
A 3.3 Gbps CCSDS 123.0-B-1 Multispectral &
Hyperspectral Image Compression Hardware
Accelerator on a Space-Grade SRAM FPGA

ANTONIS TSIGKANOS , (Member, IEEE), NEKTARIOS KRANITIS , (Member, IEEE),
GEORGE THEODOROU, (Member, IEEE), AND ANTONIS PASCHALIS, (Member, IEEE)

The authors are with the Digital Systems & Computer Architecture Laboratory (DSCAL), Department of Informatics & Telecommunications,
National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15784, Greece

CORRESPONDING AUTHOR: A. TSIGKANOS (antts@di.uoa.gr)

ABSTRACT The explosive growth of data volume from next generation high-resolution and high-speed
hyperspectral remote sensing systems will compete with the limited on-board storage resources and bandwidth
available for the transmission of data to ground stations making hyperspectral image compression a mission
critical and challenging on-board payload data processing task. The Consultative Committee for Space Data
Systems (CCSDS) has issued recommended standard CCSDS-123.0-B-1 for lossless multispectral and
hyperspectral image compression. In this paper, a very high data-rate performance hardware accelerator is
presented implementing the CCSDS-123.0-B-1 algorithm as an IP core targeting a space-grade FPGA. For the
first time, the introduced architecture based on the principles of C-slow retiming, exploits the inherent task-
level parallelism of the algorithm under BIP ordering and implements a reconfigurable fine-grained pipeline in
critical feedback loops, achieving high throughput performance. The CCSDS-123.0-B-1 IP core achieves
beyond the current state-of-the-art data-rate performance with a maximum throughput of 213 MSamples/s
(3.3 Gbps @ 16-bits) using 11 percent of LUTs and 27 percent of BRAMs of the Virtex-5QV FPGA resources
for a typical hyperspectral image, leveraging the full throughput of a single SpaceFibre lane. To the best of our
knowledge, it is the fastest implementation of CCSDS-123.0-B-1 targeting a space-grade FPGA to date.

INDEX TERMS Field programmable gate array (FPGA), hardware accelerator, hyperspectral imaging,
image compression, on-board payload data processing, space data systems

I. INTRODUCTION

Multispectral and hyperspectral imaging is recognized as a
key enabling technology for several remote sensing applica-
tions such as precision agriculture, surveillance, security,
military intelligence, environmental monitoring, mineralogy,
etc. Multispectral and hyperspectral sensors capture the spec-
tral fingerprint of an object, thus provide a unique spectral
signature enabling accurate object detection and classifica-
tion. The spectral resolution, from a few tens to several hun-
dreds of bands, results in multispectral and hyperspectral
images, respectively. The huge volume of data from high-
resolution and high-speed multispectral and hyperspectral
imagers along with the limited spacecraft storage resources
and downlink bandwidth, make image compression very
challenging and a mission critical on-board payload data
processing task [1]. Moreover, next generation high-speed

airborne and spaceborne imagers are expected to have a
10 cm ground resolution, resulting in an explosive growth
in data volume and overall instrument data rate in the
GigaPixels/s range.
Image compression algorithms are roughly classified into

lossless and lossy. Lossless compression leverages image
data redundancy to guarantee perfect reconstruction of the
original image data without incurring any distortion at the
cost of a rather limited compression ratio. Lossy compression
allows small amounts of distortion between the reconstructed
and the original image, as a tradeoff to achieve higher com-
pression ratios. The amount of distortion tolerated, depends
on the remote sensing application. Lossy compression should
allow effective application of post compression image analy-
sis (e.g., anomaly detection, classification), always guaran-
teed by lossless compression.

Received 29 September 2017; revised 27 March 2018; accepted 21 June 2018.
Date of publication 12 July 2018; date of current version 3 March 2021.

Digital Object Identifier 10.1109/TETC.2018.2854412

90

2168-6750� 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.

See ht _tps://www.ieee.org/publications/rights/index.html for more information. VOLUME 9, NO. 1, JAN.-MAR. 2021

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:53:01 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-5017-3784
https://orcid.org/0000-0001-5017-3784
https://orcid.org/0000-0001-5017-3784
https://orcid.org/0000-0001-5017-3784
https://orcid.org/0000-0001-5017-3784
https://orcid.org/0000-0002-0521-4433
https://orcid.org/0000-0002-0521-4433
https://orcid.org/0000-0002-0521-4433
https://orcid.org/0000-0002-0521-4433
https://orcid.org/0000-0002-0521-4433


Either lossless or lossy, the image compression algorithms
used on-board must be designed with respect to certain perfor-
mance-complexity tradeoffs inherent in space data systems
design. The Consultative Committee for Space Data Systems
(CCSDS), an organization founded by the major space agen-
cies of the world, has developed image compression algo-
rithms specifically for on-board use addressing memory and
computational resources challenges. The CCSDS recom-
mended standards for data and image compression [2]–[4]
provide an excellent trade-off between compression effective-
ness and hardware complexity. In 2012, CCSDS 123.0-B-1
was issued as the recommended standard for Lossless Multi-
spectral and Hyperspectral image compression. The recom-
mended standard [4], [5] is based on the NASA Fast Lossless
(FL) [6] algorithm, an excellent predictive technique which
uses an adaptive filtering method, achieving a combination of
low complexity and compression effectiveness, being able to
provide state-of-the-art coding performance for a large collec-
tion of remote sensing sensors [7].
Apart from the constraints on compression algorithm

design, space data systems design imposes strict require-
ments on the on-board data processing hardware platform,
which must be able to provide a) radiation hardness, b) high
data-rate performance for Gigabit-rate applications and c)
dynamic adaptability. The current state-of-the-art SRAM-
based FPGA technology offers radiation hardening by design
(RHBD), high density and dynamic partial reconfiguration
for in-flight adaptability and Time-Space Partitioning (TSP)
of on-board data processing tasks. An excellent example of
such technology is the RHBD Xilinx Virtex-5QV FPGA
which provides exceptional hardness to Single-Event-Upset
(SEU), total immunity (> 125MeV:cm2=mg) to Single-
Event Latchup (SEL), data path protection from Single-Event
Transients (SET) and extremely high tolerance (1000 Krad)
to Total Ionizing Dose (TID) [8], [9]. Such FPGA technol-
ogy offers unique advantages over both one-time program-
mable FPGAs and ASICs and can be considered as an
excellent platform for implementation of on-board payload
data processing due to its ability to support upgrades after
launch, greatly enhancing mission profile and extending
valuable mission life time. An adaptable instrument based on
an adaptable payload data processing platform could be
adjusted to unforeseen events such as changes or extensions
in the scientific objectives, resulting in a superior scientific
data yield and a reduced risk of a total instrument loss. More-
over, dynamic adaptability offers the possibility to timeshare
resources in a TSP manner, when dedicated functions are not
necessary concurrently, resulting in significant savings in
mass, power, hardware resources and design complexity.
The CCSDS 123.0-B-1 algorithm (or the NASA FL algo-

rithm), has been recently implemented in hardware, targeting
space-qualified FPGAs. Existing implementations of CCSDS
123.0-B-1 [10]–[12] or NASA FL [13] target space grade
FPGAs. In our preliminary work [12], the current state-of-
the-art in data-rate performance of 120 MSamples/sec was
achieved.

In this paper, we propose a novel, high data-rate perfor-
mance hardware accelerator, implementing the CCSDS
123.0-B-1 algorithm as an IP core targeting space-grade
FPGAs. For the first time, the introduced architecture based
on the principles of C-slow retiming [14], exploits the inher-
ent task-level parallelism of the CCSDS 123.0-B-1 algorithm
under BIP ordering and implements a reconfigurable fine-
grained pipeline in critical feedback loops, achieving high
throughput performance. Moreover, it is a single FPGA solu-
tion without external DDR memory requirements that results
in significant savings in SWaP-C (Size, Weight, Power and
Cost). The CCSDS 123.0-B-1 IP core sets the new state-of-
the-art data-rate performance with a maximum data-rate at
213 MSamples/s (3.3 Gbps @ 16-bits per sample) when tar-
geting the Virtex-5QV FPGA using 11 percent of LUTs and
27 percent of BRAMs of the Virtex-5QV FPGA resources
for a typical hyperspectral image configuration. To the best
of our knowledge, it is the fastest implementation of CCSDS
123.0-B-1 targeting a space-grade reconfigurable SRAM
FPGA to date.
The rest of this paper is organized as follows: After a brief

overview of the CCSDS 123.0-B-1 standard in Section II
and a brief discussion of the main considerations in hardware
implementations in Section III, the architecture of the
CCSDS 123.0-B-1 hardware accelerator is presented in
Section IV. The CCSDS 123.0-B-1 IP core verification and
validation frameworks are presented in Section V. Imple-
mentation results including FPGA resource usage statistics,
operating frequency and data-rate performance along with
comparisons with existing state-of-the-art FPGA and CPU/
GPU implementations are provided in Section VI before con-
cluding the paper in Section VII.

