
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 11, NOVEMBER 2020 2397

High-Performance COTS FPGA SoC for Parallel
Hyperspectral Image Compression

With CCSDS-123.0-B-1
Antonis Tsigkanos , Member, IEEE, Nektarios Kranitis , Member, IEEE,

Dimitris Theodoropoulos , Graduate Student Member, IEEE,
and Antonios Paschalis, Member, IEEE

Abstract— Nowadays, hyperspectral imaging is recognized as
a cornerstone remote sensing technology. Next generation, high-
speed airborne, and space-borne imagers have increased res-
olution, resulting in an explosive growth in data volume and
instrument data rate in the range of gigapixel per second. This
competes with limited on-board resources and bandwidth, mak-
ing hyperspectral image compression a mission critical on-board
processing task. At the same time, the “new space” trend is
emerging, where launch costs decrease, and agile approaches
are exploited building smallsats using commercial-off-the-shelf
(COTS) parts. In this contribution, we introduce a high-
performance parallel implementation of the CCSDS-123.0-B-1
hyperspectral compression algorithm targeting SRAM field-
programmable gate array (FPGA) technology. The architecture
exploits image segmentation to provide the robustness to data
corruption and enables scalable throughput performance by
leveraging segment-level parallelism. Furthermore, we exploit the
capabilities of a COTS FPGA system-on-chip (SoC) device to
optimize size, weight, power, and cost (SWaP-C). The architecture
partitions a hyperspectral cube stored in a DRAM framebuffer
into segments, compressing them in parallel using a flexible soft-
ware scheduler hosted in the SoC CPU and several compressor
accelerator cores in the FPGA fabric. A 5-core implementation
demonstrated on a Zynq-7045 FPGA achieves a throughput
performance of 1387 Msamples/s [22.2 Gb/s at 16 bits per pixel
per band (bpppb)] and outperforms previous implementations in
equivalent FPGA technology, allowing seamless integration with
next-generation hyperspectral sensors.

Index Terms— Consultative Committee for Space Data Systems
(CCSDS), field-programmable gate array (FPGA), hyperspectral
compression, on-board data processing, system-on-chip (SoC).

I. INTRODUCTION

HYPERSPECTRAL imaging is a remote sensing tech-
nology used to record image data over many narrow
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contiguous spectral bands. The number of sampled wave-
lengths dictates the spectral resolution, which, from a few to
several tens, hundreds or thousands of bands, gives rise to
multispectral, hyperspectral or ultraspectral images.

Hyperspectral imaging is already consolidated as a key
enabling technology in remote sensing applications, used in
civilian applications such as smart agriculture, geology, envi-
ronmental monitoring, disaster response, and recovery to name
a few. However, the explosive growth of data volume from
next-generation high-resolution and high-speed hyperspectral
remote sensing systems compete with the limited on-board
storage resources and bandwidth available for the transmission
of data to ground stations, making hyperspectral image com-
pression a mission critical and challenging on-board payload
data processing task.

At the same time, a new trend has emerged in space
developments, termed “new space” [1], where launch costs are
rapidly decreasing, and agile approaches are being exploited
in building small satellites using commercial-off-the-shelf
(COTS) parts. CubeSats have enabled the use of low-cost
technology, usually based on COTS components, in small
satellite deployments. One of the benefits of this trend is
that CubeSats can be used not only as the test beds for
nonconventional developments but also as the members of
large remote sensing constellations.

Low-cost COTS SRAM field-programmable gate arrays
(FPGAs) can widen the scope of tradeoffs with larger, more
power efficient FPGAs. In hyperspectral sensing systems,
more capable FPGAs can better handle the increasing spatial
and spectral resolution in data-acquisition that the latest hyper-
spectral sensors require. At the same time, the increased com-
puting capability of large COTS FPGAs can more effectively
compress data to improve the downlink bandwidth bottleneck.

Currently, besides the continued efforts to develop high-end
hyperspectral missions [2], including Hyperspectral Infrared
Imager (HyspIRI) [3], Environmental Mapping and Analysis
Program (EnMAP) [4], PRecursore IperSpettrale della Mis-
sione Applicativa (PRISMA) [5], Copernicus Hyperspectral
Imaging Mission for the Environment (CHIME) [6], and
Traceable Radiometry Underpinning Terrestrial- and Helio-
Studies (TRUTHS) [7] that are built and operated by space
agencies, there is also a trend toward smaller and more agile
hyperspectral missions. The Compact Hyperspectral Instru-
ment Engineering Model (CHIEM) and its successor Compact

1063-8210 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:53:28 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-5017-3784
https://orcid.org/0000-0002-0521-4433
https://orcid.org/0000-0002-5244-4098


2398 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 11, NOVEMBER 2020

Smartspectral Imager for Monitoring Bio-agricultural Areas
(CSIMBA) [8], compatible with a 12U Cubesat integrate a
12-Mpixel CMOS 2-D detector array with read-out electronics
(ROE) with a data rate up to 30 Gb/s.

As a result of these demanding requirements, the imple-
mentations of Consultative Committee for Space Data Systems
(CCSDS) hyperspectral compressors on FPGAs for on-board
use have been presented targeting various tradeoffs. A high
performance by using a static configuration and fine-grain
parallelism in [9], feature completeness and run-time config-
uration in a single core in [10], a segment-parallel approach
integrated over PCIe for a specific sensor in [11], and targeting
Band-SeQuential (BSQ) pixel order with modular redundancy
features in a system-on-chip (SoC) [12]. However, none of
the existing works takes a general approach to provide high-
performance, reliability, run-time configuration, and SoC inte-
gration at the same time.

In the proposed work, we exploit modern COTS SoC FPGA
devices to optimize size, weight, power, and cost (SWaP-C),
along with segment-level parallelism to attain robustness to
data corruption and very high performance in hyperspectral
image compression. The implemented platform targets the
Xilinx Zynq-7000 FPGA SoC device family. Many compres-
sion accelerator cores are tightly integrated with a flexible
software scheduler that controls a set of compression cores
working in parallel and can serve other payload system-level
functionality (e.g., imager configuration, location integration,
heater and motor control, and so on).

