
1118 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 5, MAY 2020

Efficient Architectures for Multigigabit
CCSDS LDPC Encoders

Dimitris Theodoropoulos , Student Member, IEEE, Nektarios Kranitis , Member, IEEE,

Antonis Tsigkanos , Member, IEEE, and Antonios Paschalis, Member, IEEE

Abstract— Quasi-cyclic low-density parity-check (QC-LDPC)
codes have been adopted by the Consultative Committee for
Space Data Systems (CCSDS) as the recommended standard
for onboard channel coding in Near-Earth and Deep-Space
communications. Encoder architectures proposed so far are not
efficient for high-throughput hardware implementations target-
ing the specific CCSDS codes. In this article, we introduce a novel
architecture for the multiplication of a dense quasi-cyclic (QC)
matrix with a bit vector, which is the fundamental operation of
QC-LDPC encoding. The architecture leverages the inherent par-
allelism of the QC structure by concurrently processing multiple
bits, according to an optimized scheduling. Based on this architec-
ture, we propose efficient encoders for CCSDS codes, according to
all the applicable low-density parity-check (LDPC) code encoding
methods. Moreover, in the special case of the code for Near-Earth
communications, we also introduce a preprocessing algorithm
to efficiently handle the challenges arising from the generator’s
matrix circulant size (511 bits). The proposed architectures
have been implemented in various field-programmable gate
array (FPGA) technologies and validated in Zynq UltraScale+
multiprocessor system-on-chip (MPSoC), achieving a significant
speedup compared with previous approaches, while at the same
time keeping resource utilization low.

Index Terms— Consultative Committee for Space Data
Systems (CCSDS), channel coding, field programmable gate
arrays (FPGAs), low-density parity-check (LDPC) codes, multi-
processor system-on-chip (MPSoC), parity check codes.

I. INTRODUCTION

LOW-DENSITY parity-check (LDPC) codes are linear
block codes, characterized by large block lengths and

sparse parity-check matrices. The initial Gallager codes [1]
were random, and although they exhibited excellent error-
correcting capabilities, hardware implementation was chal-
lenging. In order to reduce implementation complexity and
enhance encoding/decoding speed, an additional structure has
been designed into the parity check matrices of all practical
LDPC codes in modern applications, so that they consist of an

Manuscript received September 30, 2019; revised January 10, 2020;
accepted February 13, 2020. Date of publication March 2, 2020; date of
current version April 24, 2020. This work was supported in part by the
Hellenic Foundation for Research and Innovation (HFRI) and in part by the
General Secretariat for Research and Technology (GSRT) under the first call
for HFRI Research Projects for the support of Postdoctoral Researchers under
Grant 990. (Corresponding author: Dimitris Theodoropoulos.)

Dimitris Theodoropoulos, Antonis Tsigkanos, and Antonios Paschalis are
with the Digital Systems and Computer Architecture Laboratory (DSCAL),
Department of Informatics and Telecommunications, National and Kapodis-
trian University of Athens, 157 84 Athens, Greece (e-mail: theodimitris@
di.uoa.gr; antts@di.uoa.gr; paschalis@di.uoa.gr).

Nektarios Kranitis is with the Department of Digital Systems, University of
the Peloponnese, 231 00 Sparta, Greece (e-mail: nkran@di.uoa.gr).

Digital Object Identifier 10.1109/TVLSI.2020.2975050

array of juxtaposed cyclic submatrices, named the circulants,
which can be efficiently implemented. These structured codes
are collectively referred to as quasi-cyclic (QC) LDPC codes.
QC-low-density parity-check (QC-LDPC) codes have been
adopted by many modern communication standards, such as
IEEE 802.11, 802.16, and DVB-S2.

A special class of structured LDPC codes, the protograph-
based QC codes have recently received considerable research
interest [2] in many modern standards. Their ability to mitigate
noise and intersymbol interference (ISI) degradation effects
in magnetic recording (MR) channel is described in [3]. The
protograph codes proposed by Fang et al. [4] exhibit an out-
standing performance over the partial response (PR) channel,
used to model MR systems. The work by Chen et al. [5] shows
the application of LDPC codes to physical layer network
coding (PNC) and describes the research on LDPC codes for
PNC as an emerging research trend. A class of protograph-
based LDPC codes for use on PNC is also proposed in [5].
Finally, a novel family of root-protograph QC-LDPC codes
has recently been proposed in [6] for modern point-to-point
and multirelay wireless communication applications, modeled
according to the block (or slow) fading channel. The Con-
sultative Committee for Space Data Systems (CCSDS) has
standardized in [7] a number of protograph-based QC-LDPC
code families for space communication protocols, as alter-
natives to concatenated convolutional and Reed–Solomon
codes. The recommended LDPC codes outperform their pre-
decessors in every aspect, including power, spectral efficiency,
and bit error rate (BER) performance, especially in the
error-floor region. In this article, we focus on these specific
codes.

A multitude of encoder architectures for QC-LDPC codes
has been proposed in the literature. Most of these architectures,
however, focus on a specific standard or class of standards,
leveraging the specific properties of the particular code. The
result is that although they exhibit outstanding performance
characteristics for the specific code family, they are either alto-
gether nonapplicable to CCSDS or their adoption to CCSDS
codes comes with a significant performance penalty. Most of
these encoder architectures require a specific structure in the
parity check matrix of the code, not satisfied by CCSDS codes.
Examples of such cases are given in [8]–[11].

Previous works in [12]–[15] target specifically CCSDS
codes. Our previous work [12] introduced a parallel archi-
tecture for the execution of the vector-matrix multiplication
involved in LDPC encoding, by leveraging the inherent paral-

1063-8210 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:51:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5244-4098
https://orcid.org/0000-0002-0521-4433
https://orcid.org/0000-0001-5017-3784

THEODOROPOULOS et al.: EFFICIENT ARCHITECTURES FOR MULTIGIGABIT CCSDS LDPC ENCODERS 1119

lelism of the generator matrix. This article advances to more
efficient encoding methods, resulting in significant perfor-
mance speedups. The approach proposed in [13] involves wide
XOR operations over a significant number of bits (2048 in the
provided example) and requires significant register resources
for the shift registers. The architecture proposed in [14] is bit-
serial. A parallel implementation is described in Section IV
for comparisons with the encoder architectures proposed in
this article. Miles et al. [15] proposed a packing–unpacking
preprocessing scheme for a specific class of CCSDS codes,
followed by two parity generators, which in turn is based
on shift registers with multiple shift values. It is shown in
Section IV that their architecture requires significant combi-
natorial resources.