II. CCSDS 123.0-B-1 ALGORITHM OVERVIEW

The CCSDS 123.0-B-1 Recommended Standard [4], [5] is a
formalization of the NASA Fast Lossless (FL) compressor
[6], an adaptive predictive technique for lossless compression
of multispectral and hyperspectral imagery. The FL compres-
sor achieves a combination of low complexity and compres-
sion effectiveness, far exceeding the best results from the
literature [6], [7]. The CCSDS 123.0-B-1 is a prediction
based algorithm, structured in two functional parts, a predic-
tor and an encoder, illustrated in Figure 1. The predictor esti-
mates the predicted sample value based on the values of
nearby samples in a small three-dimensional neighborhood.
The prediction residual (i.e., the difference between the pre-
dicted and actual sample values) is then mapped to an
unsigned integer that can be represented using the same

FIGURE 1. CCSDS 123.0-B-1 block diagram.

VOLUME 9, NO. 1, JAN.-MAR. 2021 91

Tsigkanos et al.: A 3.3 Gbps CCSDS 123.0-B-1 Multispectral & Hyperspectral Image Compression Hardware Accelerator on a Space-Grade SRAM FPGA

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:53:01 UTC from IEEE Xplore.  Restrictions apply. 



number of bits as the input data sample. These mapped pre-
diction residuals make up the predictor output. The predictor
adaptively adjusts prediction weights for each spectral band
using adaptive linear prediction. The encoder losslessly enco-
des the mapped prediction residuals using the sample adap-
tive encoder of NASA FL or as an alternative option, the
block-adaptive encoder as specified in the CCSDS 121.0-B-2
standard for data compression intended for monoband image
lossless compression [2]. Although block-adaptive encoding
is more computationally intensive than sample-adaptive
encoding (it requires the evaluation of multiple coding
options) and is not as efficient in terms of compression per-
formance as sample-adaptive encoding, it is included to the
recommended standard in order to leverage existing imple-
mentations of CCSDS 121.0-B-2. The final compressed
stream consists of a header that encodes image and compres-
sion parameters followed by a body of codewords, produced
by the entropy coder.
The predicted sample value ŝz;y;x, and the mapped predic-

tion residual dz;y;x depend on the values of nearby samples in
the current and P preceding spectral bands, where P is a user-
specified parameter (ranging from 0 to 15) which has a high
impact on computational complexity. The typical neighbor-
hood of samples used for prediction is illustrated in Figure 2.
The CCSDS 123.0-B-1 algorithm is illustrated in the flow-

chart of Figure 3 and described in detail below.
First, within each spectral band, the predictor computes a

local sum sz;y;x, which is a weighted sum of the neighboring
samples of sz;y;x. The user may choose to perform prediction
using neighbor-oriented or column-oriented local sums.
When neighbor-oriented local sums are used, the local sum is
equal to the sum of four neighboring sample values in the
spectral band. When column oriented local sums are used,
the local sum is equal to four times the neighboring sample
value in the previous row. Then, the local sums are used to
calculate local difference values. In each spectral band, the
central local difference dz;y;x is equal to the difference between
the local sum sz;y;x and four times the sample value sz;y;x.
The three directional local differences dNz;y;x, d

W
z;y;x, d

NW
z;y;x,

are each equal to the difference between the local sum sz;y;x

and four times a sample value labeled as “N” (North), “W”

(West), or “NW” (North West). The user may choose to per-
form prediction for an image in full or reduced prediction
mode. Under reduced mode, prediction depends on a
weighted sum of the central local differences computed in P
preceding bands; the directional local differences are not
used, and thus need not be calculated, under reduced mode.
Under full prediction mode, prediction depends on a
weighted sum of the central local differences computed in P
preceding bands and the three directional local differences
computed in the current band. The use of reduced mode in
combination with column oriented local sums tends to yield
smaller compressed image data volumes for raw (uncali-
brated) input images from push-broom imagers that exhibit
significant along-track streaking artifacts. The use of full
mode in combination with neighbor-oriented local sums
tends to yield smaller compressed image data volumes for
whiskbroom imagers, frame imagers, and calibrated imagery.
The next step of the algorithm involves the calculation of

the local difference vector UUz;y;x whose elements are defined
for full or reduced prediction mode according to equations
(22) and (23) of [4], respectively. Then, the predicted central
local difference d̂z;y;x is calculated as the inner product (eq.
(30) of [4]) of the weight vectorWWz;y;x (eq. (25) in [4]) and the
local difference vector UUz;y;x. The scaled predicted sample
~sz;y;x is calculated by adjusting the preliminary estimate (local
sum sz;y;xÞ by the predicted local difference d̂z;y;x according
to eq. (29) of [4]. The final predicted sample value ŝz;y;x is
effectively half the scaled predicted sample value ~sz;y;x. Fol-
lowing the calculation of each predicted sample value ŝz;y;x,
the scaled prediction error ez;y;x and a weight update scaling
exponent rz;y;x (eq. (33) in [4]) are used to adaptively update
the weight vectorWWz;y;x using the sign algorithm (also known
as the sign-error algorithm) which is similar to the Least Mean
Square (LSM) algorithm. It should be noted that a separate

FIGURE 2. Three dimensional prediction neighborhood.

FIGURE 3. CCSDS 123.0-B-1 algorithm flowchart block diagram.

92 VOLUME 9, NO. 1, JAN.-MAR. 2021

Tsigkanos et al.: A 3.3 Gbps CCSDS 123.0-B-1 Multispectral & Hyperspectral Image Compression Hardware Accelerator on a Space-Grade SRAM FPGA

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:53:01 UTC from IEEE Xplore.  Restrictions apply. 



weight vector is maintained for each band. To summarize, the
principle of the prediction algorithm is to adaptively adjust
prediction weights to predict the amount (d̂z;y;x) by which the
sample value sy;z;x differs from the preliminary estimate sz;y;x.
After calculation of the predicted sample ŝy;z;x, the predic-

tion residuals Dy;z;x are calculated as the difference between
the predicted ŝy;z;x, and actual sy;z;x sample values and mapped
to unsigned integer values dy;z;x according to eq. (35) of [4].
The sample-adaptive entropy encoder maps the prediction

residuals using length-limited Golomb-Power-Of-2 (GPO2)
codes, adaptively selected based on statistics that are updated
after each sample is encoded. Since separate statistics are
maintained for each spectral band, the compressed size is
independent of the sample ordering. As an alternative option,
the encoder can use the block-adaptive entropy coding
approach recommended in [4]. In this case, depending on the
encoding order, the mapped prediction residuals in a block
may be from the same or different spectral bands, and thus
the compressed image size depends on the encoding order.

III. MAIN CONSIDERATIONS FOR HARDWARE

IMPLEMENTATIONS

The CCSDS 123.0-B-1 algorithm was designed specifically
for on-board use addressing memory and computational
resources challenges. The algorithm uses only integer arith-
metic and all mathematical operations can be implemented
with fixed shifters, barrel shifters, multipliers, and adders.
No divisions are necessary. Although the Recommended
Standard facilitates relatively low complexity hardware
implementations on FPGAs or ASICs, a few remaining con-
straints in terms of storage requirements and throughput limi-
tations caused by data dependencies have to be taken into
account when developing a hardware implementation [5].

A. LOCAL SUM AND LOCAL DIFFERENCES

CALCULATION

The predictor requires only four neighboring samples from
the same band to calculate the local sum and local difference.
In order to avoid any latencies related to fetching the neces-
sary neighboring samples, they should be buffered in on-chip
or external storages resources (e.g., embedded RAM or
FIFOs, external DRAM).