The rest of this contribution is organized as follows.
Section II provides background on the CCSDS 123.0-B-1
algorithm as well as the tradeoffs in pixel order, segmentation,
and considerations for COTS device usage. Section III intro-
duces the proposed SoC architecture in detail including the
parallelism scheme, hardware and software design, as well as
considerations on system integration in a payload data chain.
Finally, Section IV presents experimental results, including
implementation results, technology limitations on scaling, and
performance as well as detailed comparisons with existing par-
allel hyperspectral compressors from the literature. Section V
concludes the contribution.

II. BACKGROUND

A. CCSDS 123.0-B-1 Overview

The CCSDS 123.0-B-1 Recommended Standard [13], [14]
is a formalization of the NASA fast lossless (FL) compres-
sor [15], an adaptive predictive technique for lossless compres-
sion of multispectral and hyperspectral imagery. The standard
achieves a combination of low complexity and compression
effectiveness, far exceeding the best results from the litera-
ture [15]. CCSDS 123.0-B-1 is a prediction-based algorithm,
structured in two functional parts, a predictor and an encoder.
The predictor estimates the predicted sample value based on
the values of nearby samples in a small 3-D neighborhood. The
prediction residual (i.e., the difference between the predicted
and actual sample values) is then mapped to an unsigned
integer that can be represented using the same number of bits
as the input data sample. These mapped prediction residuals

Fig. 1. CCSDS 123.0-B-1E IP core top level structure.

make up the predictor output. The predictor adaptively adjusts
prediction weights for each spectral band using adaptive linear
prediction. The encoder losslessly encodes the mapped predic-
tion residuals using the sample adaptive encoder of NASA
FL or as an alternative option, the block-adaptive encoder
as specified in the CCSDS 121.0-B-2 standard for lossless
data compression [16]. The sample-adaptive entropy encoder
maps the prediction residuals using length-limited Golomb-
Power-Of-2 codes, adaptively selected based on statistics that
are updated after each sample is encoded. The standard has
been recently updated with CCSDS 123.0-B-2, to include the
capability for near-lossless compression, maintaining back-
ward compatibility with the lossless version implemented in
this work.

B. Image Pixel Order

The pixel order defines the organization of spatial and
spectral pixels that comprise the hyperspectral data cube in
the context of either sensor streaming or image data random
access. Three orders are defined at a high level by the stan-
dard [13], band interleaved by pixel (BIP), band interleaved
by line (BIL), and BSQ. The effect of pixel order on the
algorithm’s dependencies in computational loops and by exten-
sion on the achievable performance of an implementation is
significant. The single-core accelerator used in this work uses
BIP order; therefore, it may consume data (stored or streamed
from a sensor) in BIP order. Any other order can be used after
an intermediate conversion. The conversion cost from BSQ or
BIL to BIP order is some amount of memory buffering and
initial latency, dependent on the image cube dimensions. For
an image sized Nx , Ny, Nz samples, a spectral frame buffer
(Nx ∗ (Nz − 1) samples) is required for streaming BIL to
BIP conversion or an image cube buffer [(Nx ∗ Nz − 1) ∗ Ny

samples] for BSQ to BIP conversion. If random access to this
amount of memory is possible, rather than only streaming
access, a DMA-based scheme may be used to perform the
conversion. In any case, it is preferable for high-performance
applications to avoid the conversion entirely, by either using
a streaming BIP sensor or storing the data in BIP order.

C. Single-Core Accelerator

The segment-level parallel architecture proposed in this
work utilizes the CCSDS 123.0-B-1E [17], [18] single-core
implementation. The internal architecture of the CCSDS
123.0-B-1E IP core (Fig. 1) consists of four units at the highest
level: the predictor and the encoder comprising the compres-
sion engine along with an on-chip spectral slice buffer that can
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Fig. 2. Axes of image cube segmentation.

accommodate a spectral slice of typical hyperspectral images
in on-chip block RAM (BRAM). The encoder variable length
code outputs are collected by a variable length codeword
packer into 64-bit output packets. The CCSDS 123.0-B-1E IP
core presents two streaming interfaces based on AXI4-Stream
and a configuration interface based on AXI4-Lite. Internally,
commands written to configuration registers in the AXI4-Lite
address space control the master controller of the compressor
core, whereas various status and progress information is made
available in status registers in the same address map.

To enable integration in the parallel SoC architecture
for low-power and high-throughput performance, CCSDS
123.0-B-1E includes four asynchronous clock domains, nego-
tiating internal domain crossings appropriately. Each streaming
I/F is clocked separately, as well as the configuration interface
and internal datapath. Other single-core CCSDS 123.0-B-1
compressors have been presented in the literature designed
for various trade-offs, targeting specific sensors [19], feature
completeness and run-time configuration [10], [20], or a fixed
configuration of image and compression parameters [21].

D. Image Segmentation

The recommended standard [13] does not directly address
image segmentation; however, the working group’s informa-
tional report [14] suggests the use of segmentation to improve
robustness to data corruption. Using segmentation, each image
segment is compressed as a separate image, therefore limiting
the impact of data corruption to the affected segment. In Fig. 2,
segments are produced by partitioning an image along the
X- and Y -axis spatial dimensions or the spectral Z -axis;
however, combinations in a block (tile and strip)-based scheme
are also possible. For sensors that produce data in BIP or BIL
order, segmentation across the Y -axis is a straightforward
approach, similarly for BSQ imagers across the Z -axis.
According to [14], segmentation does not affect compression
effectiveness when segments are large; greater than 50 line
high segments are found to compress as effectively as without
segmentation.

We validate this heuristic from [14] with an experiment:
Fig. 3 shows the compression ratio for the different values
of segment height (step of eight lines), for the benchmark

Fig. 3. Compression ratio for the values of segment height, AVIRIS image.

AVIRIS image (scene 0) using Y-segmentation on the input
BIP image. We compress using the same compression para-
meters, equal segments sizes, and default weight initialization.
In this compression performance benchmark, each segment
is compressed independently, then summing the compressed
segments’ sizes, and we compute the total compression ratio.
The curve converges to the lossless compression ratio, with
a knee at about 50 lines of segment height. Note that [14]
suggests that using custom weight initialization to initialize
each segments’ prediction weight with the final weights of the
previous segment can mitigate the compression performance
loss due to segmentation. This, however, cannot be used
in parallel compression because it introduces a dependence
across the segments of the image.

