
Optimal Circle Search Despite the Presence of
Faulty Robots

Kostantinos Georgiou1?, Evangelos Kranakis2?, Nikos Leonardos3, Aris
Pagourtzis4, and Ioannis Papaioannou4

1 Department of Mathematics, Ryerson University, Toronto, Ontario, Canada.
konstantinos@ryerson.ca

2 School of Computer Science, Carleton University, Ottawa, Ontario, Canada.
kranakis@scs.carleton.ca

3 Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens, Ilissia, Greece.

nikos.leonardos@gmail.com
4 School of Electrical and Computer Engineering,

National Technical University of Athens, Zografou, Greece.
pagour@cs.ntua.gr, ipapaioannou@corelab.ntua.gr

Abstract. We consider (n, f)-search on a circle, a search problem of
a hidden exit on a circle of unit radius for n > 1 robots, f of which
are faulty. All the robots start at the centre of the circle and can move
anywhere with maximum speed 1. During the search, robots may commu-
nicate wirelessly. All messages transmitted by all robots are tagged with
the robots’ unique identifiers which cannot be corrupted. The search is
considered complete when the exit is found by a non-faulty robot (which
must visit its location) and the remaining non-faulty robots know the
correct location of the exit.
We study two models of faulty robots. First, crash-faulty robots may
stop operating as instructed, and thereafter they remain nonfunctional.
Second, Byzantine-faulty robots may transmit untrue messages at any
time during the search so as to mislead the non-faulty robots, e.g., lie
about the location of the exit.
When there are only crash fault robots, we provide optimal algorithms
for the (n, f)-search problem, with optimal worst-case search completion

time 1 + (f+1)2π
n

. Our main technical contribution pertains to optimal
algorithms for (n, 1)-search with a Byzantine-faulty robot, minimizing
the worst-case search completion time, which equals 1 + 4π

n
.

Keywords and phrases. Adversary, Byzantine, Circle, Exit, Perimeter,
Robot, Search, Speed, Wireless Communication.

1 Introduction

Search is a problem of vital importance because of its numerous critical
applications in various branches of mathematics and theoretical computer

? Research supported in part by NSERC Discovery grant.



science. Several linear search models concerning non-communicating agents
have been the focus of investigation in numerous research publications,
e.g., see the books Ahlswede and Wegener [1], Alpern and Gal [2], and
Stone [15].

In this paper we consider searching for an exit placed at an unknown
location on the perimeter of a unit radius disk by dimensionless robots
(also referred to as mobile agents) that may communicate wirelessly, some
of which are either crash-faulty or Byzantine-faulty. Crash-faulty robots
may stop operating, in which case they can transmit no information.
Byzantine robots are malicious in that they may falsify the informa-
tion they transmit to peers by misleading them and thus delaying the
overall worst-case search time of the system. Our approach differs from
traditional models to search with mobile agents whereby the faults were
restricted to the underlying search domain (e.g., graph, continuous infi-
nite line, plane, etc.), in that we are interested in completing the search
successfully when one of the mobile agents is faulty thus placing an ad-
ditional strain on the mobile agents. Before giving details of our main
results we formally describe the capabilities of the mobile agents and the
computation model.

1.1 Computation model

Our overall purpose is to design search algorithms which find the exit and
whose running time, as measured by the time it takes the first robot to
find the exit and convince the rest of the robots, is worst-case optimal. In
this subsection we define the main parameters of the model which include
communication, robot movement, crash and Byzantine faults, and the
power of the adversary.

Communication. The robots can communicate wirelessly and instanta-
neously (no delay) at any time and regardless of their distance from each
other. A typical message may involve information about their location,
how far they have moved from their starting location, whether or not they
found the exit, etc. Robots can deduce their current relative location from
each other’s messages, they are equipped with a pedometer (to measure
distances) but otherwise have no need for GPS. Each message is tagged
with the robot’s unique identifier which cannot be altered by any robot.

Robot movement. Robots start their movement at the centre of a unit
radius disk. Their maximum speed is 1, and this is the same for all the

2



robots. During their movement, they may recognize the perimeter of the
disk and the exit if they are at its location as well as move along the
perimeter. They are also allowed to take “shortcuts” by moving in the
interior of the disk.