B. PREDICTED CENTRAL LOCAL DIFFERENCE

CALCULATION

The inner productWWz;y;x �Uz;y;x required for the calculation of
the predicted central local difference d̂z;y;x is of major impor-
tance in terms of hardware cost and data-rate performance. It
not only affects the number of arithmetic operations (multipli-
cations and additions) that have to be performed, but more
importantly, it directly affects the volume of data that has to
be available for its calculation. The number of elements in the
weight update vector WWz;y;x and local difference vector Uz;y;x

increases with the number of preceding spectral bands used
for prediction P, a user-specified parameter. According to
[13] which provides a thorough analysis of the influence of

different parameters on compression performance, P > 3
does not yield a significant improvement in the compression
ratio. Hence, P ¼ 3 only is used throughout this paper.
Furthermore, the order in which image samples are proc-

essed by the predictor directly affects the amount of storage
requirements necessary for the local difference and weight
vectors, as well as, the data dependencies that arise which
affect pipelining and therefore data-rate performance.
For example, under a BSQ processing order, it is necessary

to store the local difference vectors for samples in a given
band so that they can be accessed for prediction in the next
band. Under both full and reduced modes, prediction in spec-
tral band z makes use of central local differences from the
preceding P�

z ¼ minfz;Pg spectral bands. Moreover, under
full prediction mode, prediction in spectral band z addition-
ally makes use of three directional local differences com-
puted in the current spectral band z. If the number of local
difference values used for prediction at each sample in band
z is denoted as Cz (equal to P�

z þ 3 for the full prediction
mode and P�

z for the reduced mode), BSQ ordering requires
storing a total of Nx � Ny � Cz local difference values. How-
ever, this limitation can be avoided if the compressor calcu-
lates all the elements of the local difference vector for the
prediction of each sample [10]. In terms of data dependen-
cies, it is not possible to schedule the prediction of the next
sample szðt þ 1Þ in BSQ order in parallel with the weight
update operation of the current sample szðtÞ which directly
limits the achievable data-rate performance.
In contrast, under BIP ordering it is only necessary to store

a local difference vector with Cz elements, since after predic-
tion of a sample szðtÞ only a single element of the local differ-
ence vector needs to be updated for the prediction of szþ1ðtÞ,
the next sample in BIP order. Of course this implies that Nz

weight vectors are stored; one for each band. In terms of data
dependencies, it is not necessary to complete prediction of a
sample szðtÞ before starting prediction of the next sample
szþ1ðtÞ in BIP order, thus making possible to schedule the
prediction of sample szþ1ðtÞ in parallel with the weight
update operation of sample szðtÞ. This is a clear advantage of
BIP ordering which makes it a key feature to achieve very
high data-rate performance.

C. ENTROPY CODING

Under the sample-adaptive coding, an accumulator (used to
maintain a running sum of mapped prediction residuals in
the spectral band) and a counter, estimate the mean mapped
prediction residual value that selects the code parameter k.
Counter and accumulator values are each periodically halved,
so that more recent sample values have more impact on
the estimated mean value. Under BSQ ordering encoding
requires: one previously processed mapped prediction resid-
ual, one accumulator and one counter. Under BIL ordering,
the same elements and resources are required for each spec-
tral band, which is Nz mapped residuals, accumulators and
counter values. Under BIP ordering Nz accumulator values
and a single counter value is required. In contrast to the

VOLUME 9, NO. 1, JAN.-MAR. 2021 93

Tsigkanos et al.: A 3.3 Gbps CCSDS 123.0-B-1 Multispectral & Hyperspectral Image Compression Hardware Accelerator on a Space-Grade SRAM FPGA

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:53:01 UTC from IEEE Xplore.  Restrictions apply. 



block-adaptive optional coding, the length limit makes hard-
ware implementation simpler and reduces the cost of encod-
ing occasional outlier samples. It should be noted that when
sample-adaptive coding is used, compression effectiveness
does not depend on sample encoding order, thus hardware
implementations need not be concerned with compression
effectiveness considerations in selecting the sample encoding
order. Moreover, the sample-adaptive coding approach does
not require the evaluation of multiple coding options.
The block-adaptive optional coding formalized in CCSDS

121.0-B-2 [2] requires the evaluation of the different encod-
ing options for a complete block of J samples. These evalua-
tions require accumulator and comparison operations. The
amount of required storage and hardware complexity does
not depend on the compression order, but does depend on
the number of samples in a block and the number of encod-
ing options to be evaluated. However, the user can leverage
existing implementations (e.g., the IP core presented in [15],
used in ESA PROBA-3 mission).

IV. CCSDS 123.0-B-1 IP CORE ARCHITECTURE

The CCSDS 123.0-B-1 IP core was developed in compliance
with the European Cooperation for Space Standardization
standards (ECSS-Q-ST-60-02C) using VHDL. It can be con-
figured at run-time using memory-mapped configuration
registers and at compile-time using generic constants that
determine the boundaries of run-time configuration. It sup-
ports the following features (see Table 1): i) pixel depth up
to 16 bits, ii) image dimensions up to 216 pixels for each
dimension ðNx � Ny � NzÞ iii) BIP encoding order, iv) fixed
number of prediction bands (P ¼ 3 since a higher number of
prediction bands does not yield significant improvement in
compression effectiveness [16]), v) full and reduced predic-
tion modes, vi) neighbor and column oriented local sum cal-
culation, vii) sample-adaptive encoding.

A. TOP LEVEL ARCHITECTURE

The top level architecture of the CCSDS 123.0-B-1 IP core
(depicted in Figure 4) consists mainly of three units: the Pre-
dictor and the Encoder comprising the compression engine

along with an on-chip Spectral Slice Buffer that can accom-
modate a spectral slice of typical hyperspectral images.
In this paper, we consider a single FPGA chip solution

without external DDR memory requirement that results in
significant savings in SWaP-C (Size, Weight, Power and
Cost). Moreover, it does not require a technology dependent
DDR memory controller. The IP core provides simple,
FIFO-based streaming interface for streaming data I/O (D-bit
for current pixel data and 64-bit for the encoded output). The
IP core configuration registers are memory-mapped with a
generic interface providing flexibility in integration. If the
CCSDS 123.0-B-1 IP core is integrated in an FPGA SoC, the
configuration registers can be accessed by standard SoC
interfaces (e.g. AMBA slave APB, AXI4 Lite) using an triv-
ial bridge. At system level, the configuration registers can be
accessed by standard serial link interfaces such as Space-
Wire-RMAP or SPI.

B. SPECTRAL SLICE BUFFER

The compressor engine, assumes a data interface consisting
of the 2D-neighbourhood samples; i.e. the current, W, N, NE
and NW samples and an end-of-stream strobe asserted with
the last sample input. This interface is provided by a preced-
ing component, the Spectral Slice Buffer which consists of a
4-deep cascade of FIFOs, accompanied by 4 stages of elastic
buffers which pack neighbourhood samples emitted by inter-
mediate stages of the FIFO cascade. In between the stages,
counters may inhibit reading or writing to account for the ini-
tial and final spatial regions in the spectral cube. An abstract
representation of the neighbourhood dataflow is shown bot-
tom right in Figure 5: Nz samples after the current sample
is the W neighbour, (Nx � 2Þ�Nz samples later the NE

TABLE 1. CCSDS 123.0-B-1 IP core features summary.

Algorithm features CCSDS 123.0-B-1 IP Core

Pixel dynamic range (D) 2 � D � 16

Image Dimensions
0 < NX;NY < 216

3 < NZ < 216

Encoding order Band-Interleaved-by-Pixel

Number of Prediction bands (P) 3

Prediction mode Full/Reduced

Local sum calculation Neighbor/Column oriented

Entropy encoder Sample/Block adaptive �

�Block-adaptive encoding is supported using an external CCSDS 121.0-B-2
IP Core [15].

FIGURE 4. Top level architecture.

FIGURE 5. Spectral slice buffer architecture.

94 VOLUME 9, NO. 1, JAN.-MAR. 2021

Tsigkanos et al.: A 3.3 Gbps CCSDS 123.0-B-1 Multispectral & Hyperspectral Image Compression Hardware Accelerator on a Space-Grade SRAM FPGA

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:53:01 UTC from IEEE Xplore.  Restrictions apply. 



neighbour. After Nz samples the N and yet Nz samples later
the NW neighbour. A side-channel cascade of elastic buffers
collects the neighbours along the cascade and packs them
into an ever-wider word, until the entire neighbourhood is
output. The elastic buffer based architecture has an important
advantage; each stage is insensitive to latency of previous
stages, sharing no control signals across stages and connects
only through the ready-valid handshake. This latency insen-
sitivity between stages becomes valuable for the following
timing optimization.
Although this architecture feels intuitive, its implementa-

tion using on-chip BRAM is challenging; the second stage
FIFO requires a large number of Xilinx BRAMs for most
realistic image sizes (e.g. AVIRIS, MODIS, CRISM) causing
the synthesizer to infer a BRAM cascade using special FPGA
column routing. In order to improve the static timing delay
we implemented the following optimization: the second stage
FIFO is implemented as a cascade of back-to-back FWFT
FIFOs, each sized precisely to avoid the BRAM cascade
(shown top of in Figure 5). The FIFO output registers (due to
FWFT) break the path resulting in very low delay. Therefore,
we tradeoff a small amount of extra initial latency (1 cycle
per stage of the deep FIFO) and a small amount of extra
BRAMs (due to rounding of the FIFO sizes and allowable
BRAM data widths), for a significant reduction in the worst
path delay. This optimization removes the BRAM cascade
from the critical path in images with a large spectral slice.
The number of FIFOs in the second stage is calculated with a
pure function taking the maximum dimension generics as
input, which generates the 2nd stage FIFO cascade with a
“for generate” expression.