E. SoC FPGA Devices in Space

The Xilinx Zynq-7000 class of heterogeneous SoC devices
integrate single- or dual-core ARM (Cortex-A9) microproces-
sors with Xilinx Artix-7 or Kintex-7 FPGA fabrics into a
single chip, promising opportunities for significant savings in
SWaP-C. These devices comprise a different class compared to
common FPGAs, by allowing entirely new levels of integration
at the system level through software–hardware codesign.

In the prevailing spacecraft subsystems’ architecture
[22], [23], FPGA devices are combined with radiation-hard
microprocessors which usually perform control tasks. The
discrete FPGA devices perform computationally intense data
processing tasks (such as data compression), whereas a con-
troller processor such as the BAE Systems RAD750 performs
command, control, and monitoring functions. A benchmarking
study of high-performance computing in space, focusing on
vision-based navigation [24] as an application scenario, finds
that FPGAs are the orders of magnitude better in performance
per Watt than typical [25] space-grade CPUs, whereas COTS
CPUs and GPUs require prohibitive amounts of power. The
study [24] concludes that it is preferable to use FPGA SoC
devices for their SWaP-C and integration benefits.

Although there are currently no space-qualified heteroge-
neous SoC parts, they have successfully been used in the
International Space Station (ISS) and multiple CubeSats in low
earth orbit (LEO), where the exposure to radiation is limited.
Multiple missions and payload platforms are in use or under
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development [26], [27] featuring COTS SoC FPGAs centrally
in their architecture.

Due to their aggressive circuit scaling and high reliance on
SRAM to store the configuration data, COTS SRAM FPGAs
such as those in the Zynq-7000 devices are vulnerable to
transient effects, such as single event effects (SEEs), caused by
ionizing radiation in space. Nevertheless, mitigations [28] can
be designed, e.g., designers of Advanced Processor Core for
Space Exploration SoC (APEX-SoC) [26] propose to combine
certain functionality of the COTS Zynq such as watchdogs
with mitigation techniques on the FPGA to increase the error
resilience of the system as a whole. Neutron beam test results
in [27] suggest that in specific configurations, the COTS
Zynq part (e.g., disabling caches) can operate in a radiation
environment, whereas no single-event functional interrupts
(SEFIs) are observed in control circuits [29]. The consensus on
system design around the Zynq COTS devices is that as long as
appropriate techniques are employed for configuration memory
scrubbing, external watchdog timers and certain device con-
figurations are used, the parts are suitable for use in spacecraft
payloads in LEO. In this spirit, the CHREC Space Processor
(CSP) [27] features COTS devices to perform the critical data
processing, and simpler radiation-hard devices to monitor and
manage the COTS devices, augmenting them both with fault-
tolerant computing techniques in software and hardware. This
combination of COTS and rad-hard devices at the system level
can maximize performance and reliability while minimizing
energy consumption and cost.

This contribution targets a Zynq-7000 device to accelerate
the compression of hyperspectral images, in an envisioned
spacecraft payload data system. The required techniques to
increase system reliability, this being a COTS part, are con-
sidered orthogonal to the efforts of the integration and archi-
tecture of the accelerator. Configuration memory scrubbing
as well as watchdog timers are system level concerns that
do not influence the accelerator design and, therefore, are
not considered. The implemented benchmark platform targets
the performance optimized tier of the Zynq-7000 family, the
Kintex-7 dual ARM core xc7z045 part. However, the platform
can be ported to other devices in the Zynq family, even
to a Zynq UltraScale+ device. Due to FinFET technology,
UltraScale+ devices are susceptible to single event latch-ups
(SELs) [30] compared to planar devices; however, recently,
the manufacturer has proposed a (yet untested in a mission)
workaround to the SEL sensitivity [31].

III. PROPOSED SoC ARCHITECTURE

A. Segmentation and Course Grain Parallelism

The proposed architecture takes the advantage of image
segmentation to split the image into smaller parts com-
pressed independently, allowing for scalable performance
using many compression cores, operating on separate segments
each. At the same time, segmentation limits the effects of
potential data corruption on the reconstructed imagery to the
affected image segment only.

In practice, implementing segmentation in the proposed
architecture: the input image is in BIP order at rest in main

Fig. 4. (a) Serial, (b) fine-grain, and (c) coarse-grain parallel architectures.

memory when compression starts and the compressor acceler-
ators receive segments’ contents in BIP order. The architecture
uses strip or Y-segmentation with a variable segment size.
When an image is stored in BIP format, segmentation across
the Y -axis is the least complex scheme, a matter of calculating
offsets and segment sizes, fetched in a single memory transac-
tion per segment. Assume a 16 bits per pixel per band (bpppb),
image cube (Nx , Ny, Nz) evenly divisible in three segments
with height Ns = Ny/3 each Ns ∗ Nx ∗ Nz samples. The offset
to the second segment is 1 ∗ (Ns ∗ Nx ∗ Nz) ∗ 2 bytes and to
the last segment 2 ∗ (Ns ∗ Nx ∗ Nz) ∗ 2 bytes. When the image
cannot be evenly divided into segments, nonequal segment
heights are used, but no other special provisioning is needed.
Each compression core compresses a segment independently
and includes the segment size in the output bitstream headers,
as the triplet (Nx , Ny, Nz) where Ny is implied to be Ns for
that segment.

To summarize, the proposed segmentation scheme uses the
following:

1) Variably sized segments, although commonly as large
as possible to ensure negligible effect on compression
effectiveness (lossless compression ratio);

2) Y-segmentation on input BIP order images, compressing
segment data in BIP order.

Depending on the structural level where parallelism is
applied, coarse or fine-grain parallelism is possible in the
compression operation. The basic blocks of the accelerator
are shown in the single-core architecture in Fig. 4(a). The two
possible parallel architectures are shown in Fig. 4(b) and (c):
the fine-grain parallel architecture scales predictor/encoder
pairs with a single storage component and parallel input
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Fig. 5. Compressor scalable element.

packer, whereas the coarse-grain parallel architecture scales
an entire core to compress the image in segments.

