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Abstract

The non-linear (in particular the semi-linear) Schrédinger equation, very often referred to by the
acronym NLSE, is a universal model describing the evolution of complex field envelopes in non-
linear dispersive media; it appears in a variety of physical contexts, ranging from optics to fluid
dynamics and plasma physics, and it has attracted a huge interest from the rigorous mathematical
analysis point of view, as well. The importance of the NLSE model is not restrained to the case of
conservative systems, but it is also associated to dissipative models. Many of the closely connected
to the NLSE pattern formation phenomena, emanate via the genesis of localized structures with
finite spatial support, or with sufficiently fast spatial decay, the so-called solitons. Among the
various types of waves whose amplitude is modulated, there are two principal kinds of solitons,
depending on the category of the non-linearity; in the case of an attractive (or focusing) medium,
the non-linearity causes the formation of structures termed “bright solitons”, while in the case of
a repulsive (or defocusing) medium, the non-linearity generates “dark solitons” (i.e., non-linear
solitary waves having the form of localized dips in density, that decay off of a continuous-wave
background; if the density of the dip tends to zero, the dark solitons are named “black”; otherwise
“grey”).

Theoretical physical studies on dark solitons started in 1971, by the work of T. Tsuzuki [45] in
the context of Bose-Einstein condensates. Two years later, in [50], V. E. Zakharov and A. B. Shabat
demonstrated the complete integrability of the defocusing NLSE utilizing the Inverse Scattering
Transform (incidentally, the same authors had shown the integrability of the focusing NLSE in
[49]). The progress in the theory after that was very rapid and immense. As for experimental
results, the progress was equally impressive: after the “early age” experiments of the 1970s, the
“new age”, that emerged in the middle of the first decade of the 21st century, is a period of
spectacular progress. These led to a vast amount of literature. A detailed presentation of the
physical studies (theoretical and experimental) and of the recent progress regarding the defocusing
NLSE is contained in [33], that incorporates an extensive bibliography.

Regarding the rigorous mathematical analysis of the NLSE, the books [6], [10], [11], [42], [43]
are classical by now. The more recent books [I4], [I7], [36], also contribute substantially to the
field. The reference lists in all these books are representative of the huge interest and amount of
research work on the NLSE.

In this doctoral thesis, we are interested in two problems involving the NLSE. The first one is
the quest for and the study of a special type of solutions of the defocusing NLSE which do not
vanish at the spatial extremity. The second one is the study of the “inviscid limit” of the linearly
damped and driven NLSE. Below follows a brief presentation of both the questions that we raise,
as well as the conclusions that we reach.

Non-vanishing solutions of the defocusing NLSE. For an interval Jo € R with 0€ Jg, an
open U cR", a differentiable a=(a;;); U - C™", as well as a twice-differentiable ¢ : U - C

ig=1" _
which survives at the boundary or at infinity, we search for a twice-differentiable u : JoxU — C
that solves the n-dimensional initial/“boundary”-value problem for the NLSE with pure power
non-linearity
i%% — div(a" v (u+Q)) + A (Ju+¢|"+7) (u+¢) =0, in J§xU
u=ug, in {t=0}xU (1)

u =0, in Jyx9U, andumo, in JoxU,

for AeR*, a€(0,00) and reR. The above problem arises from the search for solutions of the form

v(t, ) =g ATt (u(t,z)+¢(z))

vi
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for the n-dimensional NLSE problem
i% - div(aTVv) +Av[*v =0, in J§xU
v =1, in {t=0}xU (2)
v#0, in JoxdU, and v + 0 when |z| / oo, in JoxU.

If
10 0
a=id= E) 1 0 (3)
00 -~ 1

that is div(aTVu) = Au, then the differential equation in 1) is known as “defocusing” (or “self-
defocusing”) when A >0 and “focusing” (or “self-focusing”) when A < 0. Here, we extend this
definition: if

Re(§ . ag) > 9|§|27 a.e. in U, for every £eC", for some >0 (uniform ellipticity of a) (4)

and
a=aT, ie. a;=aj, ae. in U (self-adjointness of a), (5)
then we say that the differential equation in is defocusing if A>0 and that it is focusing if A<0.

It is also direct to check that implies that £ -af = ¢-a€ a.e. in U, i.e - af is real-valued a.e. in
U.
For example, well known solutions of the defocusing problem for U=R, a=id and a=2, are

the black solitons
it A\
v(t,x)=e"" tanh | + 5) )

The defocusing problem for U=R" with n=1,2,3 and

reN, ifn=1,2
=1, ifn=3,

a=2T, for { (6)

was first studied in [I9]. Here, we extend the results of the aforementioned paper, not only by
weakening the assumptions, but also by considering more general cases of U SR", other than the
Euclidean space itself. Moreover, we study the regularity of the solutions.

The above results are included in the papers [24], [25], [23].

The inviscid limit of the linearly damped and driven NLSE. For U, a, A and « as in ,
as well as for T'€ (0, 00), we approximate a solution v of the n-dimensional initial/ “boundary”-value
problem for the NLSE with the pure power non-linearity

% — div(a"vv) +Ao|"0 =0, in (0,7)xU
v=wg, in {t=0}xU (7)
v=0, in [0,T)x0U,
by a sequence {u,},, of solutions of the commonly used in applications initial/“boundary” value
problems for the linearly damped and driven NLSE
i%—? - div(aTVu) +3\|u|au +iyu=f, in (0,T)xU
u=1up, in {t=0}xU for ve(0,00), (8)
u=0, in [0,T)x9U,
as Ym N 0, f, & 0 and ug,, - v (the convergences will be rigorously interpreted), after we first
study the solvability of the above problems. We also estimate the rate of this approximation when

n=1. In particular, we extract a sufficient relation between the external force f and the constant
of damping ~ of the form

[£1=0(7), as v 0,

in order to get the aforementioned approximation results.
The above results are included in the paper [22].
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Even though the techniques employed here can be used to deal with additional cases of non-
linearities, such as the saturated one, we choose to present the results only for the case of pure
power non-linearity. This is due to the fact that this kind of non-linearity is the commonest in
applications, and also acts as the model case for every other potential non-linearity.

We also emphasize that we present here an alternative technique for the existence results in the
weak sense, in both bounded and unbounded sets, that differs from the classical one of “regularized
nonlinearities” presented in [10] (see Theorem 3.3.5 therein). As we show here, this technique not
only allows us to rigorously derive an estimate for the energy of the solutions, but it also can
be applied to derive regularity results for the solutions. We note that the aforementioned energy
estimate is formally obtained (this is what is done in a plethora of published papers), by taking
the scalar product with i%. However, for a weak solution, i.e. a solution with values in H}(U),
%1; belongs merely to H~!(U), and thus this practice is not justified.

As far as the regularity of the solutions is concerned, we highlight that the applicability of the
above technique passes through the exact determination of the dependence of the elliptic regularity
estimates from the properties of an appropriate set in which the second-order elliptic problem is
considered. That drives us to review the whole regularity theory for a special (yet quite large)
class of appropriate sets, which we call sets with uniformly m-Lipschitz boundaries, for meN. This
review, along with a presentation of useful, already known and new results from the theory of the
Sobolev spaces, is included in the introductory first chapter of the present thesis.



Chapter 1

Preliminaries

1.1

Notation

We start with some notation used throughout the thesis:

1.

1.2

Here,

ones.

We write C' for any positive constant. Such a constant may be explicitly calculated in terms
of known quantities and may change from line to line and also within a certain line in a given
computation. We also employ the letter K for any increasing function K : [0, 00]™ — (0, 00],
for some meN.

. When an element appears as subscript in an other element, the first one denotes that the

second one depends on it, while its absence designates either independence or “harmless”
dependence. We also apply the classic method of writing an element as a function of another
one, in order to denote an dependence. The presence of the subscript -, to a differential
operator for “space”-variables indicates that we consider the operator with the weak (i.e.
distributional) sense, while the absence indicates differentiations of the ordinary sense.

We write U for any non-empty open CR", as well as J for any non-empty open interval. If,
in addition, 0€ J° we write Jy for every such interval. We also define F(U) to be the space
of functions with U for their domain.

If ue F(U;C) and also every derivative, in some sense S, of the kth order (keNp), i.e. every
Dgu, with e Ny and |a = k, exists, then Vgu stands for the vector of components those
derivatives. Moreover, if ue F(U;C™), for meN, and also every Vsu;, for j=1,...,m, exists,
we then write Jsu for the Jacobian matrix, i.e.

Jsu = (dsu;)

j=m,i=n | ~mxn
gyi=1 € ‘7:(U7 (C )?

as well as det(Jsu) for its determinant. The Jacobian matrix is essential for the change of
variables formula (see, e.g., Theorem 9.52 in [35]), which plays essential role for us here.

. For every meN, X™(U) stands for the Zhidkov space over U, defined as the Banach space

X"™(U)={ueLl™(U)|VhueLl?(U), for k=1,...,m},

w
equipped with its natural norm. A typical example is tanh e N7o_; X" (R). We note that
the first version of such spaces over R is introduced in [5I] and a generalization for higher
dimensions (along with certain modifications) is done in [52], [18], [20] and [19]. Here, we
consider X™ over any U.

Following the notation of, e.g., [15] and [44], if v : JxU — C, with u(t,-) € F(U) for each
teJ, then we associate with v the mapping u : J — F(U), defined by [u(t)](z) =u(t,z),
for every zeU and teJ. For the weak derivative (when it exists) of the “time”-variable of a
function-space-valued function u, we simply write u’.

Definitions and basics

we critically review some useful, already known definitions and results, and we provide new



2 1.2. DEFINITIONS AND BASICS

1.2.1 Second-order, symmetric, uniformly elliptic operators

The characterization “uniformly” is used in [I5]. Other adverbs also used in the bibliography are,
e.g., “strictly” in [26] and “strongly” in [38].

Definition 1.2.1. For a:(aij)zjzleL“’(U) satisfying and @), we write
Ly=Ly(a,0): {ueLP(U) for some pe[l,o0] |uneL2(U)} - H(U)

for the linear and bounded operator

(Louo)= [ Guv-avyade= [ 5 o (0m) (2h0)ds.

3,5=1

for every ue{ueLp(U), for some pe[1, 0] |uneL2(U)}7 for every ve HY (U).
Moreover, we set
L:{uell (U)|VyueL2(U)}" >R
for the double-entry form
n
Llu,v] = Re(fU Vb avwﬂdx) = Re(fU 7,;1 a;; (0L,a) ((“)iv)dgc)7
for every u,v e{ueLj, (U)| uneLZ(U)}.
Additionally, if ae W (U) we define
Ly=Ly(a,0): {ueLi, (U)|V]uel*(U), for j=1,2} - L*(U)

for the linear operator

Lou=~div, (™) = 3 0% (ayi (9hu),

7,7=1
for every ue{ueL} (U)|V,ueL*(U), for j=1,2}.

