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Abstract. We consider (n, f)-evacuation on a circle, an evacuation prob-
lem of a hidden exit on the perimeter of a unit radius circle for n > 1
robots, f of which are faulty. All the robots start at the center of the
circle and move with maximum speed 1. Robots must first find the exit
and then move there to evacuate in minimum time. The problem is con-
sidered complete when all the honest robots know the correct position
of the exit and the last honest robot has evacuated through the exit.
During the search, robots can communicate wirelessly.
We focus on symmetric-persistent algorithms, that is, algorithms in which
all robots move directly to the circumference, start searching the cir-
cle moving in the same direction (cw or ccw), and do not stop moving
around the circle before receiving information about the exit. We study
the case of (n, 1) and (n, 2) evacuation. We first prove a lower bound of
1 + 4π

n
+ 2 sin(π

2
− π

n
) for one faulty robot, even a crash-faulty one. We

also observe an almost matching upper bound obtained by means of an
earlier search algorithm. We finally study the case with two Byzantine
robots and we provide an algorithm that achieves evacuation in time at
most 3 + 6π

n
, for n ≥ 9, or at most 3 + 6π

n
+ δ(n), for n < 9, where

δ(n) ≤ 2 sin( 3π
2n

) +
√

2 − 4 sin( 3π
2n

) + 4 sin2 ( 3π
2n

) − 2.

1 Introduction

An important, extensively studied family of problems in mobile agent
computing concerns situations where a group of robots need to find one
or more targets that are located in unknown points of a territory. In a
particular case of interest, the target(s) are exit(s) and the goal of the
robots is either to locate the exit(s) (Search problem) or to leave the
territory (Evacuation problem), as fast as possible. In this paper we focus
on the latter problem.



1.1 Model and Preliminaries

We detail below the particular setting that we are going to study in this
work.

Location and Movement

The starting position of the robots is the center of a unit radius disk.
The exit is located at the perimeter of the disk. All robots move with
the same speed 1. During their movement, they can recognize and move
along the perimeter of the disk, and they can find the exit if they are at
its location. Robots are allowed to take shortcuts moving through chords
in the interior of the disk.

Communication

The robots can communicate wirelessly and with no delay at any time
and distance. The messages may contain information about their loca-
tion, whether or not they found the exit, how far they have moved from
their starting position etc. Messages are tagged with the sender’s unique
identifier that cannot be modified in any way. All robots can deduce their
relative position from each other messages. They are also equipped with
a pedometer in order to measure distances.

Fault Types

Some robots may display faulty behaviour. A crash-faulty robot may stop
functioning at any time, meaning that they fail to communicate any mes-
sages, and remains idle. A Byzantine robot behaves maliciously, it can
alter its trajectory and provide or hide information in order to confuse
the rest of the honest robots on the location of the exit. A Byzantine
robot can also behave as a crash-faulty one.

Adversary

For the worst case analysis of our algorithms, we consider an adversary
who controls the location of the exit and the behaviour of the malicious
robots (its trajectories as well as the messages they will broadcast) so
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as to maximize the resulting search and evacuation completion time. An
evacuation is complete if the exit is found (has been visited by a non-
faulty robot and the rest of them, if any, can be convinced (provably) of
the (correct) location of the exit) and all the non-faulty robots reach the
exit.

1.2 Related Work

Evacuation is closely related to Search, in fact the two problems coin-
cide in the case of a single robot. A long line of research focused on the
line search (aka Cow Path) problem (see [1–3] and references therein);
more recent works include Kao et. al [4], in the randomized setting, and
Demaine et. al. [5] who takes into account the turn cost.

The problem was studied under the fault-tolerance perspective by Czy-
zowicz et. al [6, 7] who considered the problem under the presence of either
crash or Byzantine failures.

In circular topologies, evacuation was the first problem to be studied,
in [8], who dealt with both the wireless and face-to-face communication
models. Additional work on circle evacuation followed shortly afterwards,
e.g. in [9] for the face-to-face model, and in [10] for equilateral triangles
(for a comprehensive survey we refer the reader to [11]).

Regarding fault-tolerant evacuation in circles, a work closely related to
this paper is [12], where they study the problem with 3 robots, one of
which is faulty, and provide upper and lower bounds for both cases of
crash-faulty and Byzantine-faulty robot. They also introduce the notion
of symmetric-persistent algorithms that we make use of in the present
paper.