The fine-grain parallel architecture applies parallelism effi-
ciently at a low level but does not use segmentation. To take
the advantage of error containment by segmentation, the pro-
posed work implements the coarse-grain parallel or segment-
parallel architecture, which is based on splitting the image
cube into segments and then considering each as an inde-
pendent image. The compression of segments is performed
by independent compressor cores, either in parallel by many
compressors or scheduled in time. The primary motivation for
segmentation is to limit the effects of potential data corruption
due to external factors during data downlink. Data loss is
limited to the affected segment, whereas the rest of the image
can be recovered, therefore by using smaller segments error
containment is improved. However, on the other side of this
trade-off, when segments are very small, the compression
effectiveness suffers due to the loss of adaptation in the
predictor.

As segments are independently compressed, no aspect of
overall performance deteriorates when adding another core.
Performance scales linearly with the number of compressors
implemented, and the upper bound depends on technology
limits (device resources and memory bandwidth). At system
level, this architecture maps naturally to standard SoC design
patterns which allows using standard buses and well-verified
interconnects and memory controllers, as implemented in this
work. Furthermore, each segment can be compressed indepen-
dently in a standard compliant way, without modification to
the compression algorithm.

However, segmentation imposes system level challenges,
i.e., multiple compressed data packets are produced per image
rather than one and multiple compressors must be configured
and controlled. To tackle the overhead of managing mul-
tiple cores, the compressors are integrated in a SoC envi-
ronment, where this complexity is managed by a software
scheduler.

Similar segmentation schemes have been presented in the
literature to exploit data parallelism and increase robustness to
errors. Rodríguez et al. [12] use ARTICo3 [32] to schedule a
number of compressors on the FPGA, compressing the blocks
of the image in parallel. The authors use a small square block
partitioning of the image [across X- and Y -axes: blocks sized
(Nz , Ny, Nx ) = (224, 8, 8)], which leads to smaller memory
footprint at the expense of some deterioration in compression
ratio compared to large stripe segments as used in this work.
In the NASA JPL implementation [11], the authors use a
Y-segmentation scheme with fixed 32-line high segments,

TABLE I

PARALLEL COMPRESSOR SOC ADDRESS SPACE: N = 5

compressing an image in BIP order, for performance and error
containment.

B. Hardware Design

The implementation targets the Xilinx ZC706 development
board which among other peripherals and interfaces features
1 GB of DRAM connected to the processing system (PS),
1 GB of DRAM connected to the programmable logic (PL),
as well as, an Ethernet port and flash memory.

The architecture is based on a scalable element which is
replicated to increase the number of cores. It comprises a con-
trol AXI4-Lite interconnect, a CCSDS 123.0-B-1E compressor
core, a Xilinx DMA controller core, a performance-optimized
AXI4 interconnect, and a resource-optimized interconnect in
cascade. The interconnect cascade on the sink side is a
resource optimization detailed later in this section, and for
functional purposes, it may be seen as a single component
with all slave interfaces and a single master interface. The
scalable element is shown in Fig. 5 at a high-level view. The
following AXI4 links are shown in the following:

1) compressor core and DMA core control AXI4-Lite (32b)
connected to the same interconnect;

2) AXI4-Stream (64b) links between the compressor core
and DMA: Compressor source and sink connected to
DMA sink and source respectively;

3) AXI4 (64 bit) link for the high speed data path from
the DMA core toward main memory, through the data
interconnect;

4) AXI4 (32b) link connected to the interconnect cascade
toward main memory for reading scatter-gather lists.

The scalable element is replicated to attain parallelism; the
simplified block diagram of the 5-core implementation for the
benchmark platform is shown in Fig. 6. The control inter-
connect connects two AXI4-Lite interfaces per compressor
core and is slaved to the ARM processor. The interconnect
cascade connects the processor master, the scatter-gather, and
data interfaces of the DMA cores, to the AXI4 slave (512 bit)
interface of the PL DRAM controller with the appropriate
buffering and bus resizing. This allows access to the PL
DRAM address space, to both the processor and DMA cores.

Each compressor core is accessible from the ARM processor
through the AXI4-Lite control interconnect and in turn its
AXI4-Lite interface. The address space of each core includes
control and status registers to allow programming, control,
and progress reporting for each compressor. Each accelerator
core is mapped to a base address in the global address space
(Table I), which allows access to the processor through the
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Fig. 6. Parallel compressor SoC architecture for 5-core implementation.

PS General Purpose AXI master port. Similarly, the processor
accesses the control interface of the DMA core for each
compressor-DMA pair, to program the receiving and trans-
miting transactions.

To feed each compressor with data from memory and store
output compressed bitstreams, the DMA controllers connect to
the memory interface generator (MIG) memory controller to
access PL DDR memory. In the offline scenario, the CPU loads
the image data to memory from the sensor, and conversely, in
the real-time scenario, the data are continuously streamed in
from the ROE through a double buffer. Each DMA controller
is programed to stream a segment into the compressor from the
appropriate offset in the input image buffer, using the memory
map to stream (MM2S) AXI4-Stream interface. Concurrently,
the same DMA controller is programed to stream data from
a compressor core’s output Stream-to-memory map (S2MM)
interface toward a preallocated buffer for that segment,1 in
main memory. The calculation of offsets, allocation of buffers,
programming, and response to events (interrupts and status
polling) are controlled by the software scheduler. The DMA
controller is a Xilinx IP core, configured for a performance
level (burst size, bus widths, and so on) such that the com-
pressor core is never starved of data or its output stalled. The
DMA transaction length is a sensitive setting for this DMA
core (it has a strong impact on Fmax); therefore, a scheme
to minimize the allowed transaction length is used: input and
output are packetized from the perspective of the DMA core,
to allow multiple small transactions to transfer a segment data
and bitstream. The software controller makes the appropriate
arrangements with multiple small buffers to accommodate this.