Definition 1.2.2. For every m e Ny and U, we consider that the space H™(U) = W™2(U) is
equipped with the inner product (*, *)Hm(U) — C defined as

(w4, V) g 17y = > f (Dgu) (Dgv)dz, Yu,ve H™(U).
0<|ajcm U
When m=0, we simply write (*,*)=(*,*) grory = (*, %) 12(17) -

Remark 1.2.1. As we will find out below (see, e.g., [Lemma 2.3.1), it would be more practical to
define the inner product in|Definition 1.2.9 as it is done in [38], i.e.

(@) ny = Y [ (DLw) (Div)da, Yu,v e H(U),

0<|alsm

in order to keep the notation between the real case and the the complex one consistent. However,
we avoid doing so, because it is not the commonest practice.

Definition 1.2.3. We write
{Up} = {U satisfies the criterion for the validity of the Poincaré inequality for H&(U)}

We recall that the Poincaré inequality for the space H}(U) for some U (see, e.g. Theorem 13.19
in [38], or Theorem, Paragraph 6.30 in [1l]) implies that there exists C=Cy such that

lul 12 ) < CIVwull oy, YueHg(U).

Evidently, C >1. For every Up, we write Cy, 21 for the “smallest” constant of the respective
inequality, that is

Cup = inf {C| [ul gy < CIVwtl 2oy, VueHy(U) 1.
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Proposition 1.2.1. Let Up be arbitrary. Then, every L, (a,0) induces an isomorphism from
H(Up) onto H*(Up).

Proof. Let L (a,8) be arbitrary.

Step 1
We write Hj (Up) for the restriction of the vector space Hj(Up) (= Hg(Up;C)) over the

field R. We claim that the form L[*, =] restricted to H&(Up)2 induces a (real-valued) inner
product for Hg (Up). Indeed:

1. Llu,v]=L[v,u], for every u,v e H}(Up): In view of , for every such u and v we have
Lluv] = Re( [3 a (@) (agv)dx) -
ig=1
- Re( [ 3 a (o) (6i}v)d:c) - Re( [ 3 asi(aiw) (ag,v)dx) -

,j=1 i,5=1
_ > a0 (895) (6 -
= Re(/{}jél a;i (0%,) (8wu)dz) L[v,u].

2. The map L[-,v] : Hy, (Up) — R is linear, for every fixed v e Hj(Up): Let such an
arbitrary v be fixed. It directly follows that, for every uy,us € H} (Up) and every seR
we have

Lug + sug,v] = L{ug,v] + sLuz,v].
3. L[u,u]>0, for every ue H} (Up)~{0}: In virtue of (4)) along with the Poincaré inequality,
for every such u we have

1
Llu,u] 2 0|Vaul T2y 2 K(e, CU)nmip(UP) >0, (1.2.1)

We then write
1
(Ho, (), (L[, ])?),
for the respective normed (Banach) space.

Step 2
We fix an arbitrary fe H-'(Up). Employing a known result concerning the bijective isomerty
between the complex dual and the real dual (see, e.g., Theorem 11.22 in [§]), we get that

Re(f)e(HéR(Up))* with HRe(f)”(HéR(UP))* = HfHH—l(UP).

Appling the real version of Riesz-Fréchet representation theorem (see, e.g., Proposition 5.5
in [§]) to the linear and bounded functional Re(f) we get a unique ue H}(Up), such that

Re({f,v)) = L[u,v] = Re({Lwu,v)), for every ve Hy(Up) (in view of (5)) (1.2.2)

and also
(Elusa)? = IR g 0y = 1Lty (123)
Or
Setting iv instead of v in (|1.2.2), we get
Im({f,v)) = Im({(Lpu,v)), for every ve Hi(Up). (1.2.4)

Combining (|1.2.2)) and (1.2.4), we deduce that f=L,u. Hence, from the arbitrariness of f
and the uniqueness of u we deduce that £, : H}(Up) — H~'(Up) is bijective. Moreover, from

(1.2.3) along with (1.2.1)), we have, for every (u, f)e Hi(Up)x H '(Up) such that L,u=f,
that

1
”fHH—l(UP) < IC(Ha”Lw(Up))HUHH(%(UP) and HU’HHl(UP) < K(@aOUp)”fHH—l(UP)-

It follows that both linear operators, £, : H3 (Up) - H~!(Up) and its inverse, are continuous,
and the proof is complete.

O
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1.2.2 Restriction and extension-by-zero operators
We begin with a definition.
Definition 1.2.4. For every U; cUs, we write

R(Uz,U1) : F(Uz) — F(Ur)
for the (linear) restriction-to-Uy operator, i.e.

[(R(Us,Uy)) u] (x) =u(x), Yrely, YueF(Us)

and also

E(Ur,Uz) : F(Ur) » F(Us)
for the (linear) extension-by-zero-to-Us operator, i.e.

u(zx), if el

YueF(Uy).
0, if welpty, LT UD)

[(Eo(Ur,Uz)) u] (z) = {

We further define
(R(U2,U1)) (F(U2)) = {(R(U2, U1)) u|ue F(Uz) }
and
(€0(U1,U2)) (F(U1)) = {(Eo(U1, Uz)) u|ueF(U1)}.

For convenience, in this work we follow the common convention and we use the restriction
operators without write them down, for the cases where this practice does not cause any confusion.
The following result is basic.

Proposition 1.2.2. Let meNy, pe[1,00] and Uy CUs be arbitrary. Then R(Usa,Uy) restricted to
W™P(Uy) maps isometrically into (not onto) W™P(Uy), with

(Dg0(R(Uz,Un))) u=((R(Usz,Ur))oDy) u, a.e. in Uy,

1.2.5
for every aeNy with 0<|a|<m, ( )

for every ue W™P(Usy). Hence, W™P(Us) - (R(Usa,Uy)) (W™P(Us)), if we consider the right-

hand space as a normed space equipped with its natural norm.

Proof. Let ueW™P(U;) be arbitrary. Evidently,
((R(Uz,U1))oDy,) u) e LP(Ur) with [|((R(Uz, U1))o D) ul 1o v,y < IDwttl 1o (ury)

for every aeNjj with 0<|a|<m. It is only left for us to show (1.2.5) by the definition of the weak
derivatives. For every ¢ eC°(Uy) and every « as above, we have from

1. the fact that (D%o(Ey(U,Us))) % = ((Eo(Uy,Usz))oD*) 4 everywhere (in Us), which is direct
consequence of the point-wise definition of (U, Us),

2. the definition of the weak derivatives,

that
[, (R@200)w) Ddr = [ (€U, U)o D7) i)dar
E L u@ e ) )i 2 () [ (D) (Ea(U1,U2)) ) =
= (D [ (R, U)o DG w) v,

which is the desired result. O
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Moreover, in the bibliography the operator & is typically considered for the case Us = R™.
Here, we generalize an already known result (see, e.g., Lemma, Paragraph 3.27 in [I]) concerning
& restricted to W P-spaces, for every meNy and every pe[1,c0]. Apropos the W;""-spaces, we
first make a note about them, before we state and prove the aforementioned result.

Remark 1.2.2. We employ the definition
WYP(U)=LP(U) =W (U), Vpe[l, 0],

which makes sense, since C°(U) is dense in LP(U) with respect to the strong topology, for every
pe[l,0), as well as CF(U) is dense in LP(U) with repsect to the weak™ topology, for every
pe(1l,00]. Of course, the analogous conclusions are true for the Wy"'-spaces (see also Remark

11.15 in [35)).

Lemma 1.2.1. Let Uy ccUs,. Then there exists an open and bounded U such that Uy ccU ccUs
with OU being Lipschitz continuous (see, e.g., Definition 9.57 in [35]).

Proof. 1If Uy#R"™, we set

6 o diSt(U;,aUz) >O,

or we fix an arbitrary § > 0, otherwise. We consider the open cover
{B(l’, 6)}I€3U1

of OU;. Since 9U; is compact there exists meN and {x; };’11 cOU; such that
{B(zj ) 5) };n=1

is also an open cover of QU;. Setting

U= U1UU B(.Ij,(S),
j=1

it is direct to check that U has the desired properties. O

Proposition 1.2.3. Let meNy, pe[1,00] and Uy SUsy be arbitrary. Then Ey(Uy,Us) restricted to
WP (Ur) maps isometrically into (not onto) Wy (Us), with

(Dgo(E(Ur,U2)))u = ((E(Ur,Uz))e Dy u, a.e. in Us, for every aeN with 0<|a|<m, (1.2.6)

for every ue WP (Uy). Hence, WP (Uy) = (E(Ur,Us)) (Wy"P(U1)), if we consider the right-
hand space as a normed space equipped with its natural norm.

Proof. Let ueWy"?(Uy) be arbitrary and {uy}, cC°(Uy) be such that

ug = u in W™P(Uy), if pe[l,00)
wp = uin W™P(Uy),  if p=oo.

Evidently,

(((&o(Ur,Uz))o D) u) € LP(Uz) with [ ((€0(U, U2))o D)l 1oy = Dwtel ooy, (127)
for every aeNj with 0<|a|<m. Moreover, for every a as before, we easily deduce that

f D®uy vdz — f Deuvdr, Voe L7 (Uy). (1.2.8)
U1 Ul
Indeed, a direct a way to see this for the case pe[1,00) is by employing
1. the Holder inequality for p;=p and ps= p’%l and

2. the convergence uy — u in WP (Uy),
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in order to get

« « L. « « _
[, (%u=Diu)vde £ 1D w= Dyl o o] e ) =

2.
k=l oy 0] 21 ) 0

For the case p=o0, ([1.2.8) follows directly from the definition of the weak* convergence. Now, let
1 eC(Usy) be arbitrary. For every k we fix an open and bounded set Vi =V (v, uy) such thatﬂ

(supp () nsupp(ux))” =supp(v)” nsupp(ug)” cc Ve cc Uy nUz =U; € Vs,
with 0V}, being Lipschitz continuous for every k, as provides. Hence, from
1. ([28) and

2. the common integration by parts formula (see, e.g., Corollary 9.66 in [35]), applied as many
times as needed,

we get, for every a as above, that
[e% _ @ 1. . @ _
fUz((So(Ul,Ug))u)D wdx—fUluD wdx_kh/rgofm w Dz =
- li Dpd ® (-1) lim [ (D" - ()"l [ (D L
B [ bdz = (-1)™ lim Vk( up) Yz = (1) lim Ul( uy) Ydx
D [ @) vde = (D [ ((EoUr U)o D)) wda,

thus, we derive the validity of (1.2.6) by the definition of the weak derivatives, since 1 is arbitrary
. Therefore, from (1.2.7) we get that

(&0 (U1, U2)) ue W™P(Uz) with [[(Eo(Ur, U2)) wlyrmn (v, =lwllm.ny)-

It is only left to show that ((£y(Uy,Uz)) u)eWy"?(Us). This follows directly from the evident fact
that

{(SO(Ul,UQ))Uk}kCCgo(UQ)7 and (go(UhUg))uk - (go(Ul,Ug))u in Wm’p(UQ).

along with the application of the definition of the W;""-spaces. O

A direct consequence of [Proposition 1.2.3]is the following extension of the definition of the
restriction operators to the duals of W™ "-spaces.