Fault types. In our algorithms, robots agree on the specific trajectory
that they are supposed to traverse, and in particular they know each
others’ trajectories. Thus, the location of a robot may be deduced by
other robots based on the timing of a message transmission (and the type
of the message). A crash-faulty robot may at any time stop functioning,
meaning that it permanently remains idle and/or fails to communicate
any messages, i.e. it crashes. A Byzantine robot is malicious in that it
may alter its trajectory and provide (or hide) information whose purpose
is to confuse the rest of the robots on the location of the exit. Note that
a Byzantine robot may exhibit the behavior of a crash-faulty robot.

Adversary. For the worst case analysis of our algorithms, we consider an
adversary who controls the location of the exit and the behaviour of the
malicious robot (its trajectory as well as the messages it will broadcast) so
as to maximize the resulting search completion time. A search is complete
if the exit has been visited by a non-faulty robot and the rest of the agents,
if any, can be convinced (provably) of the (correct) location of the exit.

1.2 Related work

There has been extensive literature on line search starting with the sem-
inal papers of Beck and Bellman [4, 5] and Baeza-Yates et.al. [3]. Both
cases are concerned with linear search: a single mobile agent searching for
an exit placed at an unknown location on an infinite line; in the former
case the setting is stochastic and in the latter deterministic. This line of
research continued by several authors and culminated with the seminal
books by Ahlswede and Wegener [1], Alpern and Gal [2], and Stone [15].
Several other models for line search algorithms were subsequently inves-
tigated, e.g., by Kao et. al, [14] for randomized line search and Demaine
et. al. [12] for taking into account the turn cost, just to mention a few. An
interesting variant to the linear search above has to do with the presence
of faulty robots. The two main papers in this line of research are [10] for
crash-faulty robots and [9] for Byzantine-faulty robots.

The circle search model (considered in our paper) for n non-faulty
robots was introduced as an evacuation problem (completion time with

3



respect to the last finder of the hidden exit) in [6] and analyzed in both
the wireless and face-to-face communication models. Since then there have
been numerous related research papers mainly on evacuation, e.g. [13] in
the face -to-face model, [11] in equilateral triangles, etc. The interested
reader could consult the recent survey [8] for additional related literature.

Directly related to our current work is [7]. In this paper, authors
investigate evacuation of robots in the presence of crash and/or Byzantine
faults. Evacuation is different from search in that it measures completion
of the algorithm by the time it takes the last non-faulty robot to find the
exit (i.e., all the robots have to go to the exit), unlike search as studied
in our current paper which measures success by the the time it takes
the first non-faulty robot to find the exit so that all non-faulty robots
are convinced (provably) that the exit has been found and also know its
location. To the best of our knowledge, the circle search model with a
Byzantine-faulty robot has not been considered in the past.

1.3 Preliminaries and notation

Assume that n is the number of robots, f of which are faulty. Robots
are dimensionless and are initially located on the centre of a unit radius
disk. The exit is located on the unit circle, which is the circumference of
the disk. Robots can move with maximum speed 1. In our algorithms, all
honest agents move at the maximum speed, therefore at each time point
all agents know the location of every agent that follows the protocol. The
n mobile agents are denoted by a0, a1, . . . , an−1 and exactly f of them
are faulty. The indices are treated as elements of Zn; in particular, index
addition and subtraction are performed modulo n. Throughout the paper,
we call our problem (n, f)-search, meaning search for n > 1 robots, f of
which are faulty. Robots will be searching the unit circle either clockwise
(cw) or counter-clockwise (ccw). It is assumed throughout that whenever
an honest agent finds the exit it announces this fact, and whenever it
realizes that an announcement of another agent is faulty it also announces
this to everybody.

Our main contribution pertains to the (n, 1)-search problem with a
Byzantine-faulty robot. By S(n) we denote the infimum, over all algo-
rithms, of the time required for the first non-faulty robot to reach the
exit so that all robots also know (provably) the correct location of the
exit. Similarly, for the (n, f)-search problem with crash-faulty robots, we
denote the optimal search completion time by by Sc(n, f).

4



1.4 Results of the paper

For n ≥ 2, we give optimal algorithms for problem (n, 1)-search. Our
main result is that (n, 1)-search on a circle admits a solution with search
completion time 1 + 4π

n and this is worst-case optimal. In Section 2 we
prove a lower bound for f crash-faulty robots, hence for Byzantine robots
too. In Section 3 we match the previous lower bound for crash-faulty
robots with a tight upper bound. Then in Section 4 we focus on the
upper bounds for searching with 1 Byzantine robots. In particular, in
Subsection 4.1 we analyze the case of 3 robots, in Subsection 4.2 the
case of 4 robots, and in Subsection 4.3 the general case of n robots. In
Section 5, we conclude with a relevant discussion and open problems.

