrinking process that shrinks three leaves to one. In addition, we
define and analyze a toy problem that will play a crucial role in obtaining the
improved Ω(2.55d) bound.

For both of these tasks it is useful to define a cost-function φη, where η ∈ IR,
as follows.

φη(σ; z) =

{

1, if z is a minority under σ;
η, otherwise.

(2)

4.1 Proof of the Ω(2.5d) lower bound

Let T be any ternary tree and x, y, z three of its leaves with a common parent u.
Let T ′ be the ternary tree obtained by removing x, y, z, and thus transforming
u to a leaf. Let ψ be a cost-function for T with ψ(σ, x) = ψ(σ, y) = ψ(σ, z) = λ
for any σ. Let ψ′ be a cost-function for T ′ with ψ′(σ, u) = 2.5 · λ and ψ′(σ, v) =
ψ(σ, v) for any other leaf v. For any algorithmQ for FT consider the algorithmQ′

for FT ′ that on input σu outputs one of Q(σ01u), Q(σ10u), Q(σ0u1), Q(σ1u0),
Q(σu01), Q(σu10) with equal probability. If Q is a δ-error algorithm for FT , then
Q′ is a δ-error algorithm for FT ′ . We claim that, with µ = µT and µ′ = µT ′ ,

costµ(Q;ψ) ≥ costµ′(Q′;ψ′).

A lower bound for recursive majority 7

Accepting this claim, we start with T ≡ Ud and apply it repeatedly by
shrinking each time three leaves at depth d that are siblings. We end up with
Ud−1 and a cost function that charges 2.5 for each query. We have shown
Rµd

δ (majd) ≥ 2.5·R
µd−1

δ (majd−1). Repeating this d times we obtain Rµd

δ (majd) ≥
2.5d ·Rµ0

δ (maj0). Finally, it is not hard to show that you have to read a bit with
probability at least 1 − 2δ to be able to guess it with error at most δ, thus
Rµ0

δ (maj0) ≥ (1− 2δ). Putting these together, Rµd

δ (majd) ≥ (1 − 2δ) · 2.5d.
To prove the claim, we observe that as in Proposition 7, costµ′(Q′;ψ′) =

costµ(Q;ψ′′), where

ψ′′(σ; z) =

ψ′(σ; z), if z ∈ LT \ LT (u);
1.25 · λ, if z ∈ LT (u) and z is a majority under σ;
0, if z ∈ LT (u) and z is a minority under σ.

By Fact 1 it suffices to show that costµ(Q;ψ − ψ′′) ≥ 0. Note now that ψ − ψ′′

is equal to λφ−0.25 on x, y, z, and zero everywhere else. Thus, we can focus on
how these three leaves are queried by Q and ignore all the other leaves. To do
this, observe that if we fix values on the rest of the leaves, we obtain from Q a
decision tree on three variables.

In the table below we list the deterministic decision trees1 Q for three vari-
ables that are relevant to our problem. We label the input variables x, y, z, in the
order they are queried. We write “and* z” to denote a conditional read. That
is, z is queried only if the value of maj(x, y, z) cannot be determined from the
values of x and y. Decision trees that read z even if x = y are of no interest,
neither for majd, nor for the toy problem we will consider in the next section.

In the last column we calculate
∑

σ∈M0
cost(Q;φη;σ). Because of the sym-

metries involved we can look up the costs for σ ∈ M1 as well. For example, the
cost of the decision tree in row (2a) when σ ∈M1, is the same as the cost of the
decision tree in row (2b) when σ ∈M0.

Decision tree Cost

(1) If x = 0, stop; if x = 1, stop. 1 + 2η

(2a) If x = 0, stop; if x = 1, read y. 1 + 3η

(2b) If x = 0, read y; if x = 1, stop. 2 + 3η

(3a) If x = 0, stop; if x = 1, read y and* z. 1 + 4η

(3b) If x = 0, read y and* z; if x = 1, stop. 2 + 4η

(4) If x = 0, read y; if x = 1, read y. 2 + 4η

(5a) If x = 0, read y; if x = 1, read y and* z. 2 + 5η

(5b) If x = 0, read y and* z; if x = 1, read y. 2 + 5η

(6) If x = 0, read y and* z; if x = 1, read y and* z. 2 + 6η

What we are going to use from this table is that for η ∈ [−0.5, 0] the decision
tree of row (3a) has the minimum cost when (x, y, z) ∈M0, and the tree of row
(3b) when (x, y, z) ∈M1. Their cost is 1 + 4η. One can now verify that there is

1 We abuse the term “decision tree” here, since we are actually listing algorithms that
query bits but do not output anything.