Definition 1.2.5. For every meNy, pe[1,00] and Uy cUs, we define
R(Uz, Uy) : W P(Uy) » WP (Uy)
by
((R(Uz,11)) f,u) =, (€(Un, U2)) u) , VueHy(Uz), VfeW ™" (Us).
FEvidently,
I(R(U2,U1)) flw=m o) N lw=mon s VL EWTTP(U2),

hence, W™"™P(Us) - (R(Usz,Uy)) (WP (Us)), if we consider the right-hand space as a normed
space equipped with its natural norm.

Proposition 1.2.4. Let meNy, pe[1,00), U and f1, fo eW™P(U). If
(R(U,V)) f1 = (R(U,V)) fa, for every open VccU with OV being Lipschitz continuous,

then f1 = f2 .

L We recall that supp(u):= {x6U|u(:r:)¢0} for every ue F(U).
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Proof. Let ve WP (U) be arbitrary and fix a {v;}, c C°(U) such that vy - v in W™P(U).

Employing [Lemma 1.2.1] for every k we consider open V; ccU such that supp(vy)c Vi and 9V}, is
Lipschitz continuous. Evidently,

((R(U, Vi) vg)eCZ (Vi) and also ((Ey (Vi,U))o(R(U,Vk))) vi =y, for every k.
Hence, for every k we have

((R(U, Vi) f1,(R(U, Vi) vi) = ((R(U, Vi) fa, (R(U, Vi) vi) =
= (f1, ((Eo (V&, U))o(R(U,V&))) v) = (fo, ((Eo (Vi, U))o(R(U, Vi))) vi) = (f1,vk) = { f, k)

and the result follows by letting k ~ oo, since the convergence in the strong topology implies the
convergence in the weak topology, and by the arbitrariness of v. O
1.2.3 Uniformly Lipschitz boundaries

Here, we distinguish certain subsets of the Euclidean space. For the next already known definition
(see, e.g., Definition 13.11 in [35]), we recall that

1. y=®(x)eR™ are local coordinates (in this case, z€R"™ are the background coordinates) when
® is a rigid motion, i.e. an affine transformation of the form ®(x)=x¢+ax, where xqeR"™ and
a€R™™ being orthogonal,

2. f(Uiez Ui)=Uiez f(Us), as well as f(Niez Ui)=Niez f(U;) for every bijective f,

RY is the trivial vector space and its (single) element is the 0-dimensional vector.

> W

every f:RY - R is considered as a real constant and

5. ' stands for the (n—-1)-dimensional vector, which, for n>2, is obtained by removing the n-th
component of a given n-dimensional vector x, i.e. x=(z’,z,)eR" 1 xR.

Definition 1.2.6. Let c€(0,00], KeN, Le[0,00) and U. We say that OU is uniformly Lipschitz
of constants ¢, K, L and we write OU eLip(e, K, L) if there exists a locally finite countable open
cover {Uy},, of OU, such that

1. if zedU, then B(x,e)cUy for some keN,
2. every collection of K+1 of Ug’s has empty intersection and
3. for every k there exist local coordinates yp=®(x) and a function v, : R - R, such that

i. vk 18 Lipschitz continuous with Lip(vx) <L, uniformly for every k and
1. q)k(UkﬁU) (Z‘Pk(Uk)ﬂq)k(U))I(bk(Uk)ﬂ{yk eR" |ymC >’}/k(ykl)},

Remark 1.2.3. We recall that, in view of the Rademacher theorem (see, e.g., Theorem 9.1/ in
[35]), the Lipschitz continuity of every i in the above definition implies that Vv, exists a.e. and,
in particular, we can check that Lip(vyg) <L implieﬁ

1V vkl oo -1y < L

Indeed, if yoeR™™ ! is arbitrary, then

lim Ye(y+hyo) = v (y) = hyo - Vy(y)

lim W =0, for a.e. yeR"

thus

< Llyo|, for a.e. yeR™™*

o w(rhyo) = e (y)
Yo Vv(y)—}blg% N

and so, for every y that the above bound holds, we choose o=V, (y) to get the result.

2 By the completeness of the Lebesgue measure, we do not mind whether a function is defined in a null set or

not, that is why we are allowed to consider that V-~ e L (]R""l).
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Remark 1.2.4. For every U S R™ such that OU is bounded, we have the following equivalence:
OU eLip(e, K, L) if and only if OU is Lipschitz continuous (see, e.g., Exercise 15.13 in [35]). We
note that we have already used the Lipschitz continuous boundaries in|Subsection 1.2.2

We note that the uniformly Lipschitz boundaries are also known as “boundaries of minimally
smooth domains” (see Section 3.3, Chapter VI in [4I]) or “boundaries of domains that satisfy the
strong local Lipschitz condition” (see Paragraph 4.9 in [I]). In any case, for those boundaries we
have the following well known result (see, e.g., Theorem 13.17 in [35]), concerning the Stein total
extension operator (see Paragraph 5.17 in [I] for the definition of such an operator).

Theorem 1.2.1. Let U with QU eLip(e, K, L). Then there exists a linear extension operator
E(UR™) :W™P(U) > W™P(R"™), VmeNy, Vpe[l, o],
such that, for every meNy, every pe[1,00] and every ue W™P(U), we have
EW Rl oy KUl 1y and

k 1 )
”(vao(E(U,R")))uHLP(Rn)SIC(K,L) Z;)EHV{UUHLP(U)’ for every k=1,....,m, if m#0.
=

Hence, we can write that W™P(U) = (E(U,R™)) (W™P(U)), if we consider a notation similar to
and the right-hand space as a normed space equipped with its natural norm.

1.2.4 The continuous Sobolev embeddings

In this subsection, we review the classic Sobolev embeddings. The following result is well known
(see, e.g., Corollary 9.13 in [q]).

Theorem 1.2.2. Let meN and pe[l,00). We have

W™P(R™) & LYR™), for every qe[p7 np ], if n>mp,
n—mp

WP(R") > LY(R"), for every ge[p,o0), if n=mp,

W™P(R™) o L°(R™), if n<mp.

In particular, for the case n<mp we have (see, e.g., Paragraph 1.29 in [1] for the definition of the
Hélder spaces)

n _ _ =m-2—-|m-2|, if (m-2)¢N
W™P(R™) o Clm*gJﬁ(Rn)mClm*;Jfl»l(Rn)7 for v P | pJ f P
Vve(0,1), if m—% eN,

where the above embedding is to be understood modulo the choice of a smooth enough representative.

In view of |Proposition 1.2.3] we get a direct consequence of

Corollary 1.2.1. Let meN, pe[1,00) and U. We have for every open VU that (see
7.2.]

Wg"P(U) = (R(U,V)) (LY (U)), for every qe[p7 - iw;)np] , if n>mp,

Wy"P(U) = (R(U,V)) (LY U)), for every qe[p,o0), if n=mp,

WoP(U) = (R(U, V) (L= (U)), if n<mp.
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In particular, for the case n<mp we have (see, e.g., Paragraph 1.29 in [1] for the definition of the
Hélder spaces)

WP (U) = (R(U,V)) (CIm=302(T) ) (R(U, V) (370D,

for y=m-2-[m=-2], if (m-3
V~e(0,1), if m—%

¢N
eN,

where the right-hand space is considered as a normed space equipped with its natural norm.

All of the above embeddings are scaling invariant, that is the constants of the respective inequal-
ities are uniform, i.e. independent of U. The embeddings are also independent of the choice of
V.

Proof. In view of the the evident, scaling invariant embedding LP(U) - (R(U,V)) (LP(U)) for
every V cU (Proposition 1.2.2| provides us with a more general and less standard embedding), it

suffices to combine [Proposition 1.2.3|for U1 =U and U, =R" with O

Moreover, in view of [heorem 1.2.1] another direct consequence of [I’heorem 1.2.2| follows.

Corollary 1.2.2. Let meN, pe[l,00) and U with OU € Lip(e, K, L). We have for every open
VU that

WmP(U) - (R(U,V)) (LYU)), for every qe[p, - ?i)np]’ if n>mp,

WmPU) = (R(U,V)) (LU(U)), for every q€[p, o), if n=mp,

W™P(U) = (R(U,V)) (L=(U)), if n<mp.
In particular, for the case n<mp we have
W™P(U) > (R(U,V)) (C[m‘%J”(U))n(R(U, V) (Clm-%l—l’l(ﬁ)),

or {vzm-’;—lm—m i gm—z N

V~e(0,1), if eN.

m—"
P

All of the above embeddings are scaling dependent, that is the constants of the respective in-
equalities depend (increasingly) on %, K and L, yet they are independent of the choice of V.

1.2.5 The compact Rellich-Kondrachov embeddings

Here, we provide useful versions of the well known Rellich-Kondrachov compactness theorem. For
convenience, we consider only the case m=1, since this is the one that we use here.

Proposition 1.2.5. Let meN, pe[l,00) and U. We have for every open VU that

Wy P(U) == (R(U,V)) (LYU)), for every qe[l, nn—_pp), if n>p and |V|<oo,

Wol’p(U) oo (R(U,V)) (LYU)), for every qge[1,00), if n=p and |V|<oo,

Wy P(U) <= (R(U,V)) (C(U)), if n<p and V is bounded.

In any case, Wol’p(U) oo (R(U,V)) (LP(U)) for every bounded VcU.