For the search problem in circles, under crash or Byzantine failures, a
recent study [13] has shown a tight bound of 1+ 4π

n to find the exit where
n is the number of robots, one of which is Byzantine.

1.3 Results of the paper

In Section 2 we consider the Evacuation problem for n robots one of which
is Byzantine and we prove a lower bound for the symmetric persistent
algorithms of 1 + 4π

n + 2 sin(π2 −
π
n). The lower bound is almost matching

to our upper bound. In Section 3 we present our symmetric persistent
algorithm for the case of Evacuation of n robots with 2 Byzantine faults
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and we provide an upper bound of 3 + 6π
n , for n ≥ 9 and 3 + 6π

n + δ(n)

for n < 9, where δ(n) ≤ 2 sin(3π2n) +
√

2− 4 sin(3π2n) + 4 sin2 (3π2n)− 2.

2 Evacuation with One Byzantine Fault

We define (n, f) - Evacuation, to mean evacuation for n > 1 robots, of
which f are faulty. In this work, we consider only Byzantine faults.

2.1 Lower bound for symmetric-persistent algorithms

As defined in [12], symmetric-persistent algorithms are family of natural
algorithms that force all robots to immediately go to the disk perimeter
and only allow a robot to stop its exploration of the assigned sector if
it receives information about the exit. Symmetric-persistent algorithms
force all the robots to move in the same direction (either clockwise or
counter-clockwise).

Theorem 1. Any symmetric-persistent algorithm requires time at least

1 +
4π

n
+ 2 sin

(π
2
− π

n

)
≥ 3 +

4π

n
− π2

2n2

for evacuation of n robots, one of which is crash-faulty, from a circle of
radius 1.

Proof. Note that if n = 2 the result is trivial, so we assume n ≥ 3. Let us
denote by f(n) the quantity displayed in the statement.

Fix a 0 on the unit circle and denote by xi the length of the arc between
robot αi and 0 in the ccw direction. Let ψi denote the length of the arc
between robots αi and αi+2. Since

∑
ψi = 4π, there exists i such that

ψi ≥ 4π/n = 2θ. Without loss of generality, let x2 = ψ0 ≥ 2θ and denote
it by ψ. For any ε > 0, if the adversary places the exit at distance ψ − ε
from 0 and robot α1 is faulty, then the exit will be discovered by robot
α0 in time 1 + ψ − ε.
We now consider two cases on ψ.

First, suppose 2θ ≤ ψ < π. By the maximality of ψ, there is at least one
robot at distance x from 0 such that x ∈ [π − ψ/2, π + ψ/2]. The total
time this robot will require to reach the exit is at least

1 + ψ − ε+ 2 sin
(π − ψ/2

2

)
≥ 1 + 2θ + 2 sin

(π − θ
2

)
− ε = f(n)− ε,
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where the inequality follows because ψ ≥ 2θ and the left-hand side is
increasing in ψ.

Next, we consider the case π ≤ ψ. In this case we will bound the time
robot α2 will need, which is at least

1 + ψ − ε+ 2 sin(ψ/2)

time units. Note that this is increasing in ψ. It follows that it is at least
1 + π − ε + 2, which for n ≥ 4 is greater than f(n). If n = 3, then
this is at least 1 + 2θ − ε + 2 sin θ = f(n) − ε. The equality holds since
sin θ = sin(2π/3) = sin(π2 −

π
6 ) ≥ sin(π2 −

π
3 ).

Since the above hold for any ε, the first bound in the statement follows.
The second bound follows from the inequality cos(x) ≥ 1− x2/2.

Theorem 2. There exists a symmetric-persistent algorithm that requires
time at most

3 +
4π

n

for evacuation of n robots, one of which is Byzantine, from a circle of
radius 1.

Proof. We employ the optimal Search algorithm proposed in [13], which
has a time bound of 1 + 4π

n to find the exit, and add the length of the
diameter for the furthest robot to evacuate.

Remark 1. Note that above upper bound is withinO(1/n2) from the lower
bound of Theorem 1.

3 Evacuation with Two Byzantine Faults

3.1 Algorithm for (n, 2) - Evacuation

We will now present an algorithm for Evacuation of n robots, 2 of which
are faulty, both Byzantine, and then analyze its time requirements.