C. PREDICTOR

The Predictor exploits an adaptive linear prediction method
to predict the value of each image sample based on the values
of nearby samples in a small 3D neighborhood. Prediction is
performed sequentially in a single pass. The prediction resid-
ual, i.e. the difference between the predicted and actual sam-
ple values, is then mapped to an unsigned integer that is
represented using the same number of bits as the input data
sample. These mapped prediction residuals make up the pre-
processor output.
The Predictor consists of seven logic units pipelined using

elastic buffers: 1) the Local Sum unit, 2) the Local Differences
unit 3) the Inner Product unit, 4) the Scaling Exponent Update
unit, 5) the Predictor unit 6) theWeight Update unit and 7) the
Mapper unit and a memory to store the weight vectors as
depicted in Figure 6. The Local Sum unit receives four inputs,
the neighboring samples of sz ðsn; sne; snw; swÞ, to compute a
weighted sum of named local sum sz. The Local Sum unit sup-
ports both column oriented and neighbor oriented local sum
calculation. The Local differences unit receives the four
neighboring samples of sz ðsN ; sNE; sNW ; sWÞ, the sample sz
and the extracted local sum sz from the Local Sum unit and
calculates four differences: the central local difference dz and
the three directional local differences dNz , d

W
z , d

NW
z . These

local differences are used to form and output the local differ-
ence vector Uz to be used by the Inner Product unit. Since
P ¼ 3 in the proposed CCSDS 123.0-B-1 IP core implementa-
tion, the vector Uz consists either of six local differences in
full prediction mode or of three local differences in reduced
prediction mode. The Inner Product unit implements the inner
product calculation (either 6x6 in full prediction mode or 3x3
in reduced prediction mode) between the Uz vector that has
been extracted from the Local Differences unit and a weight
vector Wz from theWeight Vector Storage memory. To boost
this unit’s performance, the Inner Product unit exploits pipe-
lined multipliers along with pipelined and optimized adder
trees with compressors, to perform high speed inner product
computation to produce the predicted central local difference
d̂z. The Scaling Exponent Update unit receives the predictor
parameters to calculate the weight update scaling exponent rz
(eq. (33) in [4]) that will be used in theWeight Update unit to
adaptively update each weight vector Wz. TheWeight Update
unit implements the eq. (34) in [4] which adaptively updates
every weight vector Wz after calculating each predicted cen-
tral local difference d̂z. Since a separate weight vector is main-
tained for each band the updated weight should be stored in
the Weight Vector Storage memory to be utilized for the fol-
lowing sample of the same band. The Predictor unit is the
main unit that implements the prediction calculation to output
the scaled predicted sample ~sz. The unit receives two inputs,
the predicted local difference d̂z and the local sum sz and
implements the eq. (29) of [4]. Finally, theMapper unit calcu-
lates the prediction residuals Dz as the difference between the
predicted ŝz, and the actual sz sample values and maps them to
positive integer values dz according to eq. (35) of [4]. The
mapped prediction residual dz are stored in a FIFO, pipelining
prediction with sample adaptive encoding.
The CCSDS 123.0-B-1 algorithm has a native high com-

plexity in the weight update feedback loop (consisting of the
inner product, prediction and weight update computation)
that severely degrades the data-rate performance of all
CCSDS 123.0-B-1 hardware implementations if this feed-
back loop should be implemented in one clock cycle in a
sample per cycle implementation. The proposed CCSDS
123.0-B-1 IP core architecture exploits BIP ordering which
minimizes data dependencies, enabling pipelining. Further-
more, the proposed architecture introduces for the first time,
an excellent trade-off, by exploiting the inherent task-level

FIGURE 6. Predictor.

VOLUME 9, NO. 1, JAN.-MAR. 2021 95

Tsigkanos et al.: A 3.3 Gbps CCSDS 123.0-B-1 Multispectral & Hyperspectral Image Compression Hardware Accelerator on a Space-Grade SRAM FPGA

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:53:01 UTC from IEEE Xplore.  Restrictions apply. 



parallelism of CCSDS 123.0-B-1 algorithm under BIP order-
ing to implement C-slow retiming. C-slow retiming [14] is a
process of increasing the throughput of a design by enabling
fine-grained pipelining of computations within feedback
loops. In C-slow retiming, each register is first replaced with
C registers before retiming so that C separate streams of com-
putation are distributed through the pipeline, greatly increas-
ing the aggregate throughput. The effect of C-slow retiming
is to enable pipelining of the critical path, even in the pres-
ence of feedback loops. However, to take advantage of this
increased throughput, there needs to be sufficient task-level
parallelism. The proposed architecture, exploits the BIP
ordering of input samples that provides with sufficient task-
level parallelism to implement C-slow retiming which ena-
bles a deep pipeline in the critical feedback loop (i.e. in
weight update computation).
The inherent task-level parallelism of CCSDS 123.0-B-1

algorithm under BIP ordering enables splitting the weight
update feedback loop computation into at most Nz clock
cycles, since each band has a unique weight vector Wz. After
a sample sz enters the loop, the corresponding spectral band
weight vector Wz is used to calculate the inner product and
then moves on to update before being stored in the weight
vector storage. The same weight vector Wz will only be
required for computation again after Nz cycles, implying that
the weight update feedback loop can utilize a deep pipeline.
In our implementation the weight update feedback loop is
deeply pipelined to achieve very high data-rate performance.
The number of pipeline stages in the critical feedback loops
such as the weight update computation of the predictor and
the accumulation loop in the encoder is a parameter, configu-
rable at compile-time, derived from the minimum Nz of the
configuration. We should note, that in the majority of modern
cases, the number of spectral bands Nz of multispectral and
hyperspectral sensors is large enough (e.g., the AVIRIS opti-
cal sensor extracts 224 spectral bands), to provide enough
task-level parallelism to support deep pipelining.

D. ENCODER

The Encoder, losslessly encodes the mapped prediction
residuals using variable, length-limited Golomb-power-of-2
(GPO2) codes, adjusted based on statistics for each spectral
band, according to the sample-adaptive encoder of FL. As an
option, the encoder can leverage an existing very high data-
rate performance implementation of the block-adaptive Rice
encoder as a separate IP core implementing the CCSDS
121.0-B-2 Lossless Data Compression algorithm [15],

although block-adaptive encoding does not provide any sig-
nificant improvement in compression effectiveness under
BIP ordering. The Encoder consists of five custom logic
units: 1) the Accumulator unit, 2) the Counter unit 3) the
GPO2 code calculator unit, 4) the Coder unit and 5) the
Packer unit and one storage element, the Accumulator Stor-
age as depicted in Figure 7.
The Accumulator unit is responsible to update the value of

each spectral band z accumulator according to the eq. (42) of
[4] that stores adaptive code selection statistics and is fetched
from the Accumulator Storage memory. Moreover, the Accu-
mulator unit initializes the accumulator value for each spec-
tral band z according to the eq. (41) of [4]. The Accumulator
Storage (which can be implemented as BRAM or distributed
memory depending on the number of spectral bands Nz)
stores the code statistics (the accumulator values) for all z
spectral bands.
The Counter unit updates the value of the counter that is

used for the code selection statistics according to the eq. (43)
of [4]. The proposed Encoder takes advantage of BIP encod-
ing order, thus a unique counter for all spectral bands can be
utilized. The GPO2 code calculator unit is responsible for
calculating the parameter kt by evaluating the code statistics
(the accumulator’s value and the counter’s value) according
to the eq. (44) of [4]. The calculation of parameter kt is com-
plex. Therefore, this component is pipelined with intermedi-
ate operations distributed among registers to balance the
logic levels required for each calculation stage. The Coder
unit is similarly pipelined and performs the actual encoding
by composing the codewords (and their length) for every
mapped prediction residual based on the extracted code
selection kz from the GPO2 code calculator unit. Finally, the
Packer unit packs the extracted codewords to double word
(64 bits) packets.