All of the above embeddings are scaling invariant, that is the constants of the respective inequal-
ities are uniform, i.e. independent of U. The embeddings are also independent of the choice of
V.
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Proof. The case n>p follows directly from [Corollary 1.2.1] along with the Ascoli-Arzeld theorem.
The case n=p reduces to the case n>p, since |V|<oo. As for the case n>p, we deal exactly as in the

proof of Theorem 12.18, minding to employ |Proposition 1.2.3| for the extension to W75 (R™). O

Employing [Corollary 1.2.2] and [Theorem 1.2.1] this time, instead of [Corollary 1.2.1] and [Propo-|
sition 1.2.3] respectively, we get the following result.

Proposition 1.2.6. Let pe[1,00) and U with OU €Lip(e, K, L). We have for every open V cU
that

WP(U) s (R(U,V)) (LYU)), for every qe[l, ﬂ), if n>p and |V|<oo,
n-p

WP (U) s (R(U,V)) (LYU)), for every qe[1,00), if n=p and |V|<oo,

WhP(U) > (R(U,V)) (C(U)), if n<p and V is bounded.

In any case, WHP(U) == (R(U,V)) (LP(U)) for every bounded V cU.
All of the above embeddings are scaling dependent, that is the constants of the respective in-
equalities depend (increasingly) on L, K and L, yet they are independent of the choice of V.

1.2.6 Uniformly m-Lipschitz boundaries

In|Section 1.2.12] we need to impose a further assumption concerning the regularity of the uniformly
Lipschitz boundaries, in order to get the regularity results of the solutions of the second-order
elliptic problems.

Definition 1.2.7. Let meN, e€(0,00], KeN, Le[0,00) and U. We say that U is uniformly
m-Lipschitz of constants ¢, K, L and we write OU € Lip™ (e, K, L) if there exists a locally finite
countable open cover {Uy}, of OU, such that

1. if xedU, then B(x,e)cUy for some keN,
2. every collection of K+1 of Uy ’s has empty intersection and
3. for every k there exist local coordinates yp=®(x) and a function v, : R"™! - R, such that

i. VI 1y, is (globally) Lipschitz continuous, for every j=1,...,m and every k, with

j:r{?i(m {Lip(Vj_lvk )} <L, uniformly for every k,

and
. ‘I’k(UkﬂU)=‘bk(Uk)ﬂ{yk€Rn|ynk >’yk(ykl)}.

Remark 1.2.5. We do not assume in|Definition 1.2.6 that {~i}, is a subset of CO’I(R”‘l), nor
in |Definition 1.2.7 that {yx}, is a subset of C’m_l’l(R"‘l), meN. For example, it is obvious that

for the simplest (yet non trivial, i.e. n=1) case

n=2: U=epig(7), i.e. OUeLip(oo,1,Lip(v)) (evidently, {Ux},={R*} and {®x},={id}),
where
y=sin, or -y is any real and non trivial polynomial, etc.,

we have that 7¢CO’1(R) since 7¢C(H§). One could say that we employ the spaces “C’O’l(R"_l)”
and “Cm_l’l(R"_l)”, respectively, for the aforementioned definitions.
The following trivial result is in fact crucial for

Proposition 1.2.7. If U is such that OU eLip™ (e, K, L), as well as ® is a transformation of the
form ®(x):=x9+Ax, where xoeR™ and A>1, then I(®(U))eLip™(Xe, K, L) also.
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Proof. We set z for the coordinates that the map ® induces, i.e. z=®(z), for every z e R". It
is direct to check that {®(Uy)}, is a locally finite countable open cover of (®(U)). In order to
obtain the desired result, we argue as follows.

1. If zed(®(U)), then there exists z=®"1(2)€dU, hence B(x,e)cUy for some k. Therefore,
D(B(z,e)) € ®(Uy), or else B(z,\e) € ®(Uy). Indeed, for every z1,2z; € R™ such that z; =
®(x1), we have

®(B(z1,¢)) = ({zeR" | [z-21]<e}) = {(2(2)) eR"| [x-21|<c} =
Trog <
_7+X_xl

A
= {2eR" | [z=®(21)|<Ae} = {zeR" | |z=21|<\e} = B(z1, Ae).

= {zeR”| |<I)’1(z)—x1|<s} = {ZER"|

<5} = {zeR”| |z—(sc0+)\x1)|<)\s} =

2. Tt is direct to check by contradiction that every collection of K+1 of ®(Uy)’s has empty
intersection.

3. For every k we consider the local coordinates
k:@;g(z):z(q)oq)koq)_l) (2), VzeR"
(it is straightforward to check that 7 are indeed local coordinates), as well as 7 : R"™* - R,
with
!

k(w)::x0n+/\'yk(—x)(\) + 7;\]), VweR™

Notice that 7 =®(yg) for every k. Now, a direct validation of the definition shows that, for
every k, Fy is Lipschitz continuous with Lip(7%) < Lip(vx) < L. Moreover, if m #1 we have
that

!
Lo , w) VweR™, ¥j=2,....m,

o 1 .
VI (w) = — V7 1%(— DY

A2

directly from the common Fas di Bruno formula, hence, again by the use of the definition we
deduce easily that

s (V< v

since A>1. Finally,

D (UpnU) = @1 (Ur) 0 {Yn, > (i) } = (Po®y) (UpnU) = ®( P (Ur) 0 {tm, > (i) }) =
= O((Up)n®(V)) = &(®(Ur)) " {Tn, > (Ti")}-
Indeed,
O({yn €R"™ [yn, > (") }) = {@(yr) €R™ | z0, +Ayn, >0, + Ak (yr') } =

~ n|~ :L'O, gk, ~ n |~ ~ [~
= {ykeR | T >'Yk(_)\ + )\)} = {Tk eR™ | T, >Te (T) }-

1.2.7 The Leibniz formula

Here, we slightly generalize a useful, already known result (see, e.g., Theorem 1, Section 5.2 in
[15]), concerning the Leibniz rule for a smooth function and a function which belongs to a Sobolev
space. Before we state and prove it, we recall that, for every meNy and every U, CF(U) stands
for the Banach space

CE(U) ={ueC™U)| D% is bounded everywhere in U, for every 0<|a|<m},

equipped with its natural norm (see, e.g., Paragraph 1.27 in [I]).
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Proposition 1.2.8. Let meNy, pe[l,00] and U. If peNprog CF(U) and ue W™P(U), then we

have that
1. (Qpu)eW™P(U) also, with

¢l ym.n oy < (101 e 0 )12l o o

and

Dy (gu)=>" (;) (Dﬁ(b) (ij}_ﬁu) a.e. in U, for every aeNy with 0<|a|<m.
B<a

Proof. Step 1
We easily deduce from

N
Z Zj
j=1

a N
SCN,q(Z ZJ|) V(2);- N cCN, VNN, Vge[0,00),
that

(Z (g) (D5¢) (Dgﬁu))eLP(U), for every aeNy with 0<|a|<m,

B<a

with

> () (0%0) (D7)

B<a

<K(16] ctetory ) el wioto oy
Lr(U)

VaeN(, 0<|aj<m.

(1.2.9)

(1.2.10)

(1.2.11)

(1.2.12)

We note that inequality (1.2.11) follows directly from applying N -1 times the elementary

inequality

|21+ 20| <Cy (|21]"#22|") , V 21,22 €C, Vge[0,00).

(1.2.13)

With the previous argument we are done with the case m=0. At the next step, we show the
result for m+0 by induction on m, employing of course the estimate in (1.2.12). Before we

proceed, we note that
(o) eC(U), VyeCZ(U).

Step 2a

Let m=1. From the estimates (1.2.12)) for m =1, it suffices to show (1.2.10)) for m=1. For

every aeNj with |a|=1 and every ¥ e C°(U), we get
[ oun™vde= [ woD™vda= [ u(D*(6w) - (D"6)¥)da =
=~ | (eDu+u (D)) vz,

where we employ the definition of the weak derivatives at the last equation. Hence, again

from the definition of the weak derivatives, we derive ((1.2.10) for m=1.
Step 20

Here follows the induction hypothesis on an arbitrary m e Nx{1}: If ¢ e CF(U) and u e

W™P(U), for some meNy, pe[1,00] and U, then (¢u)e W™P(U) also, with

[l mn oy K19 0y ) 2t om0

and

o(ou)=>, (g) (DP¢) (D% Pu) ae. in U, for every ae Ny with 1<|a]<m.
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Step 27
Now, let (;56 Cm“(U) and v e W™LP(U), for some m e Ny, pe[1,00] and U. From the
estimates for m+1 instead of m, it suffices to show for m+1. For every ace Nj
with a:ﬂ+7 (evidently la|=18]+|y|) where |5]=m and |y|=1, as well as every ¢ eC>(U), we
have from

1. the fact that (¢u)eW™P(U) along with the definition of the weak derivatives,
2. the induction hypothesis,

3. the result for m=1 and
4

. the fact that operators of the form D (for veNj}) commute with each other, that is
DiloDk2=D¥20 Dl = Di1*v2
w w w w w )

that
fU du Dpdz = [ gu (D) dar & fU DP (¢u) (D) dx
2_ 18l o B-o 1
o (e o e

L (_p)lBeh f Dv(
E e [U(

E (—1)'“‘ ( ((D7¢) (D57u) + (D7) (DSﬁ“u)))wdx =

() wra) (03 ))wdaz E

O<U<,8

( ) ((D°*¢) (D5 )+(DU¢)((DloDﬁ_”)u)))wdxi‘

I/\

0 [ ( > (0 ) OIS W (D%)(D:z-”u))wdx-

0<o<f

For the term inside the parenthesis we have

> (7 Jwrawrrws 3 (0)orewin -

y<o<o 0<o<f

- oyurs i)+ ¥ ((7)+(])) @0 i -

y<o<B

- ure(D)+ ¥ (2)0raywitw= % (5)(0%) (i),

y<o< 0<B<a

Therefore, from the definition of the weak derivatives, we derive ((1.2.10f) for m+1.

1.2.8 Change of variables

In [Section 1.2.12| we need the following result, concerning both the formula and the bounds of the
Sobolev norms under the change of variables. It slightly generalizes an already known one (see,
e.g., Theorem 11.57 in [35]), since the new variables do not have to possess a unique, bounded,

continuous extension to the closure of their open domain (see also [Remark 1.2.5]).