Other architectures have been proposed, which target LDPC
code standards with compatible characteristics with CCSDS
codes, or they are generic enough to be applicable to a broader
range of LDPC code standards, including CCSDS. The work
shown in [16] proposes various types of encoding circuits,
based on shift registers, which achieve encoding complexity
linearly proportional to the number of parity bits of the
code, or the total bits of the code in the case of the par-
allel approach. The shift-register-adder-accumulator (SRAA)
serial encoding scheme described is one of the approaches
provided in the CCSDS standard [7], based on a shift reg-
ister for the circulants and a register for the calculation of
parity bits. Another parallel SRAA approach is also proposed
in [16], which achieves encoding in cb cycles (following the
authors’ notation), all input bits participate in the calculation
of each parity bit in one clock cycle. The efficiency of
these architectures for CCSDS codes is limited in terms
of achievable throughput, resource requirements, and critical
path of a hardware implementation. Other implementations
of the SRAA architecture are found in [17] and [18]. Note
that [17] is optimized for sparse circulants. Finally, the work
in [19] describes an implementation of the architectures
introduced in [14].

Another class of the so-far-proposed encoder architectures
designed for other standards, but are also applicable to CCSDS
codes, is based on the Richardson–Urbanke (R–U) LDPC
encoding method [20]. Although they are suitable for these
standards, they are not expected to scale efficiently for CCSDS
codes, which are characterized by large dense matrices.
Examples of this case are [21] and [22]. Similarly, in the
architecture proposed in [23] and [24], the authors leverage
the SRAA modules introduced in [16] for the dense matrix
operations involved in the R–U algorithm. The proposed
method is affected by the same scalability issues concerning
the SRAA architecture in [16].

Other authors propose a different encoding scheme, based
on the triangular decomposition of the rightmost part of the
parity check matrix of the code. Examples of such archi-
tectures can be found in [25]–[28]. The advantages of these
algorithms are limited to random Gallager codes. However,
the adoption of this encoding method for CCSDS inflicts a
major performance penalty due to the loss of QC structure
in the decomposed triangular matrices. The work in [29]
extends the procedure introduced in [26] and is efficient for

the selected codes (multilevel QC-LDPC codes). However, for
CCSDS codes, the decomposed matrices are dense and random
and the proposed architectures are not applicable. Another
fully parallel method is also proposed in [29], targeting high
throughput. This method involves the parallel multiplication of
large dense vectors and cannot scale for higher block lengths
or other codes: its application on CCSDS codes requires a
large number of resources and introduces a large critical path.
As part of this article, we created and simulated a hardware
description of this fully parallel method for the CCSDS rate
1/2 code with a block length of 2048 bits. Targeting Virtex 5
field programmable gate array (FPGA) technology, the synthe-
sized encoder design required more than 72-K lookup tables
(LUTs), fitting only high-end FPGA devices, with significant
routing delays.

To sum up, the so-far-proposed architectures targeting dif-
ferent QC-LDPC codes of other communication standards
are not efficient for the specific CCSDS codes and codes
with similar characteristics. Moreover, even those focusing on
CCSDS codes are not suitable for high-throughput hardware
implementations, since they cannot handle efficiently the mul-
tiplication of a binary vector with dense QC matrices. This
multiplication is the critical operation involved in any LDPC
encoding method.

The contribution of this article is summarized in the follow-
ing points.

1) A novel parallel algorithm is introduced for the efficient
multiplication of a binary vector with a dense QC matrix.

2) New encoder architectures are proposed, leveraging the
introduced algorithm, according to all applicable encod-
ing methods. This is the first published implementa-
tion for CCSDS or similar codes to the best of our
knowledge. These architectures address the limitations
of previous works, pertaining to CCSDS codes.

3) The performance and efficiency of the different encoding
methods are analytically estimated and assessed, specif-
ically for CCSDS codes. This is the first time such a
comparison is made.

4) A new processing algorithm is introduced, for the spe-
cial case of rate 7/8 codes. This method handles the
inconveniencies of the code structure efficiently.

The combined result of these contributions is that we were
able to implement and verify on-chip, hardware encoders for
CCSDS codes, with significantly improved performance com-
pared to existing implementations. The remainder of this arti-
cle is organized as follows: Section II provides the necessary
background on CCSDS codes. Section III describes the intro-
duced algorithm, which implements the dense QC matrix mul-
tiplications. In Section IV, encoder architectures are proposed,
which leverage the above algorithm for CCSDS LDPC encod-
ing with all the different encoding method variants. Hardware
implementations are presented in Section V and compared
with previous work. Section VI concludes this article.

II. CCSDS CODES

This article focuses on the LDPC codes implemented in the
data link layer of CCSDS protocols, and more specifically the

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:51:38 UTC from IEEE Xplore. Restrictions apply.

1120 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 5, MAY 2020

Fig. 1. AR4JA protograph. R is the rate of the code.

synchronization and channel-coding sublayer of the telemetry
Space Data-Link Protocol (TM-SDLP), as they are defined in
the CCSDS standard [7]. Two classes of LDPC codes were
adopted for use in TM-SDLP: one optimized for Deep-Space
and another for Near-Earth communications.

For Deep-Space communications, nine codes are defined,
which belong to Accumulate, Repeat by 4, and Jagged Accu-
mulate (AR4JA) class of LDPC codes. They are the result
of the combination of three block length sizes (1-, 4-, and
16-K bits) over three code rates: 1/2, 2/3, and 4/5. Their
parity check matrices consist of an array of circulant sparse
M × M submatrices, where M is a parameter dependent on the
block length and code rate. All these codes are constructed by
uplifting the protograph depicted in Fig. 1. Nodes labeled u j in
the graph (variable nodes) denote input information block bits,
or equivalently columns of the parity-check matrix, whereas
those labeled ci (check nodes) correspond to parity-check
equations or rows of the parity-check matrix. If H is the parity-
check matrix of the code, a line connects variable node j
to check node i when H (i, j) = 1. Node v5 corresponds to
punctured bits in the codeword, which are not transmitted,
so as to increase the rate of the code.