2 Lower Bound

In this section we give a lower bound for our search problem. This result
builds on the work in [7]; we extend their arguments to the case of f
crash-faulty robots (hence, Byzantine too).

Theorem 1 (Lower Bound for (n, f)-Search). The worst-case search
time Sc(n, f) for n ≥ f + 1 robots exactly f of which are crash-faulty
satisfies

Sc(n, f) ≥ 1 + (f + 1)
2π

n
.

Proof. (Theorem 1) Since the maximum speed of the robots is 1, it takes
at least time 1 for a robot to reach the perimeter of the disk. Further,
every point on the perimeter must be traversed by at least f + 1 robots;
for if not, the adversary will make the at most f robots visiting this point
all faulty in that they remain silent and therefore the non-faulty robots
will miss the exit.

Let `i be the perimeter lengths explored by exactly i robots, where
0 ≤ i ≤ n. It is clear from the above discussion that `0 = `1 = · · · `f = 0
and `f+1 + `f+2 + · · · + `n = 2π. The sum of the parts of the perimeter
explored by the robots is (f + 1)`f+1 + (f + 2)`f+2 + · · · + n`n. If the
robots accomplish this task by exploring the perimeter for time t (after
the perimeter of the disk is reached for the first time), then it must be
true that

nt ≥ (f + 1)`f+1 + (f + 2)`f+2 + · · ·+ n`n

≥ (f + 1)(`f+1 + `f+2 + · · ·+ `n)

= (f + 1)2π.

5



It follows that t ≥ (f + 1)2π/n. This completes the proof. ut

Since S(n) ≥ Sc(n, 1), we immediately obtain the following corollary.

Corollary 1 (Lower Bound for Byzantine (n, 1)-Search ). The
worst-case search time S(n) for n ≥ 2 robots exactly one of which is
Byzantine-faulty satisfies S(n) ≥ 1 + 4π

n .

3 Searching with Crash Faults

In this section we match the lower bound of Theorem 1 when we search
with crash-faulty robots.

Theorem 2 (Upper Bound for (n, f)-Search with Crash Faults).
The worst-case search time Sc(n, f) for n ≥ 2 robots exactly f of which
are prone to crash failures satisfies

Sc(n, f) ≤ 1 + (f + 1)
2π

n
.

Proof. Let θ := 2π/n. Our algorithm is as follows. For each k = 0, . . . , n−
1, agent ak moves to the point kθ of the unit circle and searches ccw for
(f + 1)θ radians. When (and if) exit is found, it is reported instanta-
neously.

Clearly, every sector Sj of the circle would be visited by f + 1 robots
if they all followed the protocol. Since there are at most f faulty robots,
there must be at least one honest robot that will visit Sj and announce
the correct location. As there can only be crash failures there will not be
any contradicting announcements. ut

4 Search with one Byzantine Fault

In this section we analyze upper bounds for our search problem with a
Byzantine agent. Our main theorem is the following.

Theorem 3 (Upper Bound for (n,1)-Search). The worst-case search
time S(n) for n ≥ 2 robots exactly one of which is faulty satisfies

S(n) ≤ 1 +
4π

n
.

Thus, combining Corollary 1 with Theorems 3, we conclude that the
worst-case search completion time for (n, 1)-search satisfies S(n) = 1+ 4π

n .

6



First observe that it is trivial to prove S(2) = 1 + 2π, for (2, 1)-search
since one of the two robots is faulty and the other non-faulty, hence the
non-faulty has no other option but to search the entire perimeter.

In the next two Subsections (4.1 and 4.2) we show the upper bound
for the cases (3, 1)-search and (4, 1)-search. Although the algorithms for
these cases can be seen as special cases of the algorithm for the general
case (Subsection 4.3), this is not the case for their analysis. In addition,
presenting them separately allows to better clarify and illustrate the tech-
niques and notions that we employ.