Theorem 1.2.3. Let meNy, pe[l,00], Uy, Uy and ¥ : Uy — Uy be bijective, with ®:=V"1. If we
assume that there exist Ly, Lo €[0,00), such that

i. ® is Lipschitz continuous with Lip(®)<L; and

ii. if m#0, then VIV, is Lipschitz continuous for every j=0,...,m-1 and everyi=1,... n,
with

{Llp(vj\:[/ )}<Lo,
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then for every ue W"™P(Uy) we have that

1. uwoWeW™P(Us) also, with

luoW] Loy <KL ul Lo,y and

! L , (1.2.14)
||Vw(uo\Il)||Lp(U2)SlC(L1,Lg) Z ||un||Lp(U1), for every l=1,...,m, if m#0
i=1

and
2. if m#0, then

D2 (uo®)= Y My (V) (DEu)oW, ae. in Us, (1.2.15)
1</8J<fal

for every aeNj with 1<|a|<m, where

|ov| s 1

M%B(‘I')::a!Z Z

s=1p,(a,B) j=1 ’yj!(5j!)|’Y.7‘|

(D% w)",

U)Zth 001:1, ’yj,éj ENS’,
(DPw) =TT (D% w,) ™,
=1

ps(a,ﬁ)::{(*yh...,%,(51,...765) Iv|>0, 0<d1<...<0s, Z'yj:ﬂ, Z|’yj|6j:a}
i=1

j=1
and p<v for p,v eNg provided one of the following holds:

(a) lul<lv],
(5) |ul=lv and py <v4, or

(c) |pl=V], p1=vi,.. ., pe=vk and pge1 <vise1 for some 1<k<n.

Proof. In order to reduce the number of the sub-cases, we only show the results for the case m#0,
since the concept for the proof of the simpler case m=0 is exactly the same. The only difference is
that we use the density of C2°(U) into LP(U), for pe[1, c0), instead of the Meyers-Serrin theorem
in Step 2. Now, the present proof has the following structure: In Step 2 we deal with the case
p+oo and in Step 3 with p=oco.

Step 1
The generalized multivariate Fad di Bruno formula (1.2.15) (with the weak derivatives being
replaced with the ordinary ones) is already known for every smooth enough functions u and
U, and for its proof we refer to [12] (see also [3I] for a more compact approach).

Step 2ar
If pe[1, 00) and ue W™P(U;), from the Meyers-Serrin theorem (see, e.g., Theorem, Paragraph
3.17in [1], or Theorem 11.24 in [35]) there exists {uy }, cC™ (U1 W™ P(Uy ), such that uy, - u
in W™P(Uy). Therefore, in view of a well known result (see, e.g., Point (a) of Theorem 4.9.
in [8]) along with the classic scheme “consider a subsequence of the subsequence”lﬂ7 we deduce
that there exists a subsequence {uy, },c{ux},, such that

i. ug, > v a.e. in U; and

ii. D%uy, > D%u a.e. in Uy, for every ae Nl with 1<|a]<m.

Since @ is Lipschitz continuous, it has the Luzin (N) property (see, e.g., the Exercise 9.54 in
[35]), thus

i. ug, 0¥ - uoW a.e. in Uy and

3 Formally, this follows by induction on m, but the process is quite trivial and so we omit it.
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ii. Mo g(U) (DPug, ol - M, g(¥) (D)o ae. in Uy, for every a, 8 €Nj with 1<|a|<m
and 1<|B|<|al.

Step 25

Since every V/ W, (j=0,...,m~1) is Lipschitz continuous, we have that u,oV satisfies
a.e. in U if |a|=m and everywhere in Us otherwise. Moreover, we have that uy, o¥ and all
its derivatives of order up to m—1 are absolutely continuous on all line segments of U, that
are parallel to the coordinate axes, since the composition of Lipschitz continuous functions
is Lipschitz continuous and also the product of bounded and Lipschitz continuous functions
is Lipschitz continuous. Thus, it is only left to show that uy, oW and all its derivatives of
order up to m belong to LP(Us), in order to show that ug,o® e W™P(Us) (see, e.g., Theorem
11.45 (along with Exercise 11.47) in [35], or Theorem 2, Section 1.1.3 in [37]). Indeed, we
have that

|det (J®)|<K(Lq), a.e. in Uy. (1.2.16)
and also that, for every a, 8 eNj with 1<|a|<m and 1<|8|<]ql,

|Mo 5 ()P <K(Lg), a.e. in Uy, (1.2.17)

which follows from ([1.2.11). Hence, we combine the formula (1.2.15)), (1.2.16) and (1.2.17)
with the change of variables formula (see, e.g., Theorem 9.52 along with Exercise 9.54 in
[35]), to deduce the estimates

|, O\IJHLP(UZ) <K(L1) ur, ”LP(U1) and

lof
1D (uk, U)o (17, <K(L1, Lo2) > || Vi, HLP(UI), for every aeNy with 1<|a|<m,
i=1

hence ug, 0¥ e W™P(Us). Additionally, the above estimates also imply (simply by considering
the differences in the formula) that

||(uk11 O\y)_(ukh O\II)”L”(Uz) SK:(Ll)Huk"l _uklz ||L”(U1) and
lof
”Da((ukh O\I/)_(ukb O‘I’))”Lp(Uz) SK:(Ll’ L2) Z; ”v:i}(ukh _ukb)”L;ﬂ(Ul)’
i=

for every I; and lo. Since uy, — WP (Uy), it follows that {uy, o®}, is a Cauchy sequence in
W™P(Us). In virtue of the completeness of the W P-gpaces, we deal as in Step 2 to obtain
a subsequence of {ug, },, which we still denote as such, and a function ve W™ (Us), such
that

i. ug,o¥ - v a.e. in Uy and

ii. D¥(ug,o¥) - D%v a.e. in Us, for every aeNj with 1<|a|<m.

Hence, v=uo¥ a.e. in Us, that is uoW¥ e W"™P(U,). We can also let | ~# oo in the formula
(1.2.15) (for ug, instead of u) to get Point 2..

Step 2~
As for the estimates (|1.2.14)), we repeat the first argument of Step 25 to derive

lwo¥l Lo,y <KL [l o v,y and
lof
1D (o) | 0,y <KL, L2) v ”v;uHLP(Ul), for every aeNy with 1<|a|<m,
i=1

thus the result follows.

Step 3a
If we W™ (U;), we consider an increasing sequence of bounded subsets {Ulj ccli }j, such

that Uy, ~ U;. Since @ is Lipschitz continuous map from Uy onto Us, then the metric space
(Us,|*—*|) preserves all the “metric” properties of (Uy,|*—+|), hence every ®(Uy,) is open
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and bounded, as well as <I>(U1j) 2 Us. In view of the Step 2 along with the embedding
L°°(U1j) - L”(Ulj) for every pe[1,00) and every j, we deduce that uo\I/eWm’p(CI)(Ulj))
with

(oWl (a0, )) KDl o1, ) and

l .
||vi1)(uoql)||Lp(q>(Ulj)) SIC(LlaLQ) ; HV;LUUHLP(UIJ.)’ Vi= 17 e,

as well as that the formula (|1.2.15]) holds for every (I>(U1].) instead of Us. In view of the latter

conclusion along with the fact that @(Ulj) ~# Un, it suffices to show only Point 1., since then
the formula (|1.2.15)) makes sense and its virtue follows easily by contradiction.

Step 383

SettingT]
uj=((€o(2(0,). U)o (R(Us, @(01,)))) o, Vi,
as well as
ey = ((E0(®(01,),02)) o (R(U2, (1)) D (o), VareNy, 1<lol<m, v
and rewriting the above estimates, we have, for j and every pe[1, 00), that

[y |\Lp(@(U1j)) S’C(L1)||UHLP(Ulj) and

l .
HUQJ‘HLP(@(Ul ))SK(LI’LQ);’|V:UUHLP(U1].)’ YVa, 1£|oz|£m.

j
Since the sets appeared in the norms are bounded, we pass to the limit p 7 co to get

HujHLoo(@(Ulj))SK(Ll)HuHLN(Ul) and

l .
||uO¢jHLm(<I>(U1 ))ﬁlC(Ll,Lg);||Vzwu||Lm(Ul), Va, 1<|a|<m,

j
for every j, thus, from the definition of u; and each u,; we obtain

Ity <KDt 0 2n
!
“uajHLm(Uz)SK(LhLQ)Z;||vjﬂu||Lw(Ul), Va, 1<|al<m,

for every j. In virtue of the well known corollary of the Banach-Alaoglu-Bourbaki theorem
(see, e.g., Corollary 3.30 in []) along with the weak* lower semi-continuity of the L*-norm
(see, e.g., Point (iii) of Proposition 3.13 in [8]), we deduce that there exist a subsequence of
{u; }j, which we still denote as such, and a function ve L*(Us) such that

uj = v in L*(Uy) and |0l peo(rryy SKL) || oo (17, (1.2.18)

Dealing again as before, we deduce that, for every a there exist a subsequence of {uaj }j,
which we still denote as such, and a function v, € L= (Us) such that

l
Uo; = Vo in L7 (U2) and [va | pe(r,) SK(L1, L2) > ||Vfﬂu||Lm(Ul). (1.2.19)
i=1

Step 3
We show that uwoWe L=(Us). Indeed, it suffices to show that v=uoW¥ a.e. in Us. First, we
notice that uoWw eLlloc(Ug), which follows from a direct application of the change of variables

formula and the fact that ue L{ (U1). Now, let 1€ C(Us) be arbitrary and jo =7jo(¢) be
big enough so that supp(v) C<I>(U1j) for every j>jo. We then have from

4 We “cut” at 8®(U1j) and we extend by zero to whole Us.
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1. (1.2.18)) and

2. the definition of every u; along with the fact that supp(w)c@(Ulj) for every j>jo,

that
f vpde & lim [ w;yde = lim wjpdz =
Uz jroo JU, J7eo Jsupp(v))
= lim uj pdx Z lim (uoW) tdx = fU (uoW) tpdx
2

j 700 Jsupp(v) J 7100 Jsupp(s)
J2Jjo J2jo

and the result follows since v is arbitrary (see, e.g., Lemma, Paragraph 3.31 in [I], or Corollary
4.24 in [g]).

Step 36
Now, we show that uwoW e W™ *(U,y) and that the estimates in ((1.2.14)) hold. Indeed, it
suffices to show that uoW is m times weakly differentiable in Uy with D (uoW)=v, a.e., for
every a €Nl with 1<|a|<m. Let o and ¥ eC(Us) be arbitrary, as well as jo=7j0(1)) be big

enough so that supp(w)c@(Ulaj) for every j>jo. We then have from

1. the fact that supp(w)UD(Ulaj) for every j=jo,
2. the definition of the weak derivatives,

3. the definition of every u,; and

1. @ZD).

that
uolr) D dm:f wol) Dpda & lim[ woW) D4pda %
Sy, wowy Dz = [ (wow) Dy & lim oo, ) (0 D7
J2Jo
2.yl s a 3. 1yl 1 3.
= ()" lim A(Ula‘)ww(uom))m (1" lim A (o, ) o ¥
Jj2jo 7 J2Jjo 7

L0 im [ o, vde E (-1 [ wayde
]_/’(_)o Us Us
J2Jo

and the result follows since 1 is arbitrary.