The parity-check matrix is built from the protograph
according to the following procedure: first, the protograph
is expanded by a factor of 4, and the parallel edges of the
protograph are randomly spread between the expanded nodes.
For the matrix H ′ which corresponds to the expanded graph,
each element H ′(i, j) representing a single edge at the initial
protograph is assigned the value I (0), whereas elements of the
matrix corresponding to multiple parallel edges are assigned a
random value I (x) , where x ∈ [0, m − 1] and m = M/4. The
intermediate matrix H ′ is subsequently expanded by a factor
of m, by substituting each nonzero element of the intermediate
matrix Ix by the m × m identity matrix Im , rotated by
x positions to the clockwise direction.

For Near-Earth communications, a basic LDPC code with
dimensions (8176, 7154) is defined, constructed on the 3-D
Euclidean geometry EG(3, 23) over the field GF(23). We refer
to this code as C2 code. The QC parity check matrix consists
of a 2 × 14 array of 511 × 511 sparse circulants. On the
contrary, the generator matrix in a systematic circulant form is
a composition of a 7154 × 7154 identity matrix and a 14 × 2
array of 511 × 511 dense circulants. The encoding process
prepends 18 zero bits to the 7136 bits of the incoming frame to
be encoded. These bits participate in the encoding process but

they are not transmitted as part of the systematic output of the
encoder. Two tailing bits are also added to the final codeword
to ensure that the output codeword length is divisible by
8 and 16. With the addition of these tailing bits, the dimensions
of the recommended code are finally (8160, 7136).

The standard [7] provides the option for randomization of
the output codeword to ensure sufficient transition density
on the transmitted vector. The encoder’s output consists of
the optionally randomized codeword, prepended by a 64-bit
(AR4JA) or 32-bit (C2) synchronization sequence.

III. PROPOSED ALGORITHM

In the general case, consider the multiplication p = sW of
the bit vector s with the dense QC matrix W , which is an r × c
array of m × m circulants. Vectors s and p are also partitioned
into a number of r and c subvectors correspondingly, each
consisting of m bits, as shown in (1) and (2). Bit j of subvector
pi is calculated by (3), where Wl,i (j) is the j th column of the
circulant Wl,i

s = [
s1 s2 . . . sr

]
(1)

p = [
p1 p2 . . . pc

]
(2)

pi(j) =
r∑

l=1

sl Wl,i (j) (1 ≤ i ≤ c, 1 ≤ j ≤ m). (3)

In a parallel implementation, a number of L input bits
of vector s can be concurrently processed at each clock
cycle. If parameter L is such that m is an integral multiple
of L, (3) can be completed in mr/L cycles according to the
following method.

We define the subvectors of sl being processed in the current
clock cycle as in (4). We also split the column vector Wl,i (j)
of (3) into m/L subvectors of L bits. Subvector W (e)L

l,i (j) is
defined in (5), where 0 ≤ e ≤ m

L − 1. In practice, since L bits
of input vector p are processed, index e refers to one of the
m/L execution cycles in which circulant Wl,i is involved

s(e)L
l

= [
sl(eL + 1) sl(eL + 2) . . . sl(eL + L)

]
(4)

W (e)L
l,i (j)

= [Wl,i (eL + 1, j) Wl,i (eL + 2, j) . . . Wl,i (eL + L, j)]T .

(5)

Because submatrices Wi, j are cyclic, (6) holds. To simplify

notation, we define W L
l,i (j) = W (0)L

l,i (j). Symbol
m⊕ signifies

modulo-m addition

W (e+v)L
l,i (j) = W (e)L

l,i

(
j

m⊕ vL
)

0 ≤ v ≤ m

L
− 1. (6)

At each clock cycle, for each bit position j of subvector pi ,
we calculate a partial result �

(e)
i (j, l) in parallel, according

to (7). Note that W L
l,i (j) is independent of the execution cycle.

This means that each �
(e)
i (j, l) depends only on the input bits

and the current circulant index l

�
(e)
i (j, l) = s(e)L

l W L
l,i (j). (7)

Each pi(j) can be calculated by accumulating the correspond-
ing values of �

(e)
i (j, l), using shift registers. Equation (3) can

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:51:38 UTC from IEEE Xplore. Restrictions apply.

THEODOROPOULOS et al.: EFFICIENT ARCHITECTURES FOR MULTIGIGABIT CCSDS LDPC ENCODERS 1121

be rewritten as in (8), if we take into account (6) and (7). The
partial results which are calculated at each clock cycle e are
accumulated into pi(j), as indicated by the internal summation
in (8). The external summation updates the values of W L

l,i in (7)
and the accumulation continues for all l

pi(j) =
r∑

l=1

⎛
⎝ m

L −1∑
e=0

�
(e)
i

(
j

m⊕ eL, l
)⎞⎠ ⌊m

L

⌋
= 0. (8)

In this article, we introduce an additional degree of par-
allelism. In every clock cycle (e), instead of processing L
consecutive bits of s, we process Lm bits from each of the r
subvectors si . We set Lm = L/r , so that the total number of
bits being concurrently processed are fixed to L. According to
this scheme, at each execution cycle, instead of calculating and
accumulating �

(e)
i (j, l), we calculate the partial sum δ

(e)
i (j)

according to (9). The partial results are accumulated into pi(j)
according to (10). The total number of bits being concurrently
processed is again equal to L, but at each clock cycle, all
circulants participate in the calculation of parity bits

δ
(e)
i (j) =

r∑
l=1

s(e)Lm
l W Lm

l,i (j), 0 ≤ e ≤ m

Lm
− 1 (9)

pi(j) =
m

Lm
−1∑

e=0

δ
(e)
i

(
j

m⊕ eLm
)
. (10)

Note that in this case, δ(e)
i (j) is independent of the current

circulant, in contrast to �
(e)
i (j, l) in (7), where the dependence

on l means that for the calculation of each pi(j), the cor-
responding �

(e)
i (j, l) is a logical function of L + log2(r)

bits. On the contrary, this means that each W L
l,i needs to

be calculated from a function generator with log2(r) inputs.
According to the introduced method, however, the value of
δ(e)

i (j) depends only on the r Lm bits of the input vector s.
The decoupling of δ(e)

i (j) from l comes with a significant
advantage for hardware implementation. If we define the truth
function � as in (11), and set w(ξ) as the ξ th element of

column vector W Lm
l,i (j

m⊕ eLm), then (9) can be simplified
as (12). This simplified statement of partial sums removes
the need of a function generator for the elements of W and
significantly reduces complexity

�[x = 1] =
{

1, x = 1

0, x �= 1
(11)

δ
(e)
i (j) =

r∑
l=1

⎛
⎝ Lm∑

ξ=1

s(e)Lm
l (ξ)�[w(ξ) = 1]

⎞
⎠. (12)

Consequently, for a hardware implementation of this algo-
rithm, at each cycle we need to calculate vector δ(e) according
to (12) and accumulate this partial result into a register,
according to the summation indicated in (10).