Consider n robots a0, a1, . . . , an−1 and set θ := 2π/n. Each robot ak
moves along a radius to the point kθ of the perimeter of the unit circle.
We call the arc [kθ, (k + 1)θ) sector Sk; that is, after 1 time unit, robot
ak will be located at the beginning of sector Sk. Robots make announce-
ments if they find the exit and confirm/disprove the announcements of
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other robots accordingly. Every robot searches one sector in each round,
moving counter clockwise (ccw). At any moment, if an announcement is
confirmed by two other robots, that announcement is correct. Also, an
announcement disproved by three other robots is invalidated (announc-
ing a different exit also counts as a disproof). When three robots make
different announcements, we can deduce that two of them are Byzantine
and as a result the silent ones are honest. All honest robots move through
a chord to the exit to evacuate the circle and the algorithm terminates in
time E(n, 2). Details of the main algorithm are as follows.

Algorithm 1 (n, 2)-Evacuation
1: Robot ak moves along a radius of the circle to the point kθ of the unit circle.
2: Robot ak searches ccw and makes an announcement if it finds the exit. It also

disproves faulty announcements concerning sectors it has visited.
3: At time 1 + 3θ:
4: if there is no consensus regarding the position of the exit then

the robot next to the contested announcements in clock wise order (called
inspector robot and is uniquely determined as shown in the analysis),
moves through a chord to the nearest announcement. If it is not the exit,
it moves through a chord to the other announcement(s) to evacuate. A
second inspector (the robot next to first inspector clockwise) may be uti-
lized simultaneously, if it is known that the findings of the first inspector
are still not enough for a consensus in the worst case.

5: All other honest robots moves through a chord to the farthest announcement to
evacuate, and may change trajectory according to inspector’s findings.

We define as t the time beyond the 1 + 3θ needed to learn the position
of the exit. If t ≤ 1, evacuation time is unaffected and equals to 3 + 3θ.
If t > 1, the evacuation time is increased by a function δ(n). For the
geometric proof and the calculation of δ(n) please refer to the appendix.

Theorem 3 ((n, 2) - Evacuation). The worst-case time for (n, 2) -
Evacuation for n ≥ 9 by Algorithm 1 satisfies

E(n, 2) ≤ 3 +
6π

n

and E(n, 2) ≤ 1 + 6π
n + 2 sin(3π2n) +

√
2− 4 sin(3π2n) + 4 sin2 (3π2n) for n < 9.

Proof. If after 3 rounds only one announcement is made, that announce-
ment is correct because in these 3 rounds every point in the circle has
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been searched by at least one honest robot. All robots will move through
a chord towards the exit, and evacuation will be completed in time 3+3θ.
For any other outcome, we consider the following cases depending on the
number of announcements made during the execution of the algorithm.

Case 1: No announcement at the end of round 1.

Subcase 1-a: No announcement at the end of round 2.

– 1-a-i: Two announcements at the end of round 3.
Assume that they are made by robots a0 and an−1. Robots a1 and
a2 searched the sector with the announcement of a0 in the previous
rounds and made no announcements. Also a0 disagrees with an−1 as
he made an announcement elsewhere. Three robots disagree with a0 so
that is the Byzantine one. As a result the correct exit is the one an−1

announced. The exit will be known in time 1 + 3θ. Similar argument
can be used for announcements not in consecutive sectors.

– 1-a-ii: Three announcements at the end of round 3.
Announcements must be in consecutive sectors (in any other case, we
would have earlier announcements). Lets say announcements made by
robots a0, an−1 and an−2. Then we know that the rest of the robots
are honest. Robot a1 visited the sectors with the announcements of a0
and an−1 in the previous rounds. As a result an−2 is honest and the
exit is on his announcement. The exit will be known in time 1 + 3θ.

Subcase 1-b: One announcement at the end of round 2.

Then at round 3 there will be one or two new announcements.

– 1-b-i. One new announcement at the end of round 3.
If the new announcement is in a different sector than the previous one,
refer to case (1-a-i). Else (two announcements in the same sector),
suppose that the first announcement was made by a0 and the second
by an−1. Then we can deduce that a1 is the one Byzantine robot (as
he disagrees with both announcements, and at the end of round 3, no
new announcement is made) and as a result an−2 is an honest one.
an−2 as an inspector robot will travel through a chord to the nearest
announcement. We will know the exit in time 1 + 3θ+ 2 sin(π/n). See
Figures 1-4.