8 Nikos Leonardos

no (deterministic) decision tree Q that can achieve costµ(Q;φ−0.25) < 0. This
completes the proof of the claim and the sketch of the Ω(2.5d) lower bound.

Remark. Note the role of the value of u in the above argument. In particular,
if u = 0, then the best decision tree is the one on row (3a), whereas if u = 1, it
is the one on row (3b). We can do better, if we only want a bound for maj1.

Proposition 8. Rµ1

δ (maj1) ≥
8
3 · Rµ0

δ (maj0).

Proof. Let ψ1 be the cost-function for maj1 defined by ψ1(σ; z) = 1 for all σ
and z. Let ψ0 be the cost-function for maj0 defined by ψ0(0;u) = ψ0(1;u) =
8/3. Then, as in the proof of Proposition 7, we can show that costµ1

(Q1;ψ1)−
costµ0

(Q0;ψ0) = costµ1
(Q1;φ−1/3). Observe now—by examining the table—

that for any deterministic algorithm Q,
∑

σ∈M0∪M1
cost(Q;φ−1/3;σ) ≥ 0. The

zero is achieved by the tree on row (6) of the table. Thus, costµ1
(Q1;ψ1) ≥

costµ0
(Q0;ψ0) and the result follows. ⊓⊔

4.2 The toy problem and a corollary

Recall that in order to improve the lower bound, we need a shrinking process
that shrinks nine leaves to three. Since it would be rather tedious to analyze
decision trees on nine variables, we introduce a toy problem that reduces our
analysis on decision trees over {0, 1}6. We present first the toy problem and
following its analysis a corollary that reveals its usefulness.

Let µ be the uniform distribution over
{

(u, v)
∣

∣

(

u ∈ M0 ∧ v ∈ M1

)

∨
(

u ∈

M1 ∧ v ∈M0

)}

. We seek the minimum real η for which costµ(Q;φη) ≥ 0 for any
decision tree Q. We show that we can have η = −0.3. Although it is not stated
in the following lemma, it is easily observable from the proof that this value is
best possible. Although the analysis of the toy problem is optimal, one could
improve the constant 2.55 by analyzing directly the decision trees over {0, 1}9.

Lemma 9. For any decision tree Q over {0, 1}6, costµ(Q;φ−0.3) ≥ 0.

Proof. For the proof we are going to do some case analysis, taking advantage of
the symmetries involved. Denote the input by (x, y, z, u, v, w), and call (x, y, z)
the left side and (u, v, w) the right side. Assume, without loss of generality (due
to the symmetry of µ and the fact that we are calculating expected cost), that
the variables on the left side are queried in the order x, y, z and on the right side
in the order u, v, w. Assume further, that x is the first variable queried by Q,
and let Q0 (Q1) be the decision tree if x = 0 (x = 1). We only analyze Q0, as
the analysis of Q1 would be the same with the roles of 0 and 1 exchanged. Thus,
we assume x = 0 and proceed with the analysis of Q0.

In all of the following cases we calculate the cost scaled; in particular, we
calculate C ≡

∑

σ:x=0 cost(Q;φ;σ).
Case 1. Suppose that Q0 is empty. Then C = 3 + 6η > 0.
Case 2. Suppose that Q0 queries y. Then, either x = y or x 6= y. In the

first case, we may assume Q0 does not query z, since such a query increases the

A lower bound for recursive majority 9

cost by 1. In the second case, we may assume Q0 queries z, since such a query
decreases the cost by −η. Therefore, the optimal Q0 first “finishes” with the
left side and then proceeds to the right side, knowing whether (u, v, w) ∈ M0

or (u, v, w) ∈ M1. In the first case, the optimal Q0 continues with the right
side as in row (3a) of the table; in the second case, as in row (3b). The cost is
C = (3 · 2η + 1 + 4η) + 2 · (3 · (1 + 2η) + 1 + 4η), which is 0 for η = −0.3.