The accumulation of δ
(e)
i (j) in (10) can be efficiently

implemented with a linear feedback shift register (LFSR),
an abstract block diagram of which is presented in Fig. 2.
The input feed is given in (12). After m/Lm processing
cycles, registers ui(j) have accumulated the expected result,
according to (10).

Fig. 2. LFSR architecture for QC vector-matrix multiplication.

TABLE I

RESOURCE AND PERFORMANCE ESTIMATIONS

Table I lists the calculated resources and performance
estimations. The input to each register of the LFSR is a
function of the nonzero elements of column vector Wl,i (j). For
simplicity, we assume that

∑m
j=1 Wl,i (j) = m/2, which is a

realistic approximation for all the dense QC matrices involved
in CCSDS encoding operations, according to all encoding
methods outlined in Section IV. Consequently, each δ(e)

i (j)
is a function of r Lm/2 input bits. The accumulation between
successive execution cycles adds another variable to the sum
of input parameters of each register to total r Lm/2 + 1.
The logical resources required for this operation, in terms of
two-input XOR functions, are r Lm/2, for each ui (j). Given
that the total number of register bits is cm, the total logic
resources needed are those displayed in Table I. According to
the previous analysis, each LFSR input depends approximately
on r Lm/2 + 1 bits. Consequently, a reasonable approximation
for the two-input logic levels required is �log2(r Lm/2)�. The
introduced architecture accomplishes the calculation of the cm
bits of vector pi(j) in m/Lm cycles. Note that this value is
independent of c and r .

IV. LDPC ENCODER ARCHITECTURES

In this section, we briefly describe all the applicable LDPC
encoding methods. For each one, we propose architectures
leveraging the algorithm introduced in the previous section.
In all cases, we calculate analytically the resources required
for a hardware implementation and the performance metrics in
terms of critical path and number of cycles needed to encode
one input block frame. These are compared with our estima-
tions of the corresponding requirements if similar hardware
implementations based on previous approaches were used.
Typically, hardware resources estimations for each listed work
are different from the corresponding authors’ calculations,

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:51:38 UTC from IEEE Xplore. Restrictions apply.

1122 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 5, MAY 2020

Fig. 3. Proposed implementation according to (a) the direct method and
(b) compared to a parallel implementation of [14]. L io = r Lm .

since each work is based on different input–output bus archi-
tectures and different hardware primitives (e.g., RAM, ROM,
and XOR gates). To have an independent basis for comparison
in this article, the only combinatorial logic primitives are
twoinput, single output binary logic functions and the only
memory elements are flip-flops. The clock frequency of a
hardware implementation is affected by the critical path of the
combinatorial logic of the design. Consequently, in each one
of the provided implementations, we estimate the maximum
number of logic levels between flip-flops as the number of
twoinput functions of the longest combinatorial path of the
design. For the resource calculations, we have excluded any
control logic introduced by a practical implementation of the
architecture, focusing on the algorithm. Finally, the special
case of C2 code is treated separately and compared to previous
work.

In the subsequent analysis, we define the k-bit input binary
vector as s and the n-bit generated codeword as c. Encoding,
therefore, is described as the mapping s −→ c, which is
uniquely defined by the parity check matrix of the code H ,
so that the equation cH T = 0 is satisfied. Generally, most
LDPC codes are systematic, which means that c has the form
c = [s p], where subvector p consists of the n − k parity bits.

A. Direct Method

The direct method involves the application of Gaussian
elimination in order to calculate the generator matrix G from
the null space of the parity-check matrix H of the code,
by solving the equation G H T = 0 in F2. A codeword can
thus be calculated through the vector–matrix multiplication
c = sG. For all the practical QC-LDPC codes, the generator
matrix can be calculated in the systematic circulant form:
G = [

Ik Wn−k
]
, where Ik is the k × k identity matrix and

Wn−k is an r × c array of dense cyclic submatrices. Note
that according to Section II, the last 4m bits are punctured
(not transmitted). Consequently, the encoders implementing
this method need only store the 8rm bits of the first rows (or
columns) of these circulants. The resulting Wn,k matrix and
consequently its constituent circulants are dense matrices.

The direct method implementation according to the pro-
posed architecture is displayed in Fig. 3(a). The architecture
introduced in Section III is used for the multiplication of p =
sW . Additional logic is required in this case for rearranging

TABLE II

DIRECT METHOD ESTIMATIONS

Fig. 4. Structure of H matrix for the R–U method.

the input data of vector s into s(e)Lm
l , as required for the LFSR

operation. This can be easily implemented by a series of r
nonsymmetric parallel-in–parallel-out (PIPO) shift registers.
Input data are provided to the encoder L io bits at each clock
cycle and stored in one of these shift registers, depending on
the current subvector si . During calculation (as e increases
from 0 to m/Lm − 1), Lm bits of each subvector shift register
are shifted out. Processing of each input frame is concluded
in m/Lm cycles, consequently, if L io = r Lm , the input to the
LFSR module never stagnates and the maximum throughput
is achieved.

The architectures proposed in [12], [14] and [16] are also
implementations of the direct encoding method. Compared
to our previous work [12], the introduced architecture in
this article is algorithmically equivalent to the subcases of
La = 8, 16, 32 for rates 1/2, 2/3, and 4/5 correspondingly.
The serial SRAA architecture proposed in [16] is limited in
terms of maximum achievable throughput, whereas the parallel
SRAA architecture results in large critical paths, because of
large XOR operations. The architecture implemented in [14],
which is recommended in CCSDS standard [7], processes
input bits serially. However, a parallel implementation that
processes L io input bits at each clock cycle can be built as
in Fig. 3(b) and compared to the proposed implementation
of the direct method. Examples of resources and performance
estimations are listed in Table II and compared to our proposed
direct method encoder. For the same encoding cycles, the pro-
posed architecture achieves shorter critical path and requires
fewer combinatorial resources for rates 1/2 and 2/3, at the cost
of additional flip-flops, which favors FPGA implementations.
For rate 4/5, however, both architectures achieve the same
throughput performance, whereas the fixed overhead of the
PIPO registers required for the generation of vectors s(e)Lm

l
dominates required resources.