Each DMA core has two master interfaces: one to read the
scatter-gather (M_AXI_SG) transaction list and another for
the stream to/from memory-map data movement proper. The
M_AXI_SG interface is not performance critical, being only
used twice per transaction to read a few bytes (offset, length,
and so on) while traversing the transaction list. Therefore,
multiplexing these five M_AXI_SG master interfaces should
be optimized for resources, and the associated 5:1 interconnect
does not need transaction buffering for bursts, or to allow

1The size of the compressed bitstream is not known before compression,
and these buffers are sized for worst case uncompressible data.

multiple in-flight transactions. Similarly, the control AXI4-Lite
interconnect is prime for resource optimization. The DMA
master data interfaces, on the other hand, are performance
critical, and they must be multiplexed unto a wider channel
(MIG slave I/F is 512 bits) across a different clock domain,
whereas multiple (narrow to wide), large burst transactions
are in flight.2 This interconnect, therefore, must be optimized
for performance. To achieve this, we use custom-resource opti-
mized RTL interconnects for the former and the Xilinx Smart-
Connect core for the latter. The cascading scheme used avoids
the alternative 11:1 performance optimized interconnect which
would waste resources to optimize paths (e.g., the scatter
gather control paths) that we know from performance analysis
and do not require high levels of performance or advanced
AXI4 features.

C. Software Design

The proposed architecture uses a software scheduler running
on Linux on the ARM processor to orchestrate the parallel
compression accelerators. The scheduler is responsible for
controlling data movements to and from the accelerators, mon-
itoring progress and status as well as fetching raw image data
from a sensor in the real-time scenario. Linux is configured
to access the full SoC address space via the device tree and
the appropriate drivers, including cores’ register banks and
both DDR memories. It should be noted that an alternative
approach would be based on bare-metal software, i.e., lacking
an operating system. In that approach, software can be easily
written to be deterministic (hard real time) and have full
access to physical memory, FPGA address space, and SoC
interrupts. This would make programming the core system
functions dramatically easier at design time but severely
limit programmability, ease of debugging, introspection, and
expanding the system in the long term.

The compressor cores programed into the FPGA and con-
nected to the SoC bus are assigned addresses in the global
address map of the SoC. As we use Linux, we must traverse
the virtual address mapping to reach the physical address,

2These requirements call for very large complexity in the interconnect logic,
a greatly more logic intense design to a basic AXI4 interconnect.
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which is controlled by the Linux kernel. There are three ways
to provide to user space applications, the capability to access
peripherals in Linux: by creating a driver for this specific
peripheral, directly accessing /dev/mem, or via the User
space IO (UIO) framework. In this work, we use the UIO
approach, specifically the generic UIO driver which is well
suited for simple devices such as the AXI4-Lite memory maps
of the compressor cores.

The platform heavily relies on DMA operations to
read/write data at speed to/from the compression accelerator
IP Cores. To allow the controller application to configure and
control the DMA cores, we use a stack of drivers: the Linux
DMA API, the Xilinx DMA driver, and the axidma [33]
driver. To avoid fragmentation, we reserve in the device tree
a large region in the PL DDR memory and assign it to the
DMA drivers to use via contiguous memory allocator (CMA),
ensuring that large contiguous buffers are available for com-
pression. The driver configuration aims to transfer the control
of a DMA buffer from Linux user space to the DMA engine
and to control the DMA engine. In the offline compression
benchmark, for the downstream operation (MM2S), the buffer
is filled by the user space application with sensor data, and
then, the DMA engine is instructed to start. For the upstream
operation (S2MM), the buffer is written by the DMA engine
which then signals “finished” to the application. The kernel
and the DMA driver stack is an intermediary during these
operations. Note that no copy operations are performed to
maintain high performance, and transfers refer to a notion of
ownership.

The user-space scheduler application uses the APIs provided
by the driver configuration for UIO and DMA. A single thread
uses callbacks to be notified by the kernel for the completion
of transactions on either transmit or receive channels. To com-
mand and check the status of the compression cores, the UIO
drivers are used to mmap() into each compression core’s
address map and read/write registers at the appropriate offset.

The scheduler performs the following major tasks to
compress one image in parallel.

1) Reads in the configuration file with compression para-
meters for the benchmark.

2) Allocates buffer pairs (transmit/receive) for each DMA
channel.

3) Memory maps input data from the sensor to the DMA
transmit buffer. In the benchmarking system, input data
are mapped from a file, on a real-time scenario double
buffered from the sensor.

4) Perform segmentation: by calculating the appropriate
offsets (segment stride), the input image is split by the
number of cores to map the correct segment into each
DMA engine.

5) In debug mode, at this stage, sanity checks are performed
by reading the compression cores’ configuration regis-
ters, status, and multiple-input signature register (MISR)
signatures.

6) The compression cores’ status is checked to be in
standby mode, and then, they are soft reset.

7) The compressors are configured according to the com-
pression parameters specified in the configuration file.

8) They are then commanded to start compressing any
incoming data. From this point on, actual data will reach
the cores only when the DMA engines start.

9) Channel locks are initialized, and two callbacks are setup
per DMA engine (transmit and receive).

10) Benchmark timing is started, the DMA transactions are
started, and the main thread attempts to wait on the
locks, once for each channel.

11) Eventually, compression finishes which invokes the call-
backs, which release their lock once per channel. This
finally unblocks the main thread when all callbacks have
been executed.

12) Benchmark counters are stopped, the compressed data
are written to files, and statistics are logged.

13) If operating in debug mode, the compressed files are
compared to reference outputs and status, and MISR
stream signatures are logged for all compression cores.

D. System-Level Integration Considerations

The implemented benchmarking system performs an offline,
one-image-at-a-time compression sequence, which starts with
an image at rest in an image buffer in DRAM and ends
with the compressed data in a separate buffer in DRAM
(comprising multiple adjacent, padded, compressed segment
packets). The breadboard demonstrator platform implements
the portion of the payload data chain that relates closely to
the compressor. We make provisions by reserving bandwidth
and buffers, for a real-time variant of the system that includes a
typical continuous data path for a payload data-chain, from the
sensor toward a ground station. This real-time scheme relies
on two double buffers, for sensor readout and data downlink.