4.1 (3, 1)-search with a Byzantine-faulty robot

Lemma 1 ((3,1)-Search). The worst-case search time for 3 robots ex-
actly one of which is faulty satisfies

S(3) ≤ 1 +
4π

3

Proof. We will prove the claim by presenting an algorithm for this case.
Consider agents a0, a1, a2 and set θ = 2π/3. We describe below the agents’
actions in phases (time intervals) [0, 1), [1, 1 + θ) and [1 + θ, 1 + 2θ) and
we explain why all agents know the location of the exit at time 1 + 2θ.

Phase [0, 1): Each agent ak, k ∈ {0, 1, 2}, moves along a radius to the
point kθ of the unit circle.

Phase [1, 1 + θ): Agent ak searches ccw the arc [kθ, (k + 1)θ).

Phase [1 + θ, 1 + 2θ):
(i) If no announcements were made in time interval [1, 1 + θ) then in

time interval [1 +θ, 1 + 2θ) either there will be one correct announcement
or two announcements. In the latter case the third agent, say ak, is honest
and the correct announcement is the one by ak+1 (otherwise, ak would
have seen in time interval [1, 1 + θ) the exit announced by ak−1).

(ii) If exactly one announcement was made in time interval [1, 1 + θ),
say by agent ak−1, then agent ak moves directly (along a chord) to the
location of the announcement and ak+1 searches ccw for another θ radians.
This takes time at most 2 < 2π

3 . If ak or ak+1 confirms the announcement
then it is correct; otherwise, ak+1 in this time interval announces the
correct exit point. This case is depicted in Figure 1.5

5 Figures in this paper depict robot trajectories during the execution of our search
algorithm. They restrict to cases where the first announcement is made while robots
search their first sector of length θ = 2π

n
, and no other announcement is made until

7



a0

a2

a1

Fig. 1. (3, 1)-search: robot trajectories in case t < 2π
3

.

(iii) If two announcements were made in time interval [1, 1 + θ), then
they are in consecutive sectors. The silent agent is certainly non-faulty
and will visit one of these sectors in this phase and will thus be able to
determine which announcement was the correct one.

This completes the description of the algorithm and the proof. ut

4.2 (4, 1)-search with a Byzantine-faulty robot

We will first describe an algorithm for this case. Let θ = π/2. Each agent
ak moves with speed one to its starting point kθ and then continues ccw.
We call the arc from one starting point to the next a sector. We think
of each agent being responsible for the arc of length π that begins at its
starting point and covers at most two consecutive sectors ccw.

Let t denote the length of the arc from the point of the first announce-
ment to the starting point that corresponds to the agent that made the
announcement (note, there is always an announcement for some t ≤ π).
If t ≥ π

2 , then each robot checks both sectors that are assigned to it.
Otherwise, set y = π − 2 and suppose an announcement is made by a0
(w.l.o.g.) at t < π

2 . We consider two cases.

time 1+θ. It is assumed that agent a0 makes the first announcement. A black square
shows the location of the announcement; a white square shows the locations of other
agents at that time. A solid dot shows the starting positions of the robots on the
unit circle (starting from the center of the circle, they move directly, in time 1, to
their starting positions). Recall that the arc length between the starting position of
a0 and the point of the announcement is denoted by t (hence, the announcement
takes place in time 1 + t).

8



If t < y, then a1 and a3 will search the two sectors that each is respon-
sible for and a2 will move along the diameter to check the announcement.
This case is depicted in Figure 2 below.

a1

a2
a3

a0

Fig. 2. (4, 1)-search: robot trajectories in case t < y.

If y ≤ t < π
2 , then a1 continues to cover distance

√
2 (unless t ≥

√
2)

and then moves along a chord to check the announcement; a2 finishes its
first sector and then moves back along a chord to its starting point and
continues cw to check the arc that a1 didn’t check; a3 continues searching
its two sectors. This case is depicted in Figure 3 below.

a0

a1

a2

a3

√
2

Fig. 3. (4, 1)-search: robot trajectories in case y ≤ t < π
2

.

This completes the description of the algorithm. We will now prove
the correctness and the upper bound on the execution time.

9



Lemma 2 ((4,1)-Search). The search time for 4 robots exactly one of
which is faulty satisfies

S(4) ≤ 1 + π.

Proof. Recall that we denote by t the length of the arc searched on the
circle by the agent who made the first announcement, at the time of the
announcement.