Case 3. Suppose that Q0 queries u.

(i) Suppose x = u. If Q0 does not query anything else, then this case con-
tributes to the cost 4·(1+η). Otherwise let us assume (without loss of generality)
that it reads y. Then, as in Case 2, we may assume that Q0 “finishes” the left
side before doing anything else. There are four inputs such that x = u = 0. For
two of the inputs the left side belongs to M0 and for the other two to M1. In the
first case, the optimal Q0 reads v and w (they are both majorities). In the second
case, it does not read any of v, w (it costs an additional 1 + 2η > 0 if it reads
them). In total the cost of this case is then (1+4η)+(2+4η)+2·(1+3η) = 5+14η.

(ii) Suppose x 6= u. If Q0 does not query anything else, then this case con-
tributes to the cost 2 + 8η. Otherwise let us assume (without loss of generality)
that it reads y. With similar considerations as in case 3(i), we find that the total
cost of this case is then (2 + 4η) + 2 · 3η + 2 · (1 + 3η) = 4 + 16η.

Summing up for case 3, we find that the best Q0 can do is C = 9+ 30η = 0.
The case analysis is complete. ⊓⊔

We prove a corollary of this lemma that connects the toy problem to our real
goal, which is the analysis of the process of shrinking nine leaves to three.

Lemma 10. Let T ≡ U2 with root s and T ′ ≡ shrink(T ; s). Let ψ and ψ′ be
cost-functions such that ψ(σ; z) = λ ≥ 0 for all σ ∈ {0, 1}9 and all variables
z ∈ LT , and ψ′(σ; z) = 2.55 · λ for all σ ∈ {0, 1}3 and all variables z ∈ LT ′ .
Then, for any deterministic decision tree Q over {0, 1}9,

costµ(Q;ψ) ≥ costµ′(Q′;ψ′),

where (µ, µ′) is any of (µT , µT ′), (µT (0), µT ′(0)), (µT (1), µT ′(1)).

Proof. Recall the definition of ψ∗ from page 6. We have

costµ(Q;ψ)− costµ′(Q′;ψ′)

= costµ(Q;ψ)− costµ(Q;ψ∗) by Proposition 7

= costµ(Q;ψ − ψ∗) by Fact 1

=
∑

σ:maj2(σ)=0 µ(σ) cost(Q;ψ − ψ∗;σ)

+
∑

σ:maj2(σ)=1 µ(σ) cost(Q;ψ − ψ∗;σ).

According to whether we are interested in µT , µT (0), or µT (1), one of the sums
might be empty. Without loss of generality, we assume the first sum is nonempty
and show it is nonnegative. The other sum can be treated similarly. To that end,

10 Nikos Leonardos

we define an intermediate cost-function ξ. In the following definition, σ is an
assignment, z a variable, and u is the value of the parent of z under σ.

ξ(σ; z) =

λ, if z is a minority under σ;
−0.275 · λ, if z is a majority under σ and u = 0;
−0.3 · λ, if z is a majority under σ and u = 1.

Observe that ψ−ψ∗ ≥ ξ (they agree on minorities and ψ−ψ∗ is λ−0.5 ·2.55 ·λ =
−0.275 · λ on all majorities) and thus it suffices to show that

∑

σ:maj2(σ)=0 µ(σ) cost(Q; ξ;σ) ≥ 0. (3)

We are going to decompose the above sum into terms that correspond either
to the toy problem and Lemma 9 applies or correspond to queries over 3 variables
and the table of Section 4.1 can be used.

To that end, we decompose ξ into several cost-functions. Let u, v, and w be
the children of s. Define a cost-function ξu by

ξu(σ; z) =

0, if z ∈ LT (u);
−0.3 · λ, if z is a majority under σ and z ∈ LT (v, w);
λ, if z is a minority under σ and z ∈ LT (v, w).

Similarly define ξv and ξw. For α ∈M0 define

Cu(α) ≡
∑

β∈M0

∑

γ∈M1
µ(αβγ) cost(Q; ξu;αβγ) + µ(αγβ) cost(Q; ξu;αγβ).