Commonly, in on-board payload data systems, logic to
manage the imaging sensor exists in the context of ROE, which
control sensor operation through interfaces such as SPI to
configure acquisition parameters (e.g., synchronization, frame-
rate, resolution, and so on). ROE electronics are nontrivial
and sensor dependent; however, the pixel data channel for
most sensors is a set of high-speed IOs connected to the
payload FPGA. The protocol carrying the data varies and
may be SpaceFibre, RapidIO, or other, but, in the common
case, the final data are seen as a stream of pixels by the
payload processor. For instance, the CHIEM [34] high-speed
hyperspectral imager uses 64 high-speed LVDS links to stream
pixel data.

On the other end, compressed data must be streamed
out from DRAM toward the radio subsystem for downlink.
Alternatively, compressed data may be streamed through a
subsystem-local interface toward the spacecraft mass mem-
ory or payload storage subsystem (for later downlink depend-
ing on orbit phase). We refer to both operations as downlink
for posterity, and from the perspective of the compression
subsystem, they are both output streams.

The proposed scheme to integrate this compression archi-
tecture aims to perform the three operations in parallel, effec-
tively pipelining sensor readout, compression and downlink.
However, one cannot independently write from the sensor into
the image buffer and read from the same buffer to compress.
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Fig. 7. Sensor and downlink double buffers’ memory scheme.

Similarly, the compressed data buffer cannot be concurrently
written by the compressor and read from the downlink com-
ponent without some kind of synchronization. This situation
is commonly solved using a double buffer (also known as
ping-pong buffer) scheme, in this case one for image data and
another for compressed data.

The real-time compression scheme pipelining sensor read-
out, compression with the parallel compressor, and downlink
operations are shown in Fig. 7. A region of memory is
reserved for the compression buffers shown on the left. This
region is split further into four regions for two double buffers,
incoming (readout) and outgoing (downlink). Operations start
with the sensor stream writing into the upper readout buffer
side (through S2MM DMA). When this first write operation
is finished, the incoming double buffer flips, and the sensor
stream of the second image is written to the other side of
the incoming double buffer. Meanwhile, the compressors start
reading segments from the previously finished first image.
As compression of the first image segments progresses,
the compressors write the compressed segments’ bitstreams
into the upper side of the outgoing double buffer. Similarly,
when compression is finished, the outgoing double buffer
flips, and downlink starts streaming out compressed data (first
image), whereas the compressors continue writing segment
bitstreams (second image) into the other side of the outgoing
double buffer.

It should be noted that this scheme requires four times the
compression throughput to be available as aggregate memory
bandwidth (sensor write + compressors read + compressors
write + downlink read) and four times the size of an image in
DRAM. Typical hyperspectral images are in the low hundreds
of MB, so this amount of DRAM is commonly available.
Memory bandwidth, however, is at a premium, especially due
to the high speed of the proposed compressor at scale; in
Section IV-B that follows, an analysis evaluates the limits that
can arise depending on the FPGA device and memory used.

IV. EXPERIMENTAL RESULTS

A. Design Implementation

The architecture is implemented targeting the xc7z045-2
device on the Xilinx ZC706 development board, to verify

operation and benchmark compression performance. For ver-
ification, we use the Siemens-Mentor Questa simulator and
the VUnit Open Source unit testing framework, to simulate
a high coverage test suite. Furthermore, in on-chip tests,
we verify lossless operation by decompression and comparison
to the originally compressed data. For synthesis and Place and
Route (P&R), we use Vivado 2018.2, gearing optimizations
for performance. The design is parametric at a high level with
generics, in the number of compressor cores, as well as the
ranges of various compression parameters which are tuned
in the implementation results for an AVIRIS sensor scene
with dimensions (Nx , Ny , Nz) = (680, 512, 224), a common
benchmark image. The image size is important due to BRAMs
limiting the number of cores that can fit in a device. The
lower limit of BRAMs required by the compression cores for
N cores are
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�
Nz
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�
+ (Nx ∗ Nz)

2048
+

⎡
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2
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⎞
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The impact of image size and spatial–spectral aspect ratio to
scaling and performance, besides BRAM utilization, is minor.
If the segment size is too small, due to both very few bands
(multispectral image) and a small number of columns (Nx ),
then performance may suffer. Specifically, if the segment size
is smaller than the burst size used for DMA, incomplete bursts
and smaller memory accesses will create overheads in data
movement in the SoC. However, the burst size in samples
(1024) is extremely small compared to hyperspectral image
sizes, making it very unlikely that the segmentation of a real
image would approach this limit.

The architecture shown in Fig. 6 does not show clocks,
resets, and interrupts for clarity; there are multiple clock
domains in the SoC: the PS clock at 666 MHz and PS DRAM
at 533 MHz, the PL DRAM at 800 MHz and MIG controller
at 200 MHz, the PL side SoC interconnect (AXI4-Lite and
AXI4 I/Fs toward MIG) clocked at 200 MHz, and finally,
the compressor cores at 285 MHz. Clock domain crossings
are negotiated with synchronizers or dual-clock FIFOs, and
each clock domain has an associated reset forming a reset
tree, deasserting based on the PLL locking sequence.
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Fig. 8. Parallel compression scaling benchmark.

Table II shows implementation resources after P&R, for 1,
to 5 compression cores for image size (Nx , Nz ) = (680, 224).
Table III shows the utilization breakdown per SoC high level
component family for LUTs. This highlights that the Xilinx
IP cores used for the SoC data movement and interconnects
have nontrivial resource requirements. Note that miscellaneous
components, e.g., reset generators, are not shown separately
but are included in the total counts. The throughput column
shows benchmarked performance, where the test image was
compressed on chip, timing wall time from command start of
the first DMA core to the finished interrupt of the last DMA
core.

Fig. 8 shows on-chip compression throughput benchmark
results with the parallel compressor and also the perfect
linear scaling line to highlight losses from ideal parallelism.
Up to 5 cores, throughput losses are between 1.7% and 2.7%
compared to perfect scaling; performance increases almost lin-
early by adding cores until the targeted FPGA is fully utilized
(in BRAMs) at five compressor cores. Each compressor IP
core operates on one 16-bit sample per clock cycle; therefore,
throughput Msamples/s should converge to compressor clock
megahertz given images large enough to amortize the cost
of initial latency. Overall throughput in Msample/s is ideally
clock MHz * N cores if the performance bottleneck is the
compression operation, which is ensured with the appropriate
clocking and bus width in the data path.