For t ≥ π
2 we argue that when every robot has checked the sectors it

is responsible for (at time 1 + π), all of them know the location of the
exit. First, note that if only one announcement is made, then it has to
be a valid one. Therefore, assume two announcements are made (note
that both are no earlier than π

2 ). Observe that they have to come from
consecutive sectors: the exit must be at the first sector of the faulty robot,
say a3 since nobody spoke earlier than π

2 , and it is discovered by a2, while
searching its second sector, who makes a correct announcement. The only
other announcement can be made by a3 and is faulty. Therefore, all agents
know that the location is at the first of the two sectors in the ccw direction.

For t < π
2 suppose the first announcement was made by a0. We claim

that in this case the first announcement is checked by two more agents
(namely, by a3 and either a1 or a2) and every point of the perimeter is
searched by one of the three other agents (unless a second announcement
is made in which case it is not necessary to search the whole circle as one of
the two must be correct). Assuming this claim, if the first announcement is
verified by any other agent, then clearly it is valid. If not, then two agents
reject it, thus it must be fake. It follows that another announcement was
made which has to be valid. We next verify the claim and the execution
time.

Consider the case t < y. Note that y was defined so that a2 reaches the
announcement in time less than 1+y+2 = 1+π. Thus, the announcement
is checked by a2 and a3 in time, while a1 and a3 search every point of the
perimeter.

Consider now y ≤ t < π
2 . First, to see that every sector was searched

by the first three agents by time 1 + π, we need to argue that a1 and a2
covered the first sector. Indeed, a2 searched an arc of length π

2 to finish

his first sector, a chord of length
√

2 to go back to his starting point,
and an arc of length at most π

2 −
√

2 that was left uncovered by a1; this

sums up to at most π
2 +
√

2 + π
2 −
√

2 = π as desired. Next, we need to
argue that the announcement location was reached by a1 in time 1 + π.
This is clear if t ≥

√
2. Otherwise, it is not hard to see that the worst

case is t = y. In this case, the chord a1 walks corresponds to an arc of

10



length φ =
√

2 + π
2 − y = 2 +

√
2 − π

2 . Thus, the total time it needs is

1 +
√

2 + 2 sin φ
2 < 1 + π. ut

4.3 (n, 1)-search with a Byzantine-faulty robot, n ≥ 5

We will first give the description of the algorithm for this case. For each
k ∈ Zn, agent ak moves to the k-th starting point Pk located at kθ,
θ = 2π/n, and then continues ccw. We denote the arc of size θ from the
k-th starting point to the next by Sk and call it the k-th sector. We think
of sectors Sk and Sk+1 as being assigned to agent ak, who is supposed to
search them in the ccw direction.

Let t denote the length of the arc from the point of the first announce-
ment to the starting point that corresponds to the agent that made the
announcement. We now describe the trajectories of agents for the case
that agent a0 makes the first announcement. We will argue later (in the
proof of Theorem 3) that the information they exchange is enough for all
agents to learn the exit location.

If t ≥ θ, then each agent checks both sectors that are assigned to it.
Otherwise, set

y = 2θ − 2 sin θ

and suppose an announcement is made by a0 at t < θ. Consider two cases.

If t < y, then each agent ak with k /∈ {0, 2} will search its two sec-
tors, while a2 will start at time 1 + t to move along a chord towards the
announcement in order to verify it.

If y ≤ t < θ, define arc-lengths xk (in Sk but not to be searched by
ak) recursively as follows.

xn−2 = 0; xk = θ + xk+1 − 2 sin
(θ − xk+1

2

)
, for 0 < k < n− 1. (1)

Agent a1 continues to cover distance θ − x1 (unless t ≥ θ − x1) and
then moves along a chord towards the announcement in order to verify
it; for 1 < k < n− 1, agent ak continues to cover distance θ − xk (unless
t ≥ θ − xk), then moves along a chord back to its starting point, and
finally searches in the cw direction the arc (of length at most xk−1) that
agent ak−1 didn’t search; agent an−1 continues with its two sectors. This
case is depicted in Figure 4 below.

This completes the description of the algorithm. We next show its
correctness and the upper bound on its running time.

11



a0

a1

a2

x1

x2

Fig. 4. (n, 1)-search: robot trajectories in case y ≤ t < θ.

Lemma 3 ((n, 1)-Search, for n ≥ 5). The worst-case search time for
n ≥ 5 robots exactly one of which is faulty satisfies

S(n) ≤ 1 +
4π

n
.