E. RECONFIGURABLE FINE-GRAINED PIPELINING

Pipelining critical computation paths creates a tradeoff
between maximum attainable frequency and register utiliza-
tion. Moreover when the path in question is part of a feed-
back loop the maximum pipeline depth is limited by the
algorithmic loop-bound or the maximum task level parallel-
ism within the loop. Therefore the decision to pipeline or not
a critical path, should be informed by the desirable resource-
performance tradeoff. In case the critical path is not a feed-
forward pipeline but part of a feedback loop a more compli-
cated tradeoff is presented: if the available parallelism to
exploit in the loop, is dependent on input/configuration
parameters, the decision becomes whether to fully exploit
the parallelism and limit the functionality of the IP Core, or
leave parallelism unexploited to allow corner cases of input
configuration. Especially for FPGAs, an IP Core should
offer different choices to the end-user in the throughput-
resource utilization spectrum allowing to fully exploit their
reconfigurability.
Supporting multiple pipeline depths of a path (via an RTL

generic/parameter in VHDL/Verilog), especially within a

FIGURE 7. Sample-adaptive entropy encoder.

96 VOLUME 9, NO. 1, JAN.-MAR. 2021

Tsigkanos et al.: A 3.3 Gbps CCSDS 123.0-B-1 Multispectral & Hyperspectral Image Compression Hardware Accelerator on a Space-Grade SRAM FPGA

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:53:01 UTC from IEEE Xplore.  Restrictions apply. 



loop significantly complicates the RTL in most common
design styles. Consider an FSM driving datapath control sig-
nals where adding a new pipeline stage requires re-organiz-
ing the timing of control signals. For this reason the pipeline
depth in loops is commonly part of the initial requirements
or a result of design-space exploration and is fixed in the
RTL. A well understood technique to pipeline loop paths
is C-slow retiming [14] commonly employed by the CAD
tool, wherein C pipeline registers are added to the loop
path causing the loop to compute a C tasks at a time.
The registers shorten the combinatorial paths, increasing
achievable Fmax. In this work, based on C-slow retiming
technique, we have developed an RTL design pattern, to
allow reconfiguration by generic (or Verilog parameter)
and precisely place registers on the best path sites of a
loop. A pipeline register component is central in this
design pattern; all potential pipeline registers use it rather
than standard registers in the common coding style. The
register component accepts a generic depth to indicate the
number of delay stages which may be zero. We instantiate
this component, in between combinatorial processes imple-
menting (potential) pipeline stages.
To demonstrate the technique consider the simple path in

Figure 8 as an example, which may be part of a loop which
has a loop-bound dependent on a generic parameter. Path 2
is critical and we wish to pipeline it depending on a “g_pd”
generic pipeline depth derived from the loop-bound. After
analysis of the datapath we identify “cutset 0”, a valid cutset
which splits path 2 in two halves. According to the cutset we
place three register components in path 0, path 1 and path 2,
using a new integer constant “p2_s0_en”: path 2 site 0
enable. Similarly for “cutset 1” we place 2 registers guarded
by path 2 site 1 enable “p2_s1_en”. Notice in path 0, which
participates in both cutsets, the pipeline register is instanti-
ated with stages equal to the sum of the two enables
“p2 s1 enþ p2 s1 en”. To derive the two enables depending
on the value of the pipeline budget “g_pd”, in this simple
case we can use “if” switches, in more complicated compo-
nents a static lookup table may be used. If g_pd is greater
than 0 enable the pipeline site 0, if equal to 2 also enable
pipeline site 1. Notice though that this implies a priority of
site 0, if the pipeline budget equals 1, we prefer to place the

register in site 0. The priority of pipelining sites given a bud-
get must be discovered by experiments as performed in the
next section for this IP Core.
To extend this example into a loop, we can consider path 0

to be a token tag. Upon entering the loop, each token is
marked by an incrementing tag. The token caries the tag
along, through the loop pipeline until the loop join. In case
the loop includes memory the tag is a memory address to
write to. By using this tag pattern, the only difference
between a feed-forward pipeline and a pipeline which is a
loop branch; is the fact that the loop branch pipeline must be
shorter than the loop bound. In the predictor loop imple-
mented in this paper, the loop must complete within Nz

cycles, to write the updated weight in the weight storage,
before it needs to be read.
Most synthesis tools can perform retiming/register balanc-

ing optimization, to move registers backwards or forwards in
a path. Therefore precisely placing pipeline registers, should
ideally not be required. Ideally it should suffice to place
“g_pd” registers in the end of a path which the tool may
move backwards to optimally distribute across the path. In
practice however, the effect of automated retiming was found
to be limited as shown by the experiments in the following
section, making precise placement of registers beneficial.
Similar limitations of automated retiming have been reported
in the literature especially for DSPs [23].

F. APPLYING RECONFIGURABLE PIPELINING IN THE

PREDICTOR LOOP

In the proposed architecture which uses BIP encoding order,
the available parallelism in the predictor and encoder loops,
is directly related to the minimum number of spectral bands
the IP Core can support. To allow supporting small spectral
dimension images, but also high throughput performance we
use the pipeline reconfiguration design pattern, which allows
the loop path pipelines to have configurable depth. This
allows the core to be configured by a single generic at com-
pile time, to support spectral dimensions down to a minimum
Nz which internally activates or deactivates pipeline registers
in the critical loop paths. In every case to respect the worst
loop-bound, the loops are pipelined to minimum Nz � 1.
Because the predictor loop path is the design critical path (all
other paths are pipelined enough to have lower delay) this
directly changes the maximum attainable frequency. In the
following, we consider the predictor loop as an example, the
encoder loop is similarly implemented but less critical to
timing.
Although the pipeline reconfiguration design pattern is

applied at the lowest level of the structural hierarchy (i.e.
where the actual operations are performed), a complication
arises. There are multiple paths and multiple possible sites
which may be available for the instantiation of a pipeline reg-
ister for a given pipeline budget, at a given level of hierarchy.
In each level it is not immediately obvious by theoretical
analysis, which distribution of the pipeline budget to the
immediately lower level will yield the highest Fmax. To

FIGURE 8. Reconfigurable pipeline example.

VOLUME 9, NO. 1, JAN.-MAR. 2021 97

Tsigkanos et al.: A 3.3 Gbps CCSDS 123.0-B-1 Multispectral & Hyperspectral Image Compression Hardware Accelerator on a Space-Grade SRAM FPGA

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:53:01 UTC from IEEE Xplore.  Restrictions apply. 



resolve this we perform design space exploration, guided by
synthesis results, to investigate all possible pipeline budget
distributions for each level of hierarchy, starting from the
lowest, toward the highest levels.
To discover the best possible distribution of the pipeline

budget at a given level of hierarchy for each minimum Nz
we perform a set of experiments as follows:

� We set as top level the component immediately higher
in the hierarchy, to those components whose pipeline
distribution is under investigation.

� We expose the generic pipeline depths of lower level
components to the synthesized top level generic port.

� We script the Vivado synthesis flow targeting a Virtex-
7 device and synthesize for all minimum Nz and all
valid pipeline budget permutations.

Using a Virtex-7 device for the experiments allows us to
use the Vivado flow, rather than the ISE flow for Virtex-5
which is more cumbersome to automate. Nevertheless,
results port well between the two flows regarding the distri-
bution of the pipeline budget and minimum Nz scaling,
according to our experiments. We only use the Vivado flow
for this experiment due to the need for automation; all other
experiments use Xilinx ISE. Notice the span of results in the
range plot for each minimum Nz in Figure 9. This implies a

total pipeline budget in the loop, the synthesis estimated best
achievable period is shown (targeting a Virtex-7 part with
retiming optimization enabled).
For each minimum Nz the lowest point in the range is the

best distribution of pipeline registers, the highest is the worst.
This plot showcases the effectiveness of this method and why
it is indeed required. For a single minimum Nz e.g. min.
Nz ¼ 7 depending on the distribution of the pipeline budget
in the path we might incur an overhead up to 85 percent for a
non-optimal distribution of pipeline registers.
It should be noted that not all permutations of pipeline

depth budgets need to be benchmarked by experiments
because they are not all valid at each level of hierarchy. Valid
distributions are guarded by compile time assertions and
ranged integer “pipeline_depth” generic datatypes for each
generic port. This greatly limits the number of required
experiments. Finally in the design process the results of the
best distribution for each applicable pipeline budget are
encoded into a lookup table. In Figure 10 the lookup table
for the top level component of the predictor loop is shown.
Each component has a single generic “pipeline_depth” and
internally a lookup table to distribute this pipeline budget to
the next hierarchical level. In RTL this is implemented using
a combination of constants, pure functions and generics.
Recursively each component uses its pipeline budget and its
hard-coded lookup table to instantiate the immediately hier-
archically lower components, with their pipeline budget as a
generic instantiation. In the predictor loop, the recursion
starts with a budget of Nz � 1 which is distributed to three
components. Figure 11 shows how the pipeline budget is
inherited downwards in the instantiation graph of the predic-
tor loop.