Although the throughput loss is too small to warrant
investigation, the following sources of losses may impact
performance in the system.

1) Each compressor initializes internal state after being
commanded to start and before consuming samples. This
latency is proportional to the number of bands in the
input image.

2) Benchmarking is pessimistic and starts timing before
the start command is sent: this adds delay, whereas the
scheduler loops to command compressors and DMAs.

3) Packetization: input and output streams from the com-
pressors are packetized. Each packet has a small latency
to setup (in software) and perform (in hardware) the
DMA transaction.

4) Other software is running on the ARM CPU sharing
memory and compute. This may induce unknown delays
in the scheduler operations.

TABLE II

POST P&R RESOURCES AND THROUGHPUT AT 285 MHz

TABLE III

POST P&R LUT UTILIZATION PER COMPONENT

B. Performance Limit Analysis

This section discusses possible and realized performance
bottlenecks at various levels of performance for the system
as a whole. The limits shown are specific to the targeted
device and board; different systems may have different DRAM
configurations (bandwidth, frequency, and number of banks),
speed grades (Fmax for RTL components), FPGA size (higher
resource limit), or other limitations that cannot be accounted
for in the general case here (e.g., limited or abundant LVDS
IOs to the sensor/downlink and so on).

Note that the AXI4 protocol has separate read and write
address/data channels; therefore, the maximum bandwidth at
bus width × frequency is independent for incoming and out-
going channels on an interface. On the other hand, transactions
with memory are on a half-duplex channel; therefore, we
consider aggregate transmit and receive throughput. In the
case of compression, requirements are symmetric on receive
and transmit3, so aggregate throughput is appropriate. In other
applications besides compression, a throughput for the two
directions may be better considered separately.

The limits to consider for the targeted device are as follows.

1) PS DRAM memory connected to the hard memory
controller in the ARM PS, bandwidth: 4264 MB/s.

2) PL DRAM memory connected to the transceivers of
the FPGA fabric IOs, interfaced using a soft memory
controller, bandwidth: 12 800 MB/s.

3) Four available HP ports, with a maximum width of
64 bits, at 200 MHz, aggregate bandwidth: 12 800 MB/s.

4) DMA stream side maximum aggregate throughput
64 bits at 200 MHz: 3200 MB/s per DMA core.

5) 218.6K LUTs and 19.2-Mb device BRAM.
6) Compression throughput/core at 285 MHz: ∼570 MB/s.

3Symmetric only in the worst case, commonly the compressed data rate is
a fraction of the raw data rate. For the purposes of system design, we assume
the worst case of un-compressible data and in practice enjoy a generous safety
margin.
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Fig. 9. Scaling bounds: offline compression.

The scaling limits plots in Figs. 9 and 10 show the potential
and actual system scaling limits related to the number of
parallel compressor cores of the proposed architecture. Note
that both figures show the same scenario; however, Fig. 9
shows the breadboard system as benchmarked in this work,
i.e., assuming half of DRAM bandwidth is available. This is
to allow provisioning for the real-time double buffer-based
system as described in Section III-D. The detailed scaling
limits in the double-buffer readout and downlink scenario are
shown in Fig. 10 (N.B. DRAM bandwidth limit is the full
bandwidth limit).

In both cases, targeting the xc7z045 device and a
(Nx , Ny, Nz ) = (680, 512, 224) image, parallelism is lim-
ited by FPGA BRAMs. At 5 cores, the device is almost
full (80% BRAM utilization) and cannot place a sixth core
without severely deteriorating P&R quality of results due to
congestion. However, even if via BRAM usage optimizations,
a 6-core design was implemented (or targeting the larger
xc7z100 device), another limit would be met before full com-
pression performance was realized, the PL DRAM bandwidth
limit.

In the platform as configured, the compressor cores can
access either the PS or PL DRAM memories on the board
via the HP ports and hard PS memory controller or the MIG
memory controller on the FPGA, respectively. The architecture
reserves the PL DRAM exclusively for the compression oper-
ation both in terms of memory space and available bandwidth.
If that were not the case and PS memory was used for
compression buffering, overall performance would be limited
at about 2 cores, ∼570 Msamples/s.

The scaling plots as a design aid, besides making apparent
limits in the system, shows potential optimizations as well.
Consider that all other limits, besides the lowest performance
limit that is actually met, can be exploited for resource and
power saving improvements. The DMA stream limit and HP
port limits are far from being close to constrain compres-
sion performance; therefore, the relevant clocks can be set
much lower than their maximum for power savings. In the
case of DMA streaming, this assumes that the compressor

Fig. 10. Scaling bounds: real-time compression.

interfaces via clock domain crossing, asymmetric aspect ratio
AXI4-Stream FIFOs. Similarly, some AXI4 interconnects can
be configured to minimize buffering (BRAM resources) since
they are not operating close to their maximum performance.

To summarize, the performance scaling limit analysis
informs the following architectural decisions: 1) the system
needs to use the PL DRAM for performance; 2) optimizing
for BRAM resources to fit 6 cores is not needed as, beyond
5 cores’ performance will be limited by PL DRAM bandwidth;
3) up to 2 cores could use PS DRAM via the HP ports
avoiding the MIG and second DRAM altogether; and 4) SoC
interconnect is not the performance limit, therefore, can be
clocked lower, or optimized for resources.

C. Comparison With Prior Work

This section presents in Table IV, a comparison with
implementations from the literature, which uses a parallel
approach. In benchmarking on-chip, the proposed architec-
ture reaches 1387 Msamples/s compression throughput per-
formance with 5 cores on a Zynq-7045 device, an ∼1.85×
increase over the previous state of the art. For the Kintex-7
technology used for benchmarking, performance is limited by
the size of the chosen FPGA and the DRAM bandwidth of
the development board to 5 cores. Although the proposed
work implements a coarse-grain parallel architecture, applying
fine-grain parallelism without an embedded processor is also
possible. Other works have successfully used FPGA SoCs to
compress hyperspectral data, Nascimento et al. [35] imple-
ment compressive sensing on a Zynq platform with very high
energy efficiency.