Proof. (Lemma 3) We are going to argue about the correctness and the
execution time of the algorithm described above.

If t ≥ θ, then all agents have searched the sectors assigned to them by
time 1 + 2θ. We need to show that all of them know the location of the
exit. First, note that if only one announcement is made, then it has to be a
valid one. Thus, assume two announcements are made. Observe that they
have to come from consecutive sectors: one of them is the true one and
was discovered by an honest agent, say ak, while searching sector Sk+1.
It follows that ak+1 is faulty (because it didn’t make the announcement)
and the other announcement must come from it. Therefore, the agents
know that the location is at the first announcement encountered in the
ccw direction.

Otherwise (t < θ), suppose the first announcement was made by a0.
We claim the following.

12



The first announcement is checked by two more agents and every
point of the perimeter is searched by at least one agent different
from a0, unless a second announcement is made.

Note first that if the first announcement is verified by one more agent,
then it is proved valid to all. If not, then—assuming the claim—two agents
reject it and a0 is proved faulty to all. Furthermore, every point of the
perimeter will be searched by at least one honest agent. It follows—by
the second part of the claim—that another announcement will be made
and will be recognized by all as valid. We next verify the claim and the
execution time for the two cases on t.

Consider the case t < y. Note that y was defined so that a2 reaches
the announcement in time less than 1+y+2 sin θ = 1+2θ. This is because
it will spend less than time y on its first sector and then move along the
chord that corresponds to two sectors. Thus, the announcement is checked
by a2 and an−1 in time, while the other agents set forth to search every
point of the perimeter.

Consider now y ≤ t < θ. First, we verify that every sector was searched
by one of the agents a1, . . . , an−1 by time 1 + 2θ. It is clear that an−1

searched sectors Sn−1 and S0. Next, we argue that, for 0 < k < n − 1,
agents ak and ak+1 covered sector Sk. Note that xk is the length of Sk
that was not searched by agent ak. However, xk is defined so that ak+1

has sufficient time to travel back to Pk+1 and aid ak. Indeed, the worst
case for ak+1 is when t ≤ θ−xk. (It is not hard to see that when t > θ−xk
he will have time to spare.) In this case, after reaching point θ − xk+1 of
Sk+1, it must search a chord corresponding to an arc of θ− xk+1 radians
and an arc of length xk. Since it has θ + xk+1 time left, the definition of
xk is such that he can manage its task. Finally, we need to argue that the
announcement was reached by a1 in time 1+2θ. This is clear if t ≥ θ−x1.
Otherwise, it is not hard to see that the worst case is t = y. In this case,
the chord a1 searches corresponds to an arc of length 2θ − x1 − y. Thus,
the total time a1 needs is

T = 1 + (θ − x1) + 2 sin
(2θ − x1 − y

2

)
.

In the sequel we will make use of the following simple facts.

Fact 1 For x ∈ (0, π2 ), sinx < x.

Fact 2 For x ∈ (0, π2 ), sinx < 2 sin x
2 .

Fact 3 For x ∈ (0, π4 ), sinx < x− x3

7 .

13



Since, for n ≥ 4, 2θ−x1−y < π, using Fact 1 (twice) and substituting
y = 2θ − 2 sin θ we obtain

T ≤ 1 + (θ − x1) + (2θ − x1 − y) ≤ 1 + 2θ − 2x1 + sin θ.

To provide a lower on x1, apply Fact 1 on the recursive definition to
obtain

xn−3 = θ − 2 sin
θ

2
; xk ≥ 2xk+1, for 0 < k < n− 1. (2)

It follows that

x1 ≥ 2n−4
(
θ − 2 sin

θ

2

)
.

Combining with the upper bound on T , to show T ≤ 1 + 2θ, it suffices to
argue that

2n−3
(2π

n
− 2 sin

π

n

)
≥ sin

2π

n
.

Using Fact 2, sin 2π
n ≤ 2 sin π

n . Substituting this and rearranging, it suffices
to show that

2n−3 · π
n
≥

(
2n−3 + 1

)
sin

π

n
.