G. SCHEDULING CCSDS 123.0-B-1 PROCESSING

TASKS

In order to describe the exploitation of task-level parallelism
of the CCSDS 123.0-B-1 algorithm under BIP ordering, the
Gantt chart in Figure 12 illustrates the scheduling of process-
ing tasks in the overall pipeline. It should be noted that an
initialization phase of Nz cycles required to initialize the
Accumulator storage for each spectral band according to the
eq. (41) of [4] is not shown in Figure 12. This initialization is
the only component of the total latency, dependent on input
parameters, all other initialization latencies are independent
of the image and due to either pipelining or operations such
as the bitstream header output.

FIGURE 9. Predictor synthesis best achievable period for differ-

ent pipeline distributions for each minimum Nz.

FIGURE 10. Best pipeline budget distribution in the predictor

loop.

FIGURE 11. Pipeline budget inheritance graph.

98 VOLUME 9, NO. 1, JAN.-MAR. 2021

Tsigkanos et al.: A 3.3 Gbps CCSDS 123.0-B-1 Multispectral & Hyperspectral Image Compression Hardware Accelerator on a Space-Grade SRAM FPGA

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:53:01 UTC from IEEE Xplore.  Restrictions apply. 



The data dependency in red shown in Figure 12, illustrates
that the computation of the Inner Product of a sample
Szðt þ 1Þ cannot be started until the weight vector of the pre-
vious sample of the same spectral band SzðtÞ has been
updated. The proposed architecture enables a configurable
fine-grained pipeline of computations in the critical feedback
loop according to a single compile-time configuration param-
eter ðminimumNzÞ. This allows deep pipelines to be config-
ured for images with enough spectral bands but also allows
graceful degradation of performance for multispectral images
with very few spectral bands. It should be noted, however, in
most cases -even for multispectral sensors- the number of
spectral bands Nz is large enough to achieve very high
throughput.
The weight update feedback loop consists of the inner

product calculation, scaled predicted sample calculation, pre-
diction calculation and weight update calculation. These
components are pipelined with a compile-time configurable
number of stages. The sum of the weight update feedback
loop components’ latencies pIP þ pPC þ pWU should be less
than Nz, otherwise the required weight vector for the sample
Szðt þ 1Þ will still be in flight in the loop when it is needed in
the input of the Inner Product.

V. CCSDS 123.0-B-1 IP CORE VERIFICATION/

VALIDATION

The CCSDS 123.0-B-1 IP core has been extensively verified
using RTL simulation using Mentor Graphics Questa and
FPGA-in-the-loop based verification using a significant
amount of test images from the corpus of Hyperspectral and
Multispectral test images (annex A of [5], available in [17]),
as well as, the test pattern image [17] which was explicitly
designed for testing CCSDS 123.0-B-1 implementations and
a series of random images. The ESA software

implementation in C was used as a golden reference model
of CCSDS 123.0-B-1 [18]. The IP core was validated on-
chip using a Xilinx development board as a hardware demon-
strator with a Virtex-5 FPGA interfacing over PCIe.

A. VERIFICATION STRATEGY

Functional verification has been tightly integrated into the
development flow. Three verification phases were performed
at various levels of detail and thoroughness: unit, regression
and integration testing. The overall goal was to enable an
agile development flow by minimizing friction and time
from the inception of a new feature or optimization to its
adoption into the stable version. Version control using a sta-
ble and feature branches was used where new features were
developed in a feature branch and integrated to stable after
passing the integration tests suite.
Unit testing was performed for debugging new features.

To aid debugging, these include inline error checks within
the waveforms to spot the differences with the cycle accurate
golden trace at the earliest moment of a bug’s occurrence.
Unit tests are small and adapted to excite the bug under
examination. After a bug’s resolution, the previously failing
test case configuration is formalized and inserted into the
regression tests suite.
The regression tests represent past bugs or configurations

which are suspect to show bugs in complex areas of the
design. They are usually ran before committing a new ver-
sion into version control and consist of mainly the test pattern
[17], with various configurations and random tests at “corner
case” compile time configurations (very large/small sizes
compared to the generic configurations, compression param-
eters likely to cause overflows etc.).
Integration tests are composed of a set of images from the

corpus of tests [17] which are too large to be run within

FIGURE 12. Scheduling of CCSDS 123.0-B-1 processing tasks when pipeline is configured as (pIP, pPC, pWU, pKt) ¼ ð6; 1; 6; 5Þ.

VOLUME 9, NO. 1, JAN.-MAR. 2021 99

Tsigkanos et al.: A 3.3 Gbps CCSDS 123.0-B-1 Multispectral & Hyperspectral Image Compression Hardware Accelerator on a Space-Grade SRAM FPGA

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:53:01 UTC from IEEE Xplore.  Restrictions apply. 



the normal development flow. They are automatically ran by
the Continuous integration framework, Gitlab-CI [17] for
each RTL version (git commit) on a remote server.
The testing framework is based on VUnit and a set of

python scripts, as well as the C golden model of the compres-
sor [18]. Each test suite is described as a CSV file with a test
on each line and all the compile time (generics) and run-time
(compression) parameters. Python scripts read the tests file
and interpret the parameters to invoke the golden compressor
binary to produce the verification data. Then a testbench
instrumented with VUnit is invoked with the Questa simula-
tor comparing with golden data. The same flow is ran either
on a designer’s workstation for unit and regression tests or
on the remote server running Gitlab-CI, on each git commit,
for the integration tests.

B. HARDWARE DEMONSTRATOR PLATFORM

A hardware functional verification platform was developed
using the Xilinx XUPV5 development board (Figure 13)
which hosts a XC5VLX110T-1. The hardware platform
(Figure 14) leverages the Xillibus system [20] which is an
end-to-end solution for data transfer between an FPGA and a
host. This allows to quickly (compared to simulation) com-
press a significant number of hyperspectral test images and
verify that the compressed bitstream matches the golden ref-
erence model and decompresses to the original image using
the reference software. The Xillibus IP core interfaces with
four asymmetric FIFOs (sample, configuration, compressed
data, and status) to download hyperspectral data to the
FPGA, upload compressed data to the host, configure and
monitor the IP core. Dual clock FIFOs are used to negotiate
the clock domain crossing between the PCIe endpoint and IP
Core domains. The input and output FIFOs directly connect
the IP Core and Xillybus controller. The control and status

FIFOs are connected to logic which drives the IP core
configuration interface and maintains performance and status
metrics.
Host side software is written in Python and runs on Linux,

interfacing with the character devices that the Xillybus driver
presents. Hyperspectral cube data are down-streamed, con-
currently with up-streaming compressed samples and occa-
sionally polling the status registers, in independent threads,
which start after the IP core is configured. Finally, the output
data is decompressed using the reference software to generate
a test pass/fail result.

VI. IMPLEMENTATION RESULTS AND COMPARISONS

The CCSDS 123.0-B-1 IP core was implemented targeting
the Xilinx Virtex-5 FX130T (speed grade -1) FPGA which is
the commercial equivalent of the space-grade Virtex-5QV.
Implementation statistics using representative configurations
are shown in Table 2, including the AVIRIS hyperspectral
instrument (680x512x224; 16bbp), which enables a direct
comparison with other implementations. The on-chip storage
requirements (Distributed RAM and BRAM) depend on the
number of bands: 3 � Nz and ðNx � 2Þ � Nz, samples for the
neighbouring sample storage is required for the spectral slice
buffer, as well as, Nz weight vectors and Nz accumulator val-
ues in the predictor and encoder, respectively.
The proposed implementation of the CCSDS 123.0-B-1

algorithm achieves more than 3.3 Gbps data rate performance
when configured for the AVIRIS hyperspectral instrument.
Such a data-rate performance enables a seamless integration
along with SpaceFibre, the next-generation very high-speed
serial data-line (ECSS-E-ST-50-11C) which supports lane
rates up to 3.125 Gbps when targeting the same space-grade
FPGA technology [21]. The implementation for min.
Nz ¼ 14 can fully utilize the available throughput of a

FIGURE 13. Development board used for Hardware Demonstrator. FIGURE 14. Validation/verification platform block diagram.

TABLE 2. FPGA implementation statistics (X5VFX130T-1).

Image AVIRIS (680x512x224; 16bbp) MODIS (2030x1354x17; 12bbp) CRISM (640x420x545; 12bbp)

Device utilization 9462 (11%) LUTs 9641 (11%) LUTs 17070 (20%) LUTs
83 (27%) BRAMs 23 (7%) BRAMs 179 (60%) BRAMs
6 (1%) DSP48E 6 (1%) DSP48E 6 (1%) DSP48E
9990 (12%) FFs 10554 (12%) FFs 23377 (28%) FFs

MS/sec 213 213 213
Gbps 3.3 2.5 2.5

� Min Nz ¼ 14.