– 1-b-ii: Two new announcements at the end of round 3.
If the three announcements made until the end of round 3 are in
different sector, refer to case (1-a-ii). If one of the new announcements
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a0

a1

an−1

an−2

Fig. 1. time 1 + θ

a0

an−1

an−2

Fig. 2. time 1 + 2θ

a0
an−1

an−2

Fig. 3. time 1 + 3θ

a0
an−1

an−2

Fig. 4. Inspection and Evacuation

is in the same sector with the previous one, consider the following
cases:

• Assume that a0 made the announcement in the second round and
an−1, a1 made an announcement in the third round.

We can deduce that a1 is the Byzantine robot as he disagrees with
the other two announcements and also with robots a2 and a3 that
searched that sector in previous rounds. As a result an−2 is honest.
Inspector robot an−2 will travel through a chord to the nearest
announcement. We will know the exit in time 1 + 3θ+ 2 sin(π/n).

• Assume that a0 made the announcement in the second round and
an−1, an−2 made an announcement in the third round. In that case
we can deduce that all other robots are honest. Robot a1 visited
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the sector with the announcements of an−1 and an−2. The exit is
the announcement of an−2 and will be known in time 1 + 3θ.

Subcase 1-c: Two announcements at the end of round 2.

If there is no new announcement at round 3, refer to case (1-a-i). If there
is one new announcement at the end of round 3 in a different sector, refer
to case (1-a-ii). Else, if there there is one new announcement at the end
of round 3 in the same sector with a previous announcement refer to case
(1-b-ii).

Subcase 1-d: Three announcements at the end of round 2.

Refer to case (1-a-ii).

Case 2: One announcement at the end of round 1.

Subcase 2-a: No new announcement at the end of round 2.

– 2-a-i: One new announcement at the end of round 3.

If announcements in different sector, refer to case (1-a-i). If two an-
nouncements are in the same sector, say by a0, an−2, then after 3
rounds we will have no consensus about the exit. In the worst case,
an−1 will agree with a0 and the inspector robot an−3 will agree with
an−2. In such a case, a second inspector robot an−4 is needed to
move to the nearest announcement. The exit will be known in time
1 + 3θ+ 2 sin(3π/2n). This is the worst search time. See Figures 5-8.

– 2-a-ii: Two new announcements at the end of round 3.

If all announcements in different sectors, refer to case (1-a-ii). Else
consider the following cases:

• Assume the announcements were made by a0 in the first round
and by an−2 and an−4 in the third round. We know that all the
other robots are honest. Robot an−1 searched the sector with the
announcements of a0 and an−2 in the second round. If one of them
is correct, that must be the one a0 announced (if an−2 would be
correct, an−1 would announced it in the second round). If an−1

disagrees with both of them, the exit is announced correctly by
an−4 and will be known in time 1 + 3θ.

• Assume the announcements were made by a0 in the first round and
by an−1 and an−2 in the third round. We know that all the other
robots are honest. Inspector robot an−3 will visit the nearest an-
nouncement and the exit will be known in time 1+3θ+2 sin(π/n).
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a0

a1

an−1

an−2

an−3

Fig. 5. time 1 + θ

a0

an−4

an−1

an−2

an−3

Fig. 6. time 1 + 2θ

a0

an−4

an−1 an−2

an−3

Fig. 7. time 1 + 3θ

a0

an−4

an−1
an−2

an−3

Fig. 8. Inspection and Evacuation

Subcase 2-b: One new announcement at the end of round 2.

– 2-b-i: No new announcement at the end of round 3.
If we can’t already differentiate the announcements, inspector robot
will find us the exit at time 1 + 3θ + 2 sin(π/n). Refer to case (2-a-i).

– 2-b-ii: One new announcement at the end of round 3.
If all three announcements are in different sectors, refer to case (1-
a-ii). If two of the three announcements are in the same sector refer
to case (2-a-ii). If all three announcements are in the same sector
made by, say, a0, an−1 and an−2 then after the third round, honest
inspector robot an−3 must visit 2 of these announcements, The exit
will be known in time 1 + 3θ + 4 sin(π/3n). See Figures 9-12.
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a0

a1

an−1

an−2

an−3

Fig. 9. time 1 + θ

a0 an−1

an−2

an−3

Fig. 10. time 1 + 2θ

a0
an−1 an−2

an−3

Fig. 11. time 1 + 3θ

a0
an−1
an−2

an−3

Fig. 12. Inspection and Evacuation

Subcase 2-c: Two new announcements at the end of round 2.