1.2.9 Difference quotients

For the regularity results of [Section 1.2.12] we employ the classic Nirenberg approach of the dif-
ference quotients.

Definition 1.2.8. Let U, i=1,...,n and §>0. We set U"° 2U for
U = {zeR"|z:x+h6i, for xeU and he(—&,é)}.
Additionally, we set U°>U for

U = {zeR"|z=2+y, for zeU and yeB(0,0)} =Uu |J B(z,6) 2 Ute.
zedU i=1

Remark 1.2.6. We recall that Us:= {er|dist(ac,8U)>5}, for every §>0. Evidently, (U5)6§U.
Definition 1.2.9. Let U, i=1,...,n and §>0. For every R" 2A;2U and every he(=6,0) we
denote - : F(A;) —» F(U) for

ubM(x) = u(x+he;), YaelU, YueF(4A;),
as well as for every R"2A; 2U and every he(=6,0)" we write 0°" : F(A;) - F(U) for the ith
partial difference h-quotient, i.e.

i,h
ai’hu o u -Uu

s VUE?(AZ)
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Remark 1.2.7. For U, i, §, A; as in[Definition 1.2.9, we can easily derive the formula
O (uv) = uP"o v + O u, Y u,v e F(Ay), he(=6,0)". (1.2.20)

Definition 1.2.10. Let U and § >0. For every R" 2 A2 U° and every h e (=6,8)" we define
VI F(A) - F(U)" by

n

V= (0""u), |, YueF(A).
Remark 1.2.8. In view of[Remark 1.2.6, we can consider (U,Us) instead of (A,U) in[Definition]

L2710

The following useful result, which generalizes the similar and already known ones (see, e.g.,
Lemmata 7.23 and 7.24 in [26], or Theorem 3, Section 5.8 in [I5], or Lemma 4.13 in [38], or
mainly Theorem 11.75 in [35]), is about the properties of the partial difference quotients. Before
we proceed, we need a trivial, yet crucial lemma.

Lemma 1.2.2. Let pe[l,00], U, i=1,...,n and §>0. IfueLp(U“s) and veLz%l(U""s) such that
supp(v)cU, then

'[Uu(ai’hv)dx:—'/U(Bi’_hu)vdx, Yhe(=6,0)". (1.2.21)

Proof. First of all, in virtue of the Holder inequality, (|1.2.21)) makes sense. Now, for every h €
(-0,0)" we have

[(Ju(@i’hv)da::—[U%v(x)derfUu(]j;)v(x+hei)dx.

Changing the coordinates = to x+he;, applying the change of variables formula and using the fact
that supp(v)cU, we get

u(z) u(z—he;)
fUTU(:c+hei)dx:/UT¢(x)dz

and the result follows. O
Proposition 1.2.9. Let neN\{1} and acR, as well as Uy GUs and 6>0 be such thaﬂ
n—1 s
Ui g U U;’ cUs.
i=1

1. If pe[l,00] and ue{ueLlloc(Ug)|uneLp(U2)}, then 0%Mue LP(Uy), for everyi=1,...,n—1
and he(=6,8)", with

10"l oy <000l o -

2. If pe(1,00], ueLi (Us) and there exists §' €(0,68] such that

loc

67" C, for every he(=6",8")", for somei=1,...,n-1,

Lr(Uy) <
then 0% ue LP(Uy), with
|2,

uHLp(Ul) <C, for the same constant as above.

Proof. 1. Let p£oo. For every zeU; and every i=1,...,n, we define
Uy i * {tER| (5131, RN ,LEi_l,t,IEHl, e ,.’En)GUQ} -C
by

uw,i(t) = u*(xl, . ,J,‘i_l,t,.r“_l, . ,J,‘n),

5 Simple examples of such pairs are two concentric cylinders (=) and two concentric balls (c).
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where v stands for the representative of u that is absolutely continuous on (n—1)-a.e. parallel
to a coordinate axis line segment of Us and whose first-order partial derivatives (in the
ordinary sense) belong to LP(Us) and agree a.e. with the weak partial derivatives of u (see,
e.g., Theorem 11.45 along with Remark 11.46 in [35], or Theorem 1, Section 1.1.3 in [37]).
Now, let i=1,...,n~1 and he(-6,6)" be arbitrary. From the absolute continuity, we have

x;+h
g i (Ti+ h)—ux’i(xl-):/ u;ﬂ-(t)dt7 for a.e. xelq,
or else
x;+h .
u*(x+hei)—u*(a:):f [8%] (1, i1, b, X1, - - -, Ty )dt, for ae. zely.
Changing the variable from t to x;+th we get
1
u*(x+hei)—u*(x):hf [a'u] (z+the;)dt, for a.e. xely,
0
or else
) 1 .
[al’hu*] (x):f [0%,u] (z+the;)dt, for ae. xelU.
0

So, by the Holder inequality we deduce

[0 )P [ [9h) Carvthes)

Hence by the Tonelli theorem,

. 1 ; 1 3
[0l iy f, [ NObu] arthenfatdz= [ [ [[0hu] (s then)f et

By changing the coordinates x to x+the; and applying the change of variables formula, we
conclude to the desired result.

The case p=oo follows from the result for p+ oo, in an analogous manner as in Step 3 of the
proof of |Theorem 1.2.3| (i.e. considering {Ulj cc Ul}j with Uy, ~ Uy, cutting at OU;; and

extending by zero to whole Uy), and so we omit it.

. Let p#1. We consider a sequence {hy}, c(=&',6")" with |k ~ 0. Since ||[“)i’h’“uHLp(U1) <C for

every k, we argue as in Step 3 of the proof of in order to find a subsequence
{hi, },S{hw}, and a function u;e LP(Uy), such that

0w = u; in LP(Uy) and [us] g,y <C- (1.2.22)

Let ¢eC°(Uy) be arbitrary and we consider a subsequence of {hy, },, which depends on ¢
and we still denote as such, such that

[Pk, |<min {&§", dist(supp(¢),0U1)}, VI.
Employing

(a) the dominated convergence theorem,

(b) and
(o) [L222),

we deduce that

i _ i (a) 1. i,—hp, (b)
ful u(@0)de - fsupp<¢> u(@')de = Jim /supp(dn) u(9 e g)da =
© _jim (0""*1u) gda = - lim f (07"1u) gz < - f s bz

lrco JU;y U,

1700 Jsupp(¢)

and the weak i-partial differentiability follows by the definition, since ¢ is arbitrary.
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Remark 1.2.9. For the case p + 1,00 of Point 2. of the above result, we can also employ the
reflexivity of LP-spaces, the well known corollary of the Banach-Alaoglu-Bourbaki theorem (see,
e.g., Theorem 8.18 in [§]) and the (sequentially) weak lower semi-continuity of the norm (see, e.g.,
Point (#i) of Proposition 3.5 in [8]).

Now, we can easily deduce the following result.
Corollary 1.2.3. Let U and 6>0.
1. Ifpe[l,00] and ue{ueLl (U?) | uneLp(U5)}, then V'ue LP(U) for every he(=8,8)", with

loc
thu”Lp(U)SC’HunHLP(U,;).
2. If pe(1, 00], ueLp(Ug) and there exists §'€(0,6] such that
IV ull 1y <Cy YReE(=8",8),
then, Vyue LP(U), with
|Vwulpo@rn<C, for the same constant as above.

Proof. We only show Point 1. since the other one can be dealt with the use of the same arguments.
It also suffices to show the result for p#oco. We apply Point 1. of [Proposition 1.2.9|for U; =Ux(0, 1)
and Uy =U°x(0,7), for some 7>0, as well as for the function v : L{. (Us) with v(z,2,41) =u(z),
for every (x,xn+1)€Us. We note that

Ol v=0\u, fori=1,....n
ontly =0,

hence v e W1P(U,), and so the aforementioned proposition is applicable. Therefore, we deduce
that

Hai7hUHLP(U1)S”&ZUHLP(U’A’ Vyi=1,...,m, hE(—(S,(S)*,

thus, from the Tonelli theorem we get the desired result. O

1.2.10 Chain rule

Next result is a slight generalization of a known result (see, e.g., Point (i) of Exercise 11.51 and
Exercise 11.52 in [35]). Before we proceed, we refer to Definition 3.70 in [35] for the definition of
a purely H'-unrectifiable set, where H! stands for the 1-dimensional Hausdorff measure.

Proposition 1.2.10. Let meN, pe[1,00], U and ue{ueL (U;R™)|J,ueLP(U)}. If f:R™ >R

loc
is Lipschitz continuous with the additional assumption that

the set {xeRm | f is not differentiable at x} is purely H*-unrectifiable, when m#1,

then foue{ueL1 (U;R)|un€LP(U)}, witfﬁ

loc
Vw(fou) = ((Vf)ou) Jyu, a.e. in U.

Proof. First of all, foueLL (U;R), since for every z,y eU we have

loc

(fou) () <Lip(f) [u(x) —u(y)|+|u(y)|<Lip(f) [u(z) [+ Lip(f)+1) [u(y)],

from the triangle inequality, hence the result follows from the fact that ue L (U;R™). It suffices

. loc
then to show that (0% (fou))eLP(U) for every i=1,...,n, with

Dt (fou) = i (07 f)ou) (8,u;), ae. in U, for every i=1,...,n. (1.2.23)
j=1

6 For every yeR™ and every aeR™*", we write (ya)eR™ for ya=aTy.
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In view of the fact that Vf is bounded, and the fact that v,u; € LP(U) for every j =
1,...,m, we directly deduce that the right hand of the above formula belongs to LP(U) also.
Therefore, it is only left for us to show by the definition of the weak derivatives. Indeed,
let peC°(U) be arbitrary, and we set

5=, dlst(sup2p(q5)7 U) 50,

as well ad’|
v= v¢e{ueL110C(supp(¢)°6; Rm) | JwUELp(SUPP(¢)06)}

to be
o = () )= (R(en )

For the case p=oo, we notice that, since |[supp(¢)|<oo, then L“(supp(¢)°§) - Lq(supp(¢)°6) for

every g€[1,00). Hence, employing the notation used for the proof of [Proposition 1.2.9) we have,
in view of Theorems 3.59 and 3.73 in [35], that

0'(for') = R ((0°)o0")vs.