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:51:38 UTC from IEEE Xplore. Restrictions apply.

THEODOROPOULOS et al.: EFFICIENT ARCHITECTURES FOR MULTIGIGABIT CCSDS LDPC ENCODERS 1123

B. R–U Method

The R–U method [20] solves the parity-check equation
H cT = 0 with complexity that is approximately linear
to the block length, provided that the parity-check matrix
can be transformed into an approximate lower-triangular
form, as in Fig. 4. For systematic codes, s has the form
c = [s p1 p2], where p1, p2 are parity bits vectors of length
g and m − g, respectively. If ϕ = ET −1 B + D the parity bits
are calculated according to the following equations:

pT
1 = ϕ−1(ET −1 A + C)sT (13)

pT
2 = T −1

(
AsT + BpT

1

)
. (14)

The above equations involve many sparse matrices, but only
a single g × g dense, namely ϕ−1, which is the critical
factor affecting the performance of the encoder. The parity
check matrix of many widely adopted LDPC codes has been
specifically designed so that the parameter g is small, or even
zero (as in the case of DVB-S2), or the matrix ϕ−1 has an
efficient structure. For example, the ϕ matrix of the LDPC
codes adopted for IEEE 802.11ac/n, 802.16e, and many other
applications is the g × g identity matrix, which results
in efficient hardware implementations of the encoders. For
AR4JA codes, the parity check matrix can be transformed
into approximate lower triangular QC form by shifting the last
four circulants (4m bits) by eight columns (8m bits) to the left.
Since these permuted bits are punctured, this permutation does
not affect the encoder’s output. The resulting dense ϕ−1 for
AR4JA codes is a 4 × 4 array of m × m circulants, and
matrix T −1 is the identity matrix.

The implementation of the R–U method according to the
proposed architecture is displayed in Fig. 5(a). The four Lm-bit
vectors v

(e)Lm
i are calculated by rotating input vectors si by

Lm bits at each clock cycle. The hardware implementation
of this particular operation is feasible, since matrix E A + C
is sparse, and each v

(e)Lm
i (j) depends only on at most one

bit of each si , since (E A + C) is QC. Vectors v
(e)Lm
i (j) are

stored in intermediate registers to reduce the critical path. After
the m/Lm cycles required for the dense matrix multiplication,
the 4m vector f T is stored into the register of the LFSR. Vector
bT is calculated based on the addition of the permutations
of f T . Since node v1 is not connected to node c1 in Fig. 1,
it is evident that for all AR4JA codes, the first 4m bits of
matrix A are zero. Vector aT is calculated in parallel with f T

and stored into the intermediate shift registers in the figure.
In the final step of the process, the calculation of bT = B f T

and addition of aT are performed at the same clock cycle to
form the parity bits.

In previous work, implementing the R-U method and
applicable to CCSDS codes, the architecture proposed in
[22] for Block-LDPC codes is not expected to result in
an efficient implementation of CCSDS code encoders. The
resources and performance metrics are dominated by the
dense matrix operation involving matrix ϕ−1. A more suitable
approach would be based on the architecture described in [23],
which leverages the SRAA modules introduced in [16] for
ϕ−1 multiplication. A diagram of a CCSDS encoder based
on that architecture is displayed in Fig. 5(b), in which the

Fig. 5. Proposed implementation according to (a) the R–U method and
(b) compared to the classical approach taken in [23]. All bits of vector s are
considered to be available at the encoder’s input.

TABLE III

R–U METHOD ESTIMATIONS

layered approach is followed for sparse matrix operations.
Table III summarizes the estimated resources and performance
metrics of the two encoder architectures displayed in Fig. 5.
Although the architecture of 5(b) requires slightly less com-
binatorial resources and has a smaller critical path than the
one proposed, it concludes encoding of one input frame in
eight times more cycles, since the operations on each layer

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:51:38 UTC from IEEE Xplore. Restrictions apply.

1124 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 5, MAY 2020

Fig. 6. Proposed implementation according to the partitioned-H method.
The architecture of Fig. 2 is used for dense matrix operation involving H −1

2 .
All bits of vector s are considered to be available at the encoder’s input.

and the SRAA modules are executed serially. Consequently,
the introduced architecture achieves considerably increased
throughput performance.

C. Partitioned H Methods

This class of methods is based on the fact that, for system-
atic codes, the parity-check matrix can be partitioned into a
(n − k) × k submatrix H1 and a (n − k) × (n − k) submatrix
H2, where H = [H1 H2], so that the parity bits vector pT can
be calculated as follows:

pT = H −1
2 H1sT . (15)

Submatrix H1 is sparse and the vector H1sT can be easily
calculated. For many practical codes, submatrix H −1

2 exhibits
a regular structure, which facilitates the required calculations.
A common structure in the parity-check matrix of many codes
(IEEE 802.11 n/ac, 3GPP2, and DVB-S2) is the dual-diagonal:
H2 matrix or at least its rightmost part is a dual-diagonal
matrix. For CCSDS codes, H −1

2 is a 12 × 12 array of
dense m × m circulants. However, a simplification arising
from the protograph structure of Fig. 1 is that node v1 is not
connected to c1, which means that the first 4m rows of H1 are
zero. In addition, since the last 4m bits of the codeword are
punctured, the last 4m rows of matrix H −1

2 can be omitted.
The block diagram of the proposed architecture implement-

ing this method is displayed in Fig. 6. At each clock cycle,
vectors u(e)Lm

i are calculated directly from input bits, in a way
similar to v

(e)Lm
i of the R–U method and stored into Lm-bits

registers. These intermediate results are provided to an LFSR,
which implements the binary multiplication with H −1

2 . The
calculation of pT is concluded after m/Lm cycles.