Refer to case (2-a-ii).

Case 3: Two announcements at the end of round 1.

Subcase 3-a: No new announcement at the end of round 2.

– 3-a-i. No new announcement at the end of round 3.
Refer to case (1-a-i).

– 3-a-ii. One announcement at the end of round 3.
If all three announcements are in different sectors, refer to case (1-a-ii).
If two announcements are in the same sector, consider the following
cases:
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• Assume that a0 and an−4 made the announcements in the first
round and an−2 in the third round. All other robots are honest.
Robot an−1 for example have visited all the locations of the an-
nouncements and we will know the correct exit in time 1 + 3θ.

• Assume that a0 and an−1 made the announcements in the first
round and an−2 in the third round. That means that a3 is honest,
and if the announcement of an−1 is not correct, becoming an in-
spector robot, will move to the nearest announcement through a
chord and the exit will be known in time 1 + 3θ + 2 sin(π/n).

Subcase 3-b: One new announcement at the end of round 2.

Refer to case (3-a-ii).

Case 4: Three announcements at the end of round 1.

Refer to case (1-a-ii).

This completes the proof of the claimed time bound. ut

Some calculations follow that give (for 4 ≤ n ≤ 9) the bounds obtained
by the above algorithm for the (n, 2) case in comparison with the lower
bound obtained for the (n, 1) case (which holds of course for 2 Byzantine
robots as well):

n (n, 1): LB (n, 2): 3 + 3θ (n, 2) : δ(n) (n, 2) : UB

4 5.5558 7.7124 0.5687 8.2811
5 5.1313 6.7699 0.2361 7.0060
6 4.8264 6.1415 0.0881 6.2297
7 4.5971 5.6927 0.0318 5.7246
8 4.4186 5.3561 0.0095 5.3657
9 4.2756 5.0944 0 5.0944

4 Conclusion

We studied the evacuation problem of n robots with one or two Byzantine
faults in the wireless model and provided a lower bound for the (n, 1)-
evacuation case and an upper bound for the (n, 2)-evacuation case. An
interesting possible direction after that would be to tighten our bounds,
consider other communication models (like the face-to-face model) or gen-
eralize for f Byzantine robots. In particular, we conjecture that 3 + 3θ is
a lower bound for the (n, 2) evacuation problem for infinitely many n.
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A Appendix - δ(n) calculation

As shown in Figure 13, suppose at the end of round 3 the exit is not yet
known, and possible exits are in D and E. Robot ak placed at A, moves to
evacuate to its farthest announcement D, at distance 2 (diameter, r=1).
After t ≤ r the inspector robot moving from F will determine the correct
exit and robot ak may need to change direction to E, but the new path
that will travel is not larger than the diameter of the circle.

A
B C

D

E

F

t

Fig. 13. t ≤ 1

A
BC

D

E

F

t

Fig. 14. t > 1

We must show that BE ≤ BD. Triangle CED is equilateral (CE =
CD = r = 1) and angle CÊD = CD̂E. As a result angle BÊD ≥ CÊD.
In triangle BED, BÊD ≥ BD̂E meaning that BD ≥ BE.

If t > 1, evacuation time is increased by δ(n).
As we can see in Figure 14, we must calculate the distance of path ABE.
We know that AB = t so we continue to determine BE.

In triangle CBE, CE = 1, CB = 1−BD = 1−(2−t) = t−1. In the worst
case regarding evacuation, angle EĈD = θ/2. Now we can calculate BE:

BE2 = CB2 + CE2 − 2 · CB · CE · cos(π/n)

BE2 = t2 − 2(t− 1)(cos(π/n) + 1).

The total distance the robot will travel to evacuate is AB+BE = t+BE
and that surpasses the diameter by δ(n) defined below:

δ(n) =

{
0 if t ≤ 1

t+
√
t2 − 2(t− 1)(cos (π/n) + 1)− 2, if t > 1
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