. r o (1.2.24)
a.e. 1 {t€R| (xla"'7x1’—17t7$i+1a~'~7xn)esupp(¢) }7 for every xesupp(¢>) )
for every i=1,...,n.
Now, if n#1, for every wesupp(¢)° and every i=1,...,n, we set xéeR"’l for
Ti= (T1,e o Tin1, Tig 1y ooy T -

Moreover, we consider a sequence {hy}, c(-d,8)" such that |hy| ~ 0. From
1. the dominated convergence theorem,
2
3. v*=v a.e. (in supp(<b)°6),

we have, for every i=1,...,n, that

4 = le) i = [¢] g 12
/U (fou) (6 (b)dx = fsupp(¢) (fou) (8 q[))dx [supp(¢) (fov) (3 ¢)dx
Ly t=hi 2 _ Bl (£q 3
FE Sy (o OO Z i |y (O (Fo))

L Jim ([“)i’h’“(fov*))qbdx.

koo Jsupp(¢)

If n=1, from

1. the dominated convergence theorem

2. (220,

3. v*=v a.e. (in supp(qS)Oé) with

v =|—] v;, a.e., for every j=1,...,m,
] (dx)w J Y.j

and

1 [@29),
7 That is supp(<¢>)°(S = (int(supp(zf))))‘s (see .
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we get

ou) &' = — Tim J @rh)) =S (" @) Vs 2
[ owy =1 oyt~ [ (fov')od

k700 Jsupp(¢) hy

%‘/Supp(d)) (2((5jf)°”*)”;,)¢d$i_fbupp(qs)(ij:(( f)e )(o;lx)wvj)d)dgclé
[ o (B @ Do) Jota =~ [ (S @ (L) o o

and the result follows from the arbitrariness of ¢. If n£1, we set

supp(@), . = {teR| (1, i1, by Ty - - - ,xn)esupp(gb)o}, Vzesupp(¢)®, Vi=1,...,n
and from

1. the Fubini theorem,

2. the dominated convergence theorem,

3. (T2.24) and
4. v*=v a.e. (in supp(¢)°5) with

d
'Ujm’l.,(t) = (&) vj(:vl, e ,xi,l,t, Liglye - ,xn),
w

for a.e. tesupp(qﬁ);i, for every i=1,...,n and every j=1,...,m, and
5. (T29),
we have, for every i=1,...,n, that

i L
|, (Fow) (9%6)da =

: _kh}?o Rn-1 ([supp<¢>; ; (0 (fev) ¢dt)dx; =
[ ([bupp<¢);1(al(f°v ))¢dt) =
fw 1( suppw)“( (97 fou* )”jm,/) ¢dt)dl"§i'
—fRn_l (/supp(@“(g:( Jfov)( )wvj(:z:l,...,xi_l,t,xiﬂ, : xn))¢dt) 15
g‘fﬂg,,_l (/wppw)“(g:( ijU)(%)wuj(xl,...7xl—,1,t,xi+1, . xn))d)dt) rL

S L (@0 @iz [ (S 015100 010)

J=1

¥

j=1
The result then follows since ¢ is arbitrary. O
Corollary 1.2.4. Let pe[1,00], U and ue{ueL{ (U;C)|V,ueLP(U)}. Then
|u|e{ueLlloc(U;R) | uneLp(U)}7 with |Vwlul|<|Vwul, a.e. in U. (1.2.25)

Proof. Identifying the metric space (C, |*—*|) with the metric space (RQ, |*—*|), we may consider
|| as a Lipschitz continuous function from R? to R. It is evident (see, e.g., Theorem 3.72 in [35])
that the set

{xeR?| || is not differentiable at 2} = {0}

is purely H'-unrectifiable. Hence |u| {ueLlOC(U R)’uneLp(U)} directly from
m As for the inequality in ), directly from
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1. (1.2.23)) (for m=2),
2. the Cauchy-Schwarz inequality and

3. the fact that Lip(]-|)=1 along with [Remark 1.2.3

we get |95, |u|| <|0%u|. The desired inequality then follows trivially. O

1.2.11 Cut-off functions

In what follows, we make systematic use of the result below, which concerns cut-off functions.

Proposition 1.2.11. Let U and §>0. Then there exists ¢ C°(R";[0,1]) such that

1. supp(¢)cU?,
2. =1 in U and
3. ||Vk¢HLm(Rn)S%, for every keNy (Co=1).

Proof. We consider ¢=ps*xr, i.e.

¢(w)=fw sOa(:v—y)xU(y)dy=fB($ 5 ws(r-y)xuv(y)dy, VreR",

where @5 stands for the standard mollifier with supp(¢)cB(0,0) and also xy for the characteristic
function of U. Tt is well known that ¢peC*(R"™) with D*¢=D%ps*xy, for every aeNj with |a|>1.
If xeU, then B(z,d)cU, thus

= —y)dy=1, VxeU.
o@)= [ esle-y)y=1, Vae

Similarly we can get that ¢(z)€[0,1] for every z€R", since the same is true for xy. If ze€ WC,

then B(z,0)nU =@, thus ¢(z)=0 for every such x and so supp(¢) cUS. Lastly, from the Fad di
Bruno formula, we have

Cla "
D*6(@)|< [ 1D%es(w=y)lxw (ldy<[7Nes] s gy << VaeNG.

O

In view of [Proposition 1.2.11] we get a generalization of a well known result that concerns
functions of compact support (see, e.g., Lemma 9.5 in []]), since we drop the assumption of its
boundedness. In fact this generalization is not unexpected, since it can shown that the space

{uew™P(U) |supp(u) is bounded }

is dense in W™P(U), for every meN and pe[1,00), by dealing in a similar manner as below, i.e.
by considering a sequence of “expanding” cut-off functions.

Proposition 1.2.12. Let meN, pe[l,00), U and we W™P(U). If dist(supp(u),dU) >0, then
ueW"*(U).

Proof. We define

5 dlst(supg(u), ov) -0

and we fix a function ¢peC°(R™;[0,1]), such that

1. supp(¢)£supp(u)6v
2. ¢=1in supp(u) and

3. 574 [990] o gy <C=Cs.
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Moreover, we fix xgesupp(u) (in fact, we can consider any xzo€R™) and we consider a sequence
{¢r},cCZ(R™;[0,1]), such that

1. supp(¢r) S B(xo, k+1),
2. ¢r=1in B(zp,k) and
3. Z;’il ||Vj¢k||Lw(Rn)SC’, uniformly for every k.

Now, since p# oo, in virtue of the Meyers-Serrin theorem we consider {uy}, c C™(U)nW™P(U)
such that uy, - w in W™P(U). We set

{vg},cC(U), for v, = ((R(R™,U)) ¢ ) uy for every k,
as well as
vi=((R(R",U))¢)u=u.
It then suffices to show that vy — v in W™P(U) (by the definition of W;"""-spaces). We have that
vk —v = ((R(R",U)) o) (ur —u) + (R(R™,U)) ((¢x-1) ¢)) u.

In virtue of[Proposition 1.2.8] both terms of the right side of the above equation belong to WP (U ),
hence

vk =0l ms 0y <IA(RER™, U)) 1) (ur = w) [y + | (RIR™, U)) (96 =1) 6)) wllyym (1)
For the first term, we apply (1.2.9)) to obtain

[((RR™, 1)) ¢%) (ur = 1) lyyrmoo 0y < Clur=tellyymon ry = 0-

As for the second term, we have from

1. (R(R™, B(wo,k))) (¢pr—1) =0, for every k,
2. (L.2.9) and

3. p#oo (U may be an unbounded set),

that

[(RR™.0)) ((64-1) ) ey = |(R(B", Blro. 1) 0T)) 60y oy <

3.

2. c
<[(R(R™, B0, ) 0 U)) ]y 3 ey =

0.

1.2.12 Elliptic regularity theory for m-Lipschitz boundaries
Here, we make a thorough discussion on the elliptic regularity theory, in order to extract certain

useful results.

Interior regularity

The crux of this subsection is the application of for p= 2, co.

Theorem 1.2.4. Let U and (u, f) e HY(U)x H Y(U) be such that L,u=f. If ac WL (U) and
feL*(U), then

1. ue H?(Us) for every 6>0, with
V2l o sy <K 550 Dl (It o+ 17 2oy« ¥0<8 <0
w2y =M 55 g 14wr= ) wllr2(v) L) )> :

2. Lyu=f a.e. in Uy, for every §>0.
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Proof. Let 0<¢’<§ be small enough so that Us+@, otherwise we have nothing to show.

Step 1
In view of [Proposition 1.2.11] we consider a cut-off function ¢eC°(R™;[0,1]) such that

1. supp(¢) cUs,
2. ¢=11n U; and
3. HV¢HLN(RTL)§%-

47 4
05" : F(Us ) = F(Us ), as well as the operator Vi g2 F(U) - F(Usy ) with

For every i=1,...,n and he(—‘i’ 5—') , we consider the operators Bi’h F(U) - f(Ug) and
4

Vinov=05"(0% (97"0)), YoeF(U).
In view of we have
Vi,h7¢v:—(¢2)i’_h ((85’%08?’1) v)—(ai’hu) (3;’%52) ,

hence, Vi : H(U) > Hl(Uﬂ) with
2

supp(Vin.ov) € Usy, Yve H(U),

"y
1

since supp(¢) €Uy, thereby, from [Proposition 1.2.12 we get that V; 5.4 : H'(U) — H&(Ug).
2
In addition, from [Proposition 1.2.3] we conclude that

(EO(U%',U))O inet HY(U) - {veH&(U)|supp(v)EU3y}, Vi, h.