The fine-grain parallelism approach has been implemented
on FPGA first by Báscones et al. [36] and later refined
and improved by Orlandić et al. [9]. Orlandić et al. [9]
proposed a parallel implementation building up from their
previous work in [21]. The CCSDS-123-B-1 single core is
adapted for parallel processing, and the organization of sev-
eral compression pipelines in parallel is implemented. The
limitations of data routing between predictor–encoder pairs
and the packing operation in [36] are successfully overcome,
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TABLE IV

COMPARISON OF CCSDS 123.0-B-1/2 PARALLEL FPGA ACCELERATORS

increasing performance. Overall compression throughput is
increased by reducing stall cycles with an improved scheduling
of the predictor–encoder pipelines and also by improving
variable length code packing with a high-performance parallel
input packer. The work in [9] uses a fine-grain parallelism
scheme, where multiple Np predictor–encoder pairs, each with
a sample-per-cycle microarchitecture, are scheduled to process
Np samples in parallel, feeding into a Np-input packer com-
ponent. On a Kintex-7 device, the implementation achieves
750 Msamples/s and is highly resource efficient by using RTL
generics for image and compression parameters that are fixed
at runtime.

Similar segmentation schemes as used in this work have
been presented in the literature to exploit data parallelism and
improve the error containment [11], [12]. Rodríguez et al. [12]
used ARTICo3 [32] to schedule a number of compressors
on the FPGA, compressing blocks of the image in parallel.
Due to limitations in the ARTICo3 framework in the memory
per accelerator, the authors use a square block partitioning
of the image (across the X- and Y -axes) which leads to
smaller memory footprint. The implementation targets BSQ
pixel order and reaches 67.04 Msamples/s throughput on a
Kintex-7 device using 16 compressor cores, a state-of-the-
art performance for BSQ order hyperspectral compression.
The authors report almost linear scalability up to 8 cores,
proving that they operate in a computing-bounded region.
However, using 16 accelerators only renders 9.7× speedup,
which indicates that the system is then entering the memory-
bounded region. Such implementation has properties favorable
to system integrators, i.e., the ability to change at runtime the

number of cores via dynamic partial reconfiguration or redun-
dantly compress image blocks.

The NASA JPL implementation by Keymeulen et al. [11]
as a part of a complete avionics system for data acquisition,
cloud screening, and data compression implements compres-
sion with FLEX, an FPGA implementation of lossless and
near-lossless compression according to CCSDS 123.0-B-2.
Due to the complexity and data dependencies in near-lossless
mode, FLEX does not achieve a high performance in a single
core, as opposed to other lossless-only compressors. The
authors implement segmentation across the Y -axis to increase
throughput performance and present a variant of FLEX in
an airborne demonstration using COTS parts. On an Alpha
Data board with a Virtex-7 VX690T-3 FPGA, FLEX achieves
106 Msamples/s using 15 cores and 32-line high segments.
A software component on a ruggedized COTS PC performs
real-time data analysis and schedules data movements between
sensor, FPGA, and CPU over PCIe. The authors also describe
a FLEX variant in a SoC architecture targeting a Zynq Z7045Q
for the 2024 EMIT mission.

All works in Table IV use the Xilinx tool flow. The
implementation in [9] reports static timing analysis estimate
extrapolating performance from Fmax, whereas this proposed
work and [11] and [12] report experimental FPGA-in-the-loop
performance benchmark results. The sample adaptive encoder
option is used in all implementations, except [11] which uses
the new hybrid encoder of the latest version of the compression
standard.

On scalability, [9] reported a decrease in Fmax when increas-
ing parallelism whereas, in this work, the scaling overhead is
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very limited; i.e., per-core throughput is marginally affected
when increasing parallelism. On reliability, although all imple-
mentations target COTS parts, this work and the NASA JPL
implementation [11] use segmentation taking the advantage of
error containment, whereas [12] additionally to segmentation
may use modular redundancy on the compression cores. The
implementation in [9] describes only an FPGA IP core and not
a full avionics or SoC system; therefore, resource and power
comparisons are qualitative. However, [9] is significantly more
resource and power efficient than the other implementations
compared.

The proposed segment-parallel scheme requires more
resources compared to [9], mostly due to the significant
resource overhead of the SoC components used (interconnects,
memory controllers, and so on) and due to being based
on a larger single-core implementation (comparing LUTs,
3012/core in [21], and 8505/core in [17] and [18]). These
increased logic resources for the SoC peripherals account
for the increased power consumption. Memory utilization in
the segment-parallel approach, when implemented across the
Y -axis, has memory requirements linear to the parallelism
factor. Each parallel compressor may require on-chip storage
for a spectral frame (Nx · Nz samples) causing an increased
BRAM utilization. However, the segment parallel approach
allows linear performance scaling, bounded only by device
size. Furthermore, the approach is not specific to the accel-
erator IP Core; in principle, [9] could be used in the parallel
SoC designed in this work. In that way benefiting from both
approaches, a higher performance baseline per core and system
level scalability and reliability at the same time.

The proposed architecture sets a new state-of-the-art
compression throughput performance at 1387 Msamples/s uti-
lizing 91 845(42.02%) LUTs for a full SoC with 5 cores on the
Zynq-7045 device.

V. CONCLUSION

In this work, we have introduced a high-performance par-
allel SoC implementation of the CCSDS 123.0-B-1 hyper-
spectral compression algorithm targeting COTS FPGA SoC
technology to optimize SWaP-C. The proposed architecture
exploits image segmentation to provide an increased robust-
ness to data corruption and enable scalable throughput per-
formance by leveraging segment-level parallelism. A flexible
software scheduler hosted in the PS of the FPGA SoC controls
the compression accelerator cores in the PL fabric, orchestrates
DMA transactions over the on-chip bus interconnects, and can
also serve other system-level payload data processing SoC
functionality. The proposed parallel architecture is demon-
strated on chip by implementation on a Zynq-7045 FPGA
device with 5 compression cores and achieves a throughput
performance of 1387 Msamples/s (22.2 Gb/s at 16 bpppb),
which outperforms previous implementations in equivalent
FPGA technology and allows seamless integration with next-
generation hyperspectral sensors.
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