100 VOLUME 9, NO. 1, JAN.-MAR. 2021

Tsigkanos et al.: A 3.3 Gbps CCSDS 123.0-B-1 Multispectral & Hyperspectral Image Compression Hardware Accelerator on a Space-Grade SRAM FPGA

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:53:01 UTC from IEEE Xplore.  Restrictions apply. 



SpaceFibre lane, with a comfortable margin for possible var-
iations in PnR quality of results.
Figure 15 shows the scaling of post-PnR throughput per-

formance of the implementation, depending on the min.
Nz generic with all other generics configured for the AVI-
RIS image. This validates the proposed reconfigurable
pipeline architecture; performance increases with the
increase in pipeline depth afforded by larger min. Nz and
the allocated best pipeline budget distribution. It should be
noted that in post-PnR STA, the performance of deep pipe-
lines increases significantly with values of min. Nz > 11,
a fact that is not apparent in synthesis results (Figure 9)
that provide only with rough estimations on FPGA
routing delays.
Similarly in Figure 16 considering the effect of the min. Nz

generic on resource utilization, the results are as expected.
LUT utilization is not significantly affected (small variations
are due to different implementation strategies) while flip-flop
utilization is increased due to pipelining.
Other FPGA implementations of CCSDS 123.0-B-1 have

been recently presented in the literature. In [13], NASA FL
was implemented targeting Virtex-5 (SX50T) and Virtex-6

(LX240T) FPGAs. It supports only sample-adaptive encod-
ing, 13-bit maximum bit depth, BIP ordering and P ¼ 3.
When targeting the Virtex-5 technology, it requires 12697
slice LUTs. The maximum frequency is 40 MHz, compress-
ing one sample every clock cycle, which yields a throughput
of 40 MSamples/sec. The SHyLoC IP core [11] is fully con-
figurable and supports different compression orders (BSQ,
BIP, BIL). According to synthesis results using a configura-
tion with BIP architecture that enables compressing one sam-
ple every clock cycle and does not require external memory,
number of prediction bands P ¼ 3, sample-adaptive encod-
ing and image dimensions targeting the AVIRIS instrument
when targeting the same Virtex-5 FX130T FPGA technol-
ogy, it requires 4645 LUTs (5.67 percent of total), 11
DSP48E (3.44 percent of total) and 74 BRAMs (24.8 percent
of total). The maximum frequency is 85 MHz, which yields a
throughput of 85 MSamples/sec.
Detailed statistics comparing the CCSDS 123.0-B-1 FPGA

implementation in this paper with existing implementations
are provided in Table 3. All implementations require very
low FPGA resources for the typical image dimensions and
only the BIP implementations can achieve very high data-

FIGURE 15. Post PnR performance depending on min. Nz generic. FIGURE 16. PostPnRresourceutlizationdependingonmin.Nzgeneric.

TABLE 3. Comparison with other FPGA implementations.

Other FPGA Implementations This paper
NASA FL [13] SHyLoC [11]

Sample ordering BIP BIP BIP
Number of prediction bands (P) 3 3 3
Image dimensions (Nx, Ny, Nz) 640, 32, 427 680, 512, 224 680, 512, 224
Max bit depth (D) 13 16 16
Target device Xilinx Virtex-5 (SX50T) Xilinx Virtex-5 (FX130T) Xilinx Virtex-5 (FX130T)
Device utilization (Virtex-5 resources)
LUTs 12697 4645 9462
BRAMs 8 74� 83�

DSP48E 3 11 6
Max frequency (MHz) 40 85 213
Max throughput (MSamples/s) 40 85 213

�Does not require external memory.

VOLUME 9, NO. 1, JAN.-MAR. 2021 101

Tsigkanos et al.: A 3.3 Gbps CCSDS 123.0-B-1 Multispectral & Hyperspectral Image Compression Hardware Accelerator on a Space-Grade SRAM FPGA

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:53:01 UTC from IEEE Xplore.  Restrictions apply. 



rate performance. When compared with other implementa-
tions targeting the same FPGA reference technology, the pro-
posed hardware accelerator sets the new state-of-the-art in
data-rate performance at 213 MSamples/s (3.3 Gbps). Notice
that, the initial latency (sum of the number of bands and the
total pipeline stages) is negligible for typical hyperspectral
image cubes (291 cycles for the AVIRIS image) and is
already included in the FPGA performance figures.
Although the power consumption of current GPU technol-

ogy is prohibitive for on-board deployment, Table 4 presents
a comparison of a space grade FPGA implementation with
CPU and GPU implementations to set a baseline. It should
be noted that the CPU and GPU implementations of [24]
leverage image segmentation and segment level parallelism
to boost throughput performance at the cost of decreased
compression effectiveness [5]. Comparing on the basis of
performance per watt, the FPGA implementation is superior
by an order of magnitude. However, exploitation of segment
level parallelism is also possible in a space-grade FPGA
implementation using multiple compression engines that
would achieve a higher performance than GPU implementa-
tions while maintaining the performance per watt advantage.
The power consumption for the Xilinx FPGA was estimated

by the Xilinx Power Estimation tool (XPE). For the power esti-
mation, the clock frequency was set to the maximum achiev-
able (213 MHz) while the used resources were imported from
Xilinx ISE. The junction temperature (Tj) was set to 85�C.

VII. CONCLUSION

In this paper, we proposed a novel, high data-rate performance
hardware accelerator, implementing the CCSDS 123.0-B-1
algorithm as an IP core targeting space-grade FPGAs. For the
first time, the introduced architecture based on the principles
of C-slow retiming, exploits the inherent task-level parallel-
ism of the CCSDS 123.0-B-1 algorithm under BIP ordering
and implements a reconfigurable fine-grained pipeline in criti-
cal feedback loops, achieving high throughput performance.
Moreover, it is a single FPGA solution without external DDR
memory requirement that results in significant savings in
SWaP-C (Size, Weight, Power and Cost).
The proposed CCSDS 123.0-B-1 IP core achieves far

beyond the state-of-the-art data-rate performance with a

maximum throughput at 213 MSamples/s (3.3 Gbps @ 16-
bits) using 11 percent of LUTs and 27 percent of BRAMs of
the Virtex-5QV FPGA for a typical hyperspectral image con-
figuration. Such a high data-rate performance can leverage the
full throughput of a SpaceFibre lane. To the best of our knowl-
edge, it is the fastest implementation of CCSDS 123.0-B-1
targeting a space-grade reconfigurable SRAM FPGA to date.

REFERENCES

[1] I. Blanes, E. Magli, and J. Serra-Sagrista, “A tutorial on image compres-
sion for optical space imaging systems,” IEEE Geosci. Remote Sens. Mag.,
vol. 2, no. 3, pp. 8–26, Sep. 2014.

[2] The Consultative Committee for Space Data Systems, Lossless Data Com-
pression Recommended Standard CCSDS 121.0-B-2, 2012.

[3] The Consultative Committee for Space Data Systems, Image Data Com-
pression Recommended Standard, CCSDS 122.0-B-1, 2005.

[4] The Consultative Committee for Space Data Systems, Lossless Multispec-
tral & Hyperspectral Image Compression Reccomended Standard, CCSDS
123.0-B-1, 2012.

[5] The Consultative Committee for Space Data Systems, Lossless Multispec-
tral & Hyperspectral Image Compression Informational Report, CCSDS
120.2-G-1, Dec. 2015.

[6] M. Klimesh, “Low-complexity lossless compression of hyperspectral
imagery via adaptive filtering,” IPN Progress Report, vol. 42-163, pp. 1–
10, Nov. 2005.

[7] J. E. Sanchez, E. Auge, J. Santalo, I. Blanes, J. Serra-Sagrista, and
A. Kiely, “Review and implementation of the emerging CCSDS recom-
mended standard for multispectral and hyperspectral lossless image cod-
ing,” in Proc. 1st Int. Conf. Data Compression Commun. Processing,
Jun. 2011, pp. 222–228.

[8] Radiation-Hardened, Space-Grade Virtex-5QV Family Data Sheet DS192,
Xilinx, Inc., Jan. 2018.

[9] G. Swift, C. Carmichael, G. Allen, G. Madias, E. Miller, and R. Monreal,
“Compendium of XRTC radiation results on all single-event effects
observed in the Virtex-5QV,” in Proc. Conf. ReSpace/MAPLD, Aug. 2011.