Table IV summarizes the involved estimations for the exam-
ple case of Lm = 2. The existing implementations of the
partitioned-H method, either directly or through triangular
decomposition, require a specific structure of the parity check
matrix, incompatible with CCSDS codes. Consequently, this
is the first time that an encoder architecture for this method is
proposed and thus no comparisons can be made.

TABLE IV

PARTITIONED-H METHOD ESTIMATIONS

Fig. 7. Proposed implementation according to the hybrid method. The
architecture of Fig. 2 is used for the dense matrix operation involving W T

4m .
All bits of vector s are considered to be available at the encoder’s input.

D. Hybrid Method

Cohen and Parhi [30] proposed a hybrid approach for
IEEE 802.3an codes, according to which the parity bits are
calculated using a mix of the direct and the R–U method: the
first subvector p1 of g parity bits in R–U (13) is calculated
from the generator matrix G, according to the direct method,
avoiding thus the dense vector–matrix operations involving
ϕ−1, whereas calculation of pT

2 is done as in the R–U method,
according to (14). We denote by W T

4m as the last 4m columns
of the generator matrix of the code and it is evident that
W4m = ϕ−1(ET −1 A + C).

In this article, we propose encoders for CCSDS codes based
on this hybrid method, leveraging the introduced dense matrix
multiplication algorithm. The block diagram of the proposed
encoder in this case is depicted in Fig. 7. Vector pT

1 in the
original work is renamed as f T in this article. It is calculated
from the generator matrix in an identical way as in the direct
method. Intermediate vectors aT and bT as well as the parity
bits are calculated as in the R–U method. Table V lists the
resources and performance estimations for the encoder of
Fig. 7. The architecture proposed in [30] is not suitable for
CCSDS codes as is, and comparisons cannot be made.

E. Special Case: C2 Code

For the C2 code, the only applicable method is the direct,
at least without any modification of the parity-check matrix.
Special manipulation is required, however, because of the

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:51:38 UTC from IEEE Xplore. Restrictions apply.

THEODOROPOULOS et al.: EFFICIENT ARCHITECTURES FOR MULTIGIGABIT CCSDS LDPC ENCODERS 1125

TABLE V

HYBRID METHOD ESTIMATIONS

Fig. 8. Proposed stream input implementation for (a) C2 code and
(b) compared to the packing–unpacking scheme proposed in [15].

problematic circulant size of the code, which is not a power
of 2. In our work [12], we had introduced an efficient schedul-
ing of the stream of input bits, by adding one zero bit every
511 input bits. The effect of that addition was counterbalanced
by performing one less rotation of the parity bits shift register.
In this article, we applied the architecture depicted in Fig. 3 by
setting m = 511 and r = 14. A block diagram of the proposed
encoder is displayed in Fig. 8(a). Input bits are supplied to
the encoder in pieces of L io bits and are padded with zeros,
as necessary, by setting s(m/Lm)−1

i = 0Lm , where 0Lm is a
sequence of Lm zeros. The effect of these extra 14Lm zeros
added to each circulant can be balanced by a permutation of
the calculated parity bits by Lm positions to the left.

In order to address the problematic circulant size of the
code, Miles et al. [15] proposed a packing–unpacking scheme,
as displayed in Fig. 8(b). Input data are packed into groups
of 21 bits, before they participate in the corresponding parity
calculation. An architecture, which is algorithmically equiva-
lent to the recursive convolutional encoders (RCEs) mentioned
in [14], implements the cumulative parity calculations. At each
clock cycle, the RCEs perform a shift or a shift-accumulate
operation of 7, 16, or 21 bits. In Fig. 8(b), we model the input
of each RCE register (flip-flop) as a binary function generator
of 30 parameters. Note also that because of the difference

TABLE VI

C2 CODE ESTIMATIONS

between the input bus size (16 bit) and the shift-accumulate
step (21 or 7 bit), latent cycles are introduced in the parity
generators’ operation.

Table VI compares the analytical estimations of the pro-
posed architecture and the one based on [15]. The two archi-
tectures offer different tradeoffs: Fig. 8(a) is optimized for
combinatorial resources utilization and logic levels, whereas
Fig. 8(b) for flip-flop use and it concludes encoding in
approximately 12% less cycles. The efficiency of each archi-
tecture, therefore, depends on the targeted technology and
the parameter which needs to be optimized. Targeting high
throughput on FPGA technology, in which combinatorial
logic is mapped to LUTs and flip-flops are an abundant
resource, the hardware implementation of the proposed archi-
tecture achieves a higher clock rate. This is because of the
fewer logic levels and the lower routing delays imposed
by the total footprint of the proposed encoder. The higher
clock rate compensates for the increased number of cycles
required for encoding so that the actual throughput of the
proposed architecture is higher. In our measurements, targeting
Virtex-5/XC5VLX110T-1 FPGA, we were able to achieve a
30% higher clock rate with the proposed architecture, com-
pared to that depicted in Fig. 8.

V. IMPLEMENTATION RESULTS

In this section, we demonstrate practical CCSDS encoder
implementations, based on the architectures proposed in
Section IV. The different encoding methods offer various
trade-offs between combinatorial logic and flip-flop usage and
critical path logic levels. Note also that the implementations
of the R–U, partitioned-H, and hybrid methods described in
the previous section require that all input bits are available
at the encoder’s input, while the direct method can encode a
stream of input data. The PIPO shift registers, however, can be
substituted by parallel load shift registers, with approximately
the same resources. Consequently, comparisons between the
different encoding methods can be made, based on the data
of Tables II–V.

For each encoding method, based on the comparisons of the
analytical estimations of the previous section, we selected the
most efficient architecture for FPGA implementation. For rate
1/2 AR4JA codes, we developed hardware implementations
based on the R–U method, according to Fig. 5(a). For the
other rates of AR4JA codes, we implemented the partitioned-
H method of Fig. 6, with Lm = 4. For C2 code, we imple-
mented the architecture of Fig. 8(a). Control logic for the
operation of the encoders has also been included in the imple-
mented design. FPGA-in-the-loop verification and validation
has been performed on the implemented encoders, based on

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:51:38 UTC from IEEE Xplore. Restrictions apply.

1126 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 5, MAY 2020

TABLE VII

AR4JA IMPLEMENTATION RESULTS (SYNTHESIZED DESIGN)

TABLE VIII

C2 IMPLEMENTATION RESULTS (SYNTHESIZED DESIGN)

a GNU/Octave bit-accurate model, targeting Zynq UltraScale+
multi-processor system-on-chip (MPSoC) technology and
specifically the XCZU9EG-2 FPGA of ZCU102 evaluation kit.
All the implemented encoders were designed as IP cores for
the targeted FPGA family.