In view of Fact 3, the sufficient condition simplifies further to

2n−3 ≥
(
2n−3 + 1

)(
1− π2

7n2

)
⇐⇒

(
2n−3 + 1

)
π2 ≥ 7n2,

which holds for all n ≥ 9.
Finally cases n ∈ {5, 6, 7, 8} have been verified computationally as

follows. In the table below we list values y, x1, . . . , xn−3 for n ∈ {5, 6, 7, 8}.
These values determine the algorithm for these cases. To verify the table,
it suffices to verify y ≤ 2θ − 2 sin θ, T ≥ 1 + (θ − x1) + 2 sin(2θ−x1−y2 ),

S(n) ≤ 1+2θ, and xk ≤ θ+xk+1−2 sin(
θ−xk+1

2 ) (for 0 < k < n−2). With
respect to the xk values, note that those which are double the previous
one (marked with an asterisk) need not be verified in view of inequality
(2).

n x5 x4 x3 x2 x1 y T S(n)

5 0.0810 0.2285 0.611 3.51327 3.51327

6 0.047 0.135 0.3 0.36 3.07 3.09

7 0.029 0.085 0.17∗ 0.34∗ 0.2 2.74 2.79

8 0.02 0.04∗ 0.08∗ 0.16∗ 0.32∗ 0.1 2.56 2.57

14



This completes the proof of the lemma. ut

Now we can complete the rest of the proof of Theorem 3.

Proof. (Theorem 3) Lemmas 1 and 2 prove the upper bound for n = 3, 4
robots respectively, and cases n ≥ 5 are covered by Lemma 3. ut

5 Conclusion

In this paper we considered search on a circle with n robots, where either
f ≥ 1 of them are crash-faulty, or one of them is Byzantine-faulty, and we
proved that the optimal worst-case search times are exactly 1 + (f+1)2π

n
and 1 + 4π

n , respectively. The optimality for the Byzantine case is quite
surprising given that there are very few tight bounds for search on a
circle even for the wireless model. Extending the results either to multiple
Byzantine-faulty robots or to the evacuation problem are two challenging
open problems in the context of circle search.

References

1. R. Ahlswede and I. Wegener. Search problems. Wiley-Interscience, 1987.

2. S. Alpern and S. Gal. The theory of search games and rendezvous, volume 55.
Springer, 2003.

3. R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Inf. Com-
put., 106(2):234–252, October 1993.

4. A. Beck. On the linear search problem. Israel Journal of Mathematics, 2(4):221–
228, 1964.

5. R. Bellman. An optimal search. Siam Review, 5(3):274–274, 1963.

6. J. Czyzowicz, L. Gasieniec, T. Gorry, E. Kranakis, R. Martin, and D. Pajak. Evac-
uating robots from an unknown exit located on the perimeter of a disc. In DISC
2014. Springer, Austin, Texas, 2014.

7. J. Czyzowicz, K. Georgiou, M. Godon, E. Kranakis, D. Krizanc, W. Rytter, and
M. W lodarczyk. Evacuation from a disc in the presence of a faulty robot. In Inter-
national Colloquium on Structural Information and Communication Complexity,
pages 158–173. Springer, 2017.

8. J. Czyzowicz, K. Georgiou, and E. Kranakis. Group search and evacuation. In
P. Flocchini, G. Prencipe, and N. Santoro, editors, Distributed Computing by Mo-
bile Entities; Current Research in Moving and Computing, chapter 14, pages 335–
370. Springer, 2019.

9. J. Czyzowicz, K. Georgiou, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny,
and S. Shende. Search on a line by byzantine robots. In ISAAC, pages 27:1–27:12,
2016.

10. J. Czyzowicz, E. Kranakis, D. Krizanc, L. Narayanan, and Opatrny J. Search on
a line with faulty robots. In PODC, pages 405–414. ACM, 2016.

15



11. J. Czyzowicz, E. Kranakis, K. Krizanc, L. Narayanan, J. Opatrny, and S. Shende.
Wireless autonomous robot evacuation from equilateral triangles and squares. In
ADHOCNOW, pages 181–194. Springer, 2015.

12. E. D. Demaine, S. P. Fekete, and S. Gal. Online searching with turn cost. Theo-
retical Computer Science, 361(2):342–355, 2006.

13. Czyzowicz J., Georgiou K., Kranakis E., Narayanan L., Opatrny J., and Vogten-
huber B. Evacuating using face-to-face communication. CoRR, abs/1501.04985,
2015.

14. M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment:
An optimal randomized algorithm for the cow-path problem. Information and
Computation, 131(1):63–79, 1996.

15. L. Stone. Theory of optimal search. Academic Press New York, 1975.

16