Similarly define Cv and Cw (assigning α to v and w respectively). These terms—
as shown later—correspond to the toy problem. Define a cost-function ξ′u by

ξ′u(σ; z) =

0, if z ∈ LT (v, w);
−0.25 · λ, if z is a majority under σ and z ∈ LT (u);
λ, if z is a minority under σ and z ∈ LT (u).

Similarly define ξ′v and ξ′w. For (α, β) ∈M0 ×M1 define

C′
u(α, β) ≡

∑

γ∈M0
µ(γαβ) cost(Q; ξ′u; γαβ) + µ(γβα) cost(Q; ξ′u; γβα).

Similarly define C′
v and C′

w. These terms will be analyzed using the table.
We now argue that we have the following decomposition

∑

σ:maj2(σ)=0 µ(σ) cost(Q; ξ;σ) =
1

2

[

∑

α∈M0

(

Cu(α) + Cv(α) + Cw(α)
)

+
∑

α∈M0

∑

β∈M1

(

C′
u(α, β) + C′

v(α, β) + C′
w(α, β)

)

]

. (4)

To prove this, we fix a σ = xyz on the left-hand side and see if each bit—
assuming it is queried by Q—is charged the same in both sides of the equation.
Without loss of generality, let us assume σ is such that maj(x) = maj(y) = 0

A lower bound for recursive majority 11

and maj(z) = 1. A minority (under σ) is charged λ on the left side. A minority
below u is charged λ once in Cv(y) and once in C′

u(y, z) on the right, for a total
of 0.5 · (λ + λ). Similarly for a minority below v. A minority below w will be
charged λ in Cu(x) and Cv(y), which corresponds to the amount charged on the
left side. A majority below u will be charged −0.3 · λ in Cv(y) and −0.25 · λ in
C′

u(y, z), for a total of 0.5 · (−0.3− 0.25) · λ; this is how much is charged in the
left side as well. Similarly for a majority below v. Finally, a majority below w
is charged −0.3 · λ in Cu(x) and Cv(y), equal to the amount charged on the left
side.

We now finish the proof by showing that the right-hand side of (4) is non-
negative. We argue that, for any α ∈M0, Cu(α) ≥ 0. Each fixed α ∈M0 induces
a decision tree Qα over {0, 1}6 such that Qα(βγ) = Q(αβγ). Observe that ξu
agrees on LT (v, w) with λφ−0.3 (where φ−0.3 is defined in Equation 2). Thus,
Cu(γ) = λ costµ(Qγ ;φ−0.3) and Lemma 9 shows that Cu(α) ≥ 0. Similarly, for
any α ∈ M0, Cv(γ), Cw(γ) ≥ 0. Along similar lines we can show that, for any
(α, β) ∈M0 ×M1, C

′
u(α, β), C

′
v(α, β), C

′
w(α, β) ≥ 0. (Lemma 9 is not needed in

this case; inspection of the table in Section 4.1 suffices.) ⊓⊔

5 Proof of the lower bound

We prove a lemma that carries out the inductive proof sketched in Section 3.

Lemma 11 (Shrinking Lemma). For a ternary tree T and s the parent of
u, v, w ∈ PT , let T

′ denote shrink(T ; s). Let ψ and ψ′ be cost-functions on T and
T ′ such that ψ(σ; z) = λ for all σ ∈ {0, 1}|LT | and z ∈ LT (u, v, w) and

ψ′(σ; t) =

{

2.55 · λ, if t ∈ {u, v, w};
ψ(σ; t), otherwise.

Then, for any randomized decision tree QR, µ ≡ µT and µ′ ≡ µT ′ ,

costµ(QR;ψ) ≥ costµ′(Q′
R;ψ

′).

Proof. Let n denote the number of leaves in T . Fix a partial assignment π ∈
{0, 1}n−9 for the leaves in LT \ LT (u, v, w) and let ρ ∈ {0, 1}9. We write πρ for
the assignment that equals ρ on the variables LT (u, v, w) and π everywhere else.
For any deterministic tree Q we have (recalling Proposition 7 and Fact 1)

∆(Q) ≡ costµ(Q;ψ)− costµ′(Q′;ψ′) = costµ(Q;ψ)− costµ(Q;ψ∗)

= costµ(Q;ψ − ψ∗) =
∑

πρ µ(πρ) cost(Q;ψ − ψ∗;πρ).