Implementation results for AR4JA codes are displayed
in Table VII. Although Zynq UltraScale+ MPSoC was tar-
geted for on-chip verification, Virtex-5 and Virtex-7 devices
were also targeted for synthesis, so that implementation
results can be comparable to the other implementations given
in Table VII. The implemented architectures are listed among
all the recent implementations targeting specifically AR4JA
CCSDS codes, to which direct comparisons can be made.
Because of the optimizations introduced in this article, the effi-
ciency of the introduced architecture results in more than three
times higher throughput, with comparable resources, compared
to our previous work [12]. Note, however, that the hardware
encoder in [12] implemented additional functions of the data
link layer of the TM-SDLP protocol (randomization and
synchronization). The large XOR operations over 2048 bits,
which are introduced by the architecture in [13] result in a
large amount of required resources and poor timing. Finally,
to the best of our knowledge, there is no other documented
implementation of 16-K AR4JA CCSDS codes.

Table VIII compares the encoder based on Fig. 8(a) with
prior work targeting CCSDS C2 code. The proposed encoder

implements all the functions of the TM-SDLP protocol.
The parallel-in–serial-out (PISO) registers in Fig. 8(a) are
mapped to LUT RAM, hence the difference in flip-flop
count between estimations in Table VI and actual count
in Table VIII. Our previous work in [12] implements the
direct encoding method, based on different scheduling of
the input bits. Instead of the PISO registers of Fig. 8(a),
it is based on an ping-pong buffer at the encoder input,
which handles the boundaries between the 511-bit circulants.
Compared to that work, the architectural optimizations of
the current work result in an increase in throughput, while
at the same time minimizing the required resources. The
work in [31] also implements the direct encoding method.
It buffers an entire input frame and partitions it into 14 sub-
vectors of 511 bits each. All parity bits are being cal-
culated in parallel. It requires, however, significantly more
resources than the encoder of the current work, while at
the same time achieving lower throughput performance, even
on a more advanced Kintex-7 FPGA. Prior work listed in
[32]–[35] refers to commercial products. The encoder in [32]
has 8-bit input–output interfaces and implements the direct
encoding method. It stores two circulant tables: one for
processing input bits which correspond to the same 511-bit
circulant of the generator matrix and another for the cases
when the eight input bits span two circulants. This implemen-
tation requires a large amount of resources. A low complexity

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:51:38 UTC from IEEE Xplore. Restrictions apply.

THEODOROPOULOS et al.: EFFICIENT ARCHITECTURES FOR MULTIGIGABIT CCSDS LDPC ENCODERS 1127

and low-throughput encoder is provided in [33]. It implements
the direct encoding method and the input–output buses are bit-
serial. Another encoder for C2 code is provided in [34]. It also
implements the direct encoding method and input–output bus
is 8 bits. Block RAM is used for input–output buffering.
Finally, for [35], no information about the underlying archi-
tecture is provided other than what is displayed in Table VIII.
In all cases, our implementations achieve state-of-the-art per-
formance, with a fraction of the required resources.

VI. CONCLUSION

In this article, we have introduced a novel architecture
for the efficient multiplication of a bit vector with a dense
QC binary matrix and proposed encoder architectures for all
the applicable LDPC encoding methods proposed so far. For
each method, we have derived analytical quantitative measures
of complexity and resource budget. Compared to existing
approaches, the proposed encoders achieve state-of-the-art
throughput performance for the specified codes, while at the
same time keeping resource utilization low. The proposed
encoders have been implemented on different FPGA tech-
nologies, verified and validated on Zynq UltraScale+ MPSoC
hardware.

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf.
Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.

[2] Y. Fang, G. Bi, Y. L. Guan, and F. C. M. Lau, “A survey on protograph
LDPC codes and their applications,” IEEE Commun. Surveys Tuts.,
vol. 17, no. 4, pp. 1989–2016, 4th Quart., 2015.

[3] Y. Fang, G. Han, G. Cai, F. C. M. Lau, P. Chen, and Y. L. Guan, “Design
guidelines of low-density parity-check codes for magnetic recording
systems,” IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp. 1574–1606,
2nd Quart., 2018.

[4] Y. Fang, P. Chen, L. Wang, and F. C. M. Lau, “Design of protograph
LDPC codes for partial response channels,” IEEE Trans. Commun.,
vol. 60, no. 10, pp. 2809–2819, Oct. 2012.

[5] P. Chen, Z. Xie, Y. Fang, Z. Chen, S. Mumtaz, and J. J. P. C. Rodrigues,
“Physical-layer network coding: An efficient technique for wireless
communications,” IEEE Netw., pp. 1–7, 2019.

[6] Y. Fang, P. Chen, G. Cai, F. C. M. Lau, S. C. Liew, and G. Han, “Outage-
limit-approaching channel coding for future wireless communications:
Root-protograph low-density parity-check codes,” IEEE Veh. Technol.
Mag., vol. 14, no. 2, pp. 85–93, Jun. 2019.

[7] TM Synchronization Channel Coding, CCSDS Standard 131.0-B-3,
Sep. 2017.

[8] G. Tzimpragos, C. Kachris, D. Soudris, and I. Tomkos, “A low-
complexity implementation of QC-LDPC encoder in reconfigurable
logic,” in Proc. 23rd Int. Conf. Field Program. Logic Appl., Sep. 2013,
pp. 1–4.

[9] N. A. F. Neto, J. R. S. de Oliveira, W. L. A. de Oliveira, and
J. C. N. Bittencourt, “VLSI architecture design and implementation of
a LDPC encoder for the IEEE 802.22 WRAN standard,” in Proc. 25th
Int. Workshop Power Timing Modeling, Optim. Simulation (PATMOS),
Sep. 2015, pp. 71–76.

[10] X. Wang, T. Ge, J. Li, C. Su, and F. Hong, “Efficient multi-rate encoder
of QC-LDPC codes based on FPGA for WIMAX standard,” Chin.
J. Electron., vol. 26, no. 2, pp. 250–255, Mar. 2017.