[10] L. Santos, L. Berrojo, J. Moreno, J. F. Lopez, and R. Sarmiento, “Multi-
spectral and hyperspectral lossless compressor for space applications
(HyLoC): A low-complexity FPGA implementation of the CCSDS 123
standard,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9,
no. 2, pp. 757–770, Feb. 2016.

[11] L. Santos, A. Gomez, R. Sarmiento, L. Fossati, and D. Merodio, “Architec-
tural design and FPGA implementation of CCSDS-123 and CCSDS-121
IP cores for lossless satellite data compression,” in Informal Proc. 5th ESA
Int. Workshop On-Board Payload Data Compression, Sep. 2016.

[12] G. Theodorou, N. Kranitis, A. Tsigkanos, and A. Paschalis, “High perfor-
mance CCSDS 123.0-B-1 multispectral & hyperspectral image compres-
sion implementation on a space-grade SRAM FPGA,” in Informal Proc.
5th ESA Int. Workshop On-Board Payload Data Compression, Sep. 2016.

[13] D. Keymeulen, N. Aranki, A. Bakhshi, H. Luong, C. Sarture, and
D. Dolman, “Airborne demonstration of FPGA implementation of Fast
Lossless hyperspectral data compression system,” in Proc. NASA/ESA
Conf. Adaptive Hardware Syst., Jul. 2014, pp. 278–284.

[14] C. Leiserson, F. Rose, and J. Saxe. “Optimizing synchronous circuitry by
retiming,” in Proc. 3rd Caltech Conf. VLSI, Mar. 1983, pp. 87–116.

[15] N. Kranitis, I. Sideris, A. Tsigkanos, G. Theodorou, A. Paschalis, and
R. Vitulli, “An efficient FPGA implementation of CCSDS 121.0-B-2 loss-
less data compression algorithm for image compression,” J. Appl. Remote
Sens., vol. 9, no. 1, May 2015, Art. no. 097499.

[16] E. Auge, J. E. Sanchez, A. Kiely, I. Blanes, and J. Serra-Sagrista, “Perfor-
mance impact of parameter tuning on the CCSDS-123 lossless multi- and
hyperspectral image compression standard,” J. Appl. Remote Sens., vol. 7,
no. 1, Aug. 2013, Art. no. 074594.

[17] The Consultative Committee for Space Data Systems, Corpus of Hyper-
spectral and Multispectral Images, [Online]. Available: http://cwe.ccsds.
org/sls/docs/sls-dc/123.0-B-Info/TestData, Accessed on: Sep. 2017.

[18] ESA TEC-EDP Data Compression Tools, CCSDS 123.0-B-1 Multispectral
and Hyperspectral Lossless Data Compression SW, [Online]. Available:
http://www.esa.int/Our_Activities/Space_Engineering/Onboard_Data_
Processing/Data_compression_tools, Accessed on: Sep. 2017.

[19] VUnit testing for VHDL, [Online]. Available: http://vunit.github.io,
Accessed on: Sep. 2017.

TABLE 4. Performance comparison with CPU/GPU implementa-

tions (with segmentation).

Platform
Time
(ms)

MSamples/s Watts MSamples/s/W

CPU Intel i7 2760QM 2.4 569 127.89 <45� 2.84
GHz OpenMP (4core) [24]
GPU NVIDIA GeForce 226 321.91 <75� 4.29
GTX 560M CUDA [24]
GPU NVIDIA GeForce 204 356.63 <150� 2.37
GTX 560M CUDA(2x) [24]
Virtex-5 Space Grade FPGA
(this paper)

366 213.00 4.72�� 45.13

�max TDP, �� Using Xilinx XPE (Tj ¼ 85�C).

102 VOLUME 9, NO. 1, JAN.-MAR. 2021

Tsigkanos et al.: A 3.3 Gbps CCSDS 123.0-B-1 Multispectral & Hyperspectral Image Compression Hardware Accelerator on a Space-Grade SRAM FPGA

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:53:01 UTC from IEEE Xplore.  Restrictions apply. 

http://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData
http://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData
http://www.esa.int/Our_Activities/Space_Engineering/Onboard_Data_Processing/Data_compression_tools
http://www.esa.int/Our_Activities/Space_Engineering/Onboard_Data_Processing/Data_compression_tools
http://vunit.github.io


[20] Xillibus IP core product brief v1.9, Jan. 28, 2016. [Online]. Available:
http://xillybus.com/downloads/xillybus_product_brief.pdf, Accessed on:
Sep. 2017.

[21] SpaceFibre IP Core data sheet, Star Dundee, [Online]. Available: https://
www.star-dundee.com/sites/default/files/SpaceFibre%20IP%20Core%
20Data%20Sheet.pdf, Acessed on: Sep. 2017.

[22] Continuous Integration software, Gitlab, Inc. [Online]. Available: https://
about.gitlab.com/features/gitlab-ci-cd/, Accessed on: Sep. 2017.

[23] B. Ronak and S. A. Fahmy, “Mapping for maximum performance on
FPGA DSP blocks,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 35, no. 4, pp. 573–585, Apr. 2016.

[24] B. Hopson, K. Benkrid, D. Keymeulen, and N. Aranki, “Real-time CCSDS
lossless adaptive hyperspectral image compression on parallel GPGPU &
multicore processor systems,” in Proc. NASA/ESA Conf. Adaptive Hard-
ware Syst, 2012, pp. 107–114.

ANTONIS TSIGKANOS (M’17) received the
BSEE degree from the Electrical and Computer
Engineering School of the National Technical Uni-
versity of Athens. He is working toward the PhD
degree from the Department of Informatics and Tel-
ecommunications, NKUA. His current research
interests include on-board payload data processing
systems, SoC design, dependable and reconfigura-
ble computing, and reliability. He is a member of
the IEEE.

NEKTARIOS KRANITIS (M’03) received the
BSc degree from the Department of Physics, Uni-
versity of Patras, Patras, Greece, in 1997, and the
PhD degree from the Department of Informatics
and Telecommunications, University of Athens,
Athens, Greece, in 2005. Currently, he is a postdoc-
toral researcher with the Department of Informatics
and Telecommunications. He has published more
tahn 50 papers in peer reviewed transactions, jour-
nals, and conference proceedings. His current
research interests include on-board payload data
processing systems and dependable computer
architecture. He is a member of the IEEE.

GEORGE THEODOROU (M’06) received the
BSc, MSc, and PhD degrees from the Department
of Informatics and Telecommunications, NKUA.
Currently, he is a senior design engineer in Xilinx
at Optical Network Solutions Group. He has pub-
lished more than 10 papers in peer reviewed trans-
actions, journals, and conference proceedings. His
current research interests include high-speed IP
core solutions for OTNs, on-board payload data
processing systems, FPGA-based network architec-
tures, microprocessor and SoC design, dependable
computer architecture, memory testing, and reli-
ability. He is a member of the IEEE.

ANTONIS PASCHALIS (M’97) received the BSc
degree in physics, the MSc degree in electronics
and computers, and the PhD degree in computers,
all from the Department of Physics, National and
Kapodistrian University of Athens, Athens, Greece,
in 1983, 1986, and 1987, respectively. He is a pro-
fessor with the Department of Informatics and Tele-
communications, University of Athens, Athens. He
has published more than 150 papers (22 IEEE
Transactions) and holds a U.S. patent. His current
research interests include reconfigurable payload

data processing units and high-speed IP cores for space applications, VLSI
design and testing, and dependable computer architecture. He is a “Golden
Core Member” of IEEE Computer Society and has participated in several
tens of organizing and program committees of international events (9 times
as General Chair) in the area of design and test. He is a member of the IEEE.

VOLUME 9, NO. 1, JAN.-MAR. 2021 103

Tsigkanos et al.: A 3.3 Gbps CCSDS 123.0-B-1 Multispectral & Hyperspectral Image Compression Hardware Accelerator on a Space-Grade SRAM FPGA

Authorized licensed use limited to: University of Athens. Downloaded on September 28,2021 at 16:53:01 UTC from IEEE Xplore.  Restrictions apply. 

http://xillybus.com/downloads/xillybus_product_brief.pdf
https://www.star-dundee.com/sites/default/files/SpaceFibre%20IP%20Core%20Data%20Sheet.pdf
https://www.star-dundee.com/sites/default/files/SpaceFibre%20IP%20Core%20Data%20Sheet.pdf
https://www.star-dundee.com/sites/default/files/SpaceFibre%20IP%20Core%20Data%20Sheet.pdf
https://about.gitlab.com/features/gitlab-ci-cd/
https://about.gitlab.com/features/gitlab-ci-cd/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