Now, ψ and ψ∗ are equal over LT \ LT (u, v, w). Furthermore, having fixed π,
we can define a deterministic tree Qπ over {0, 1}9 so that on input ρ ∈ {0, 1}9

we have Qπ(ρ) = Q(πρ). Thus ∆(Q) =
∑

πρ µ(πρ) cost(Qπ;ψ − ψ∗; ρ). Finally,
recalling the definition of ψ∗ (page 6), we see that ψ−ψ∗ ≥ λφ−0.3 on LT (u, v, w)
and by Fact 2, ∆(Q) ≥

∑

πρ µ(πρ) cost(Qπ;λφ−0.3; ρ). Thus, we may apply
Lemma 10, which implies that, for each fixed π, each summand is greater or
equal to zero. It follows that, for any Q, ∆(Q) ≥ 0. We have costµ(QR;ψ) −
costµ′(Q′

R;ψ
′) =

∑

Q p(Q)∆(Q) ≥ 0. ⊓⊔

12 Nikos Leonardos

Theorem 12. Rµd

δ (majd) ≥
8
3 · (1 − 2δ) · 2.55d−1.

Proof. We start with T ≡ Ud and apply the Shrinking Lemma repeatedly by
shrinking each time nine leaves at depth d that have a common ancestor at depth
d−2. We end up with Ud−1 and a cost function that charges 2.55 for each query,
obtaining Rµd

δ (majd) ≥ 2.55 ·R
µd−1

δ (majd−1). Repeating this d− 1 times we get
Rµd

δ (majd) ≥ 2.55d−1 ·Rµ1

δ (maj1). By Proposition 8, Rµ1

δ (maj1) ≥
8
3 ·R

µ0

δ (maj0).
A δ-error decision tree for maj0 should guess a random bit with error at most δ;
thus, Rµ0

δ (maj0) ≥ 1− 2δ. ⊓⊔

Acknowledgements

I thank Mike Saks for useful discussions and corrections in an earlier draft of
this paper and Jeff Steif for pointing out a serious error in an earlier version. I
also thank Carola Winzen and other reviewers for useful comments.

References

[1] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree
complexity: a survey. Theor. Comput. Sci., 288(1):21–43, 2002.

[2] Rafi Heiman, Ilan Newman, and Avi Wigderson. On read-once threshold formulae
and their randomized decision tree complexity. Theor. Comput. Sci., 107(1):63–
76, 1993.

[3] Rafi Heiman and Avi Wigderson. Randomized vs. deterministic decision tree
complexity for read-once boolean functions. Computational Complexity, 1:311–
329, 1991.

[4] T. S. Jayram, Ravi Kumar, and D. Sivakumar. Two applications of information
complexity. In STOC, pages 673–682. ACM, 2003.

[5] Itamar Landau, Asaf Nachmias, Yuval Peres, and Sithparran Vanniasegaram. The
lower bound for evaluating a recursive ternary majority function and an entropy-
free proof. Undergraduate Research Reports, Department of Statistics, University
of California, Berkeley, 2006.

[6] Frédéric Magniez, Ashwin Nayak, Miklos Santha, and David Xiao. Improved
bounds for the randomized decision tree complexity of recursive majority. In
Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, ICALP (1), volume 6755
of Lecture Notes in Computer Science, pages 317–329. Springer, 2011.

[7] Michael E. Saks and Avi Wigderson. Probabilistic boolean decision trees and the
complexity of evaluating game trees. In FOCS, pages 29–38. IEEE Computer
Society, 1986.

[8] Miklos Santha. On the monte carlo boolean decision tree complexity of read-once
formulae. Random Struct. Algorithms, 6(1):75–88, 1995.

[9] Jonah Sherman. Communicated to the author by Ryan O’Donnell in 12 Sep. 2012.
Unpublished, 2007.

[10] Marc Snir. Lower bounds on probabilistic linear decision trees. Theor. Comput.
Sci., 38:69–82, 1985.