[11] T. T. B. Nguyen, T. Nguyen Tan, and H. Lee, “Efficient QC-LDPC
encoder for 5G new radio,” Electronics, vol. 8, no. 6, p. 668, Jun. 2019.

[12] D. Theodoropoulos, N. Kranitis, and A. Paschalis, “An efficient LDPC
encoder architecture for space applications,” in Proc. IEEE 22nd
Int. Symp. Line Testing Robust Syst. Design (IOLTS), Jul. 2016,
pp. 149–154.

[13] Z. Wang, X. Hao, C. Lin, and Q. Wu, “An efficient hardware LDPC
encoder based on partial parallel structure for CCSDS,” in Proc. IEEE
18th Int. Conf. Commun. Technol. (ICCT), Oct. 2018, pp. 136–139.

[14] K. Andrews, S. Dolinar, and J. Thorpe, “Encoders for block-circulant
LDPC codes,” in Proc. Int. Symp. Inf. Theory (ISIT), Sep. 2005,
pp. 2300–2304.

[15] L. H. Miles, J. W. Gambles, G. K. Maki, W. E. Ryan, and S. R. Whitaker,
“An 860-Mb/s (8158,7136) low-density parity-check encoder,” IEEE
J. Solid-State Circuits, vol. 41, no. 8, pp. 1686–1691, Aug. 2006.

[16] Z. Li, L. Chen, L. Zeng, S. Lin, and W. Fong, “Efficient encoding of
quasi-cyclic low-density parity-check codes,” IEEE Trans. Commun.,
vol. 53, no. 11, p. 1973, Nov. 2005.

[17] S.-W. Yen, S.-Y. Hung, C.-L. Chen, H.-C. Chang, S.-J. Jou, and
C.-Y. Lee, “A 5.79-Gb/s energy-efficient multirate LDPC codec chip
for IEEE 802.15.3c applications,” IEEE J. Solid-State Circuits, vol. 47,
no. 9, pp. 2246–2257, Sep. 2012.

[18] D. Chen, P. Chen, and Y. Fang, “Low-complexity high-performance low-
density parity-check encoder design for China digital radio standard,”
IEEE Access, to be published.

[19] F. Wang, P. Zhang, X. Wan, and J. Liu, “Design of a multi-rate quasi-
cyclic low-density parity-check encoder based on pipelined rotate-left-
accumulator circuits,” in Proc. 7th Int. Congr. Image Signal Process.,
Oct. 2014, pp. 1105–1109.

[20] T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-
density parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2,
pp. 638–656, Feb. 2001.

[21] D.-U. Lee, W. Luk, C. Wang, and C. Jones, “A flexible hardware
encoder for low-density parity-check codes,” in Proc. 12th Annu.
IEEE Symp. Field-Program. Custom Comput. Mach., Apr. 2004,
pp. 101–111.

[22] H. Zhong and T. Zhang, “Block-LDPC: A practical LDPC coding system
design approach,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52,
no. 4, pp. 766–775, Apr. 2005.

[23] H. Zhang, J. Zhu, H. Shi, and D. Wang, “Layered approx-regular LDPC:
Code construction and encoder/decoder design,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 55, no. 2, pp. 572–585, Mar. 2008.

[24] P. Zhang, S. Yu, C. Liu, and L. Jiang, “Efficient encoding of QC-
LDPC codes with multiple-diagonal parity-check structure,” Electron.
Lett., vol. 50, no. 4, pp. 320–321, Feb. 2014.

[25] Y. Kaji, “Encoding LDPC codes using the triangular factorization,”
IEICE Trans. Fundam. Electron., Commun. Comput. Sci., vol. E89-A,
no. 10, pp. 2510–2518, Oct. 2006.

[26] J.-N. Su, Z. Jiang, K. Liu, X.-Y. Zeng, and H. Min, “An efficient low
complexity LDPC encoder based on LU factorization with pivoting,” in
Proc. 6th Int. Conf. (ASIC), vol. 1, Oct. 2005, pp. 168–171.

[27] J. Hu and K. Jiang, “The improved LU-based decomposition algorithm
for sparse matrix of LDPC code,” in Frontiers in Computer Education
(Advances in Intelligent and Soft Computing), vol. 133, S. Sambath and
E. Zhu, Eds. Berlin, Germany: Springer, 2012, pp. 867–874.

[28] H. Yin, W. Du, and N. Zhu, “Design of improved LDPC encoder for
CMMB based on SIMD architecture,” in Proc. IEEE 3rd Int. Conf. Inf.
Sci. Technol. (ICIST), Mar. 2013, pp. 1292–1295.

[29] A. Mahdi and V. Paliouras, “A low complexity-high throughput
QC-LDPC encoder,” IEEE Trans. Signal Process., vol. 62, no. 10,
pp. 2696–2708, May 2014.

[30] A. E. Cohen and K. K. Parhi, “A low-complexity hybrid LDPC code
encoder for IEEE 802.3an (10GBase-T) Ethernet,” IEEE Trans. Signal
Process., vol. 57, no. 10, pp. 4085–4094, Oct. 2009.

[31] W. Ren and H. Liu, “The design and implementation of high-speed
codec based on FPGA,” in Proc. 10th Int. Conf. Commun. Softw. Netw.
(ICCSN), Jul. 2018, pp. 427–532.

[32] LCE01C CCSDS (8160,7136) LDPC Encoder, 1st ed., Small World
Commun., Payneham South, SA, Australia, Apr. 2015. [Online]. Avail-
able: http://www.sworld.com.au/products/lce01c.html

[33] LDPC NASA Encoder/Decoder IP Core Specificaton, 2nd ed., IPrium
LLC, Tomsk, Russia, Sep. 2014. [Online]. Available: https://www.
iprium.com/bins/pdf/iprium_ug_ldpc_nasa_codec.pdf

[34] COM-1811SOFT CCSDS LDPC C2 Code Encoder/Decoder VHDL
Source Code Overview/IP Core Overview, MSS, Oct. 2019. [Online].
Available: https://comblock.com/download/com1811soft.pdf

[35] Creonic GmbH. CCSDS (8160, 7136) LDPC Encoder Decoder Product
Brief. Accessed: Feb. 25, 2019. [Online]. Available: https://www.creonic.
com/wpcontent/uploads/PB_Creonic_CCSDS_ LDPC_FEC_IP.pdf

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:51:38 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