4

Step 2a
For every ¢ we choose v; ::—((SO(UL/ , U))o i,h7¢) u in the variational equation L£,u= f, thus,
2

in virtue of we obtain
_Mil S o @) (@ (@0 o= [ Fuida,
e K3

Ussr
4

and from the change of variables formula we deduce

< k=\ ai—h(al (120aih _ o
> stz, ar (051) 077" (0L, (470" u))da /Usg' fuidx.

k=1

From , we obtain
k;l ‘/Uaé’ 6i7h(akl (aﬁjﬂ)) (851)(¢281’hu))d1' = f f’Uidma

U35/
T4

or else

k,l=1

i /U ’ 3i’h(akl (&’jjﬂ)) (8L(¢28i’hu))daz = fU , fuidz,

since supp(¢) € Us,. Considering the real parts in both sides, we get, in virtue of (1.2.20)),

that
Re(Il):Re(ngf fvid:c) — I, (1.2.26)
where
L=+l = kél fUW Say (9" 00}) ) ((9""00,,) u)da+
+§_:1 ny (26 (9'0) ayl' ((97"00%) ) (97"w) + ¢ (0" aw) (9) (9" 00, ) u) +

426 (9'0) (0" aw) (957) (9""u) |da.
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Step 25
We directly deduce that
Re(I11) 20 6[(0°"07.) ul ||L2(U X (1.2.27)
For the second term, we have, from Point 1. of [Corollary 1.2.3] that
1
ial<K( 52 lalwrm o )
<[ ol(@""ova)uloul+0|(9" 0vu) ul [T uuto 0" u] |7 ulda
6/
and from the Cauchy inequality with g, we obtain
0 :
msfn [ CAE ]
1 iho2
IC(5 5, H HWl "°(U))(||a 7hu||L2(U5,)+vau|‘iQ(U(;/))'
Hence, from Point 1. of [Corollary 1.2.3] we derive
0 - 1
|112|§§|| ¢>|(8%hovu;) U| ||L2(U5/ ’C(5 50 Ha”WL“(U))vauuzL?(U)' (1.2.28)

Therefore, and imply
0 5 2 1 1
Re(fl)zg” ¢[(8"" 0V, ul ||L2(U5,)—’C(ﬁv 7 HaHWL""(U))”unHiQ(U)' (1.2.29)

Step 2v

From Point 1. of we get
I s SNl (), ) =CT 6 (0

4 2

IN

1 ; .
SIC((S 5/) (“8 ,hu||L2(U6,)+|| ¢|(8 ’hovw)u| ||L2(U57))

(525 ) (190l =191 000) ol |, )

Thus, from the Holder inequality along with the Cauchy inequality with %, we deduce

0 ; 2
el )Pl ) S 1O V) el e
7 o (1.2.30)
(575 ) (19wt 1 Ty
Step 29
Combing (1.2.26), (1.2.29) and (1.2.30) and the fact that ¢=1 in Us, we obtain
0. i
(@ *ovu)ul}a < 51610 0%0) [y, <
1 1
<575 5 lalwimo) (19wl + 1y
that is

) 2 2 2
@ o90) a0y <K 5257+ 5+ lalwrmon ) (IFwtl o+ 1)
From Point 2. of we conclude to the desired result.

Step 3
The quantity L,ueL?(Us) is now well defined®] From

8  We can not claim that LyueLl (U), since the second weak derivatives of u do not exist (as functions) in U.

loc
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1. Cemma 2.3 and

2. the definition of the weak derivatives,

we deduce, for every e C°(Us), that

[ Fode= [T (GUs,0)) w)de = T ol D 0) & {7, (olUs, U)) ) =
:/[-](Vwo(EO(U(;,U)))w~anﬂdx:fUé w/;-avwadx%—f% div(ava) vdz

and thus we get —div(aVa)=f a.e. in Us, or else Ly,u=f a.e. in Us, by .
O

Remark 1.2.10. Since every bounded and Lipschitz continuous function on an arbitrary U also

belongs to W1 (U), the conclusions of |Theorem 1.2.4 is also true for every a;j being Lipschitz

continuous instead. We will need this fact later on, so we prove it, along with a bound for the
weak derivative: Let uwe L*(U) be Lipschitz with Lip(u) < L. It suffices to show that V,u=Vu,
since then we have |Vou| e qry =Vl oy < L. We show the claim by the definition of the weak

derivatives. Let ¢ e C2(U) be arbitrary, set 6 =6y =dist(supp(¢),0U) and consider a sequence
{hi},c(=8,6)" such that |hy| ~ 0. In view of

1. the dominated convergence theorem and

2. |Lemma 1.2.2

we have, for everyi=1,...,n, that
o) = [ oiep)da & i ) &
fUu( w) ! sux)p(w)u( ¢) v klf‘rg Supp(w)u( w) !
2. . i,h L i __ 1
= kh]rgo can () ((9 ’“u) Pdx /supp(w) (8 u) dx /U (8 u) Pdx.

The converse is also true when U is an extension domain for Wh**(U), e.g. when OU ¢
Lip(e, K, L). Indeed, in this case it suffices to show the result for whole R™ only. Let x,y ¢ R"
and set h=(hy,...,h,)=x-y. Since ue WH>(R"), then (R(R", B(z, |h|))u)e W'P(B(x,|h|)) for
every pe[1,00]. Hence, we deal as in|Proposition 1.2.9 to get

1
u*(y+h161)—u*(y):h1/0 [04u] (y+thier)dt,

U*(y+h1€1 +h262) —u* (y+h161) = hg fol [8iu] (y+h161 +th262)dt
E if n#l.
u*(x)—u*(y+2?;11 hiei):hn [01 [07u] (y+2?=11 hie¢+thnen)dt,

Summing these equations and applying the Cauchy-Schwarz inequality, we directly deduce the esti-
mate

[ (2) —u™ ()| <[ Vo t] Lo gy [2=9]
thus Lip(u*) <[Vt peo(gny, from the arbitrariness of x,y.

A direct consequence of the previous theorem follows.

Corollary 1.2.5. Let m e N\{1}, U and (u,f) e HY(U)x H*(U) be such that L,u= f. If
aeW™ b(U) and fe H™2(U), then ue H™(Us) for every >0, with

UC 1 1
22||V"ZUUHL2(U6)SIC(76_5,7§7 HaHWm—lv“’(U)) (HunHL2(U)+HfHHm—?(U))a V0<d'<d.
j=

Proof. We show it by induction on m.

Step 1
The case m=2 is nothing but itself.
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Step 2

Here follows the induction hypothesis on an arbitrary m € Nx{1,2}: for every U, a ¢
Wm=be(U) and fe H™2(U), we have that ue H™(Us) for every ¢ >0, where u solves
Lyu=f (in H(U)), with

= ; 1 1
Z; ||V{uuHL2(U6) SK:(i(S—(S” 5, HGHWW_LOQ(U)) (HVUIUHLQ(U)+HfHHm‘Q(U)) N V0<5’<6.
j=

Step 3

Now, we assume that ae W™= (U) and fe H™ ' (U) for some U and also that ue H}(U)
solves L,u=f. By the induction hypothesis ue H™(Us) for every § >0 with the above esti-
mate. Let 0<6” <¢’ <0 be arbitrary and sufficient small (otherwise we have nothing to show).
For every aeNj with |a|=m-1 and every 1 eC>°(Us~), we set (—1)'0“ (& (Usrn,U)oD*) 1) in
the variational equation L£,u=f. In virtue of the fact that the differential operators of the
form D? commute with each other along with the Leibniz rule, we deduce from the induction
hypothesis (i.e. ue H™(Us~)) and the definition of the weak derivatives that

S, v alueni)mde= [ (DLF1) v,
where
I={sum of terms C (Dy,'a;;) (Dy2u), for ay,as €Ny such that 1< |aq], o] <m},
or else
(LyoD2)u=D2f+1, in H(Usn),
since 1 is arbitrary. From the case m=2, we derive that D%ue H?(Us) with

1 1 _
H(V?UODS,) u”Lz(Ué)SIC(ﬁ’ R Ha”WLw(US,,)) (vauHL2(U5u)+||D$f+l||L2(Ué,,)) )

and from the induction hypothesis (i.e. ue H™(Us~) along with the respective estimate) and
the evident fact that the norms in subsets are smaller, we get

. 11
|(v2,0D5) UHLQ(U(S) S’C(ma rE HUJHWWMN(U)) (HVwUHL2(U)+Hf“Hm-1(U)) ;

or else

m 1 1
||Vw+1u||L2(U5)S’C(ﬁ7 9’ Ha”Wm«“’(U)) (HVwUHL2(U)+HfHHm—l(U)),

since « is arbitrary. In virtue of the above estimate for arbitrary § along with the estimate
of the induction hypothesis, we obtain the desired result, that is ue H™*(Us) for every >0
with

m+1 . 1 1 ,

JZ:; HvzquLz(Ué)SK(ma rk Ha“Wmv‘”(U)) (HVUJUHLZ’(U)+Hf‘|Hm*1(U))a V0 <d'<d.

Boundary and up-to-boundary regularity

The following results concern the sets with boundaries as in [Definition 1.2.7] The crux here is the

application of[Theorem 1.2.3|for p=2, along with [Proposition 1.2.9|for p= 2, co. Before we proceed,

we need the following result.

Lemma 1.2.3. Let Uy, Us and @ : Uy - Us be bijective and bi-Lipschitz transformation, with

U= &1 and Lip(¥) < L, for some L>0. Then, for every second-order uniformly elliptic oper-

ator L,(a,0) : HY(Uy) - H™X(Uy) there exists a unique second-order uniformly elliptic operator

L,(@,0): HY(U) » H™Y(Us), with

ki =|det (JT)| Z (ajjoW) ((r“)i@ko\ll) (8j<1>lokll)7 a.e. in Us, for every k,l=1,...,n

,j=1
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and

_Oldet (JT))|
K@

such that
(Ewuw):(zw(uokll),vo\ll) , Vue HY(Uy) ,veHy (Uy).

Proof. First of all, in view of [Theorem 1.2.3] @e L*°(Us), thus the above statement makes sense.
Now, in virtue of [I'heorem 1.2.3| for m=1 along with the change of variables formula, after some
trivial calculations we have

/ va-avwﬂdx:f Vo (0oW)-aV,, (aoW)dz, YueH" (Uy),veHy(Uy).
U1 U2

It suffices to show that
Re(§ ~EL’E)2§|§|2, a.e. in Us, for every £eC".
Indeed, it is direct to check that
Re(£ -’df) =|det (JU)|Re(n - (ao®) 7)>0|det (JU)|nf*, for every £eC™ and n=£J.
Since £=nJy, then |£|<K (L) |n|, and so
Re(f -’dé)zbﬂﬂz, for every £eC™.

O

Now we are ready to show the main result of this subsection, that is the missing part of
24

Theorem 1.2.5. Let U with OU eLip®(e, K, L) and (u, f)e HY(U)xH Y(U) be such that L,u=f.
If aeWbh**(U) and feL*(U), then

1. ue H*(U\Us) for every §¢€(0,¢), with

1 1
Hv?"uHLQ(U\U(;) SK(m,K,L, éa HaHW1=°°(U)) (Hvﬂ)u||L2(U)+HfHL2(U)) ’

for every 0<d<d' <e.
2. Lyu=f a.e. in U\Us, for every 0€(0,¢).
Proof. Steps 1 and 2 are preparatory for Step 3.

Step la

We modify the open cover {Uy}, of OU in Definition 1.2.7, We setﬂ

(0U),={xedU|B(z,e)cUs}, and Up2Usp= |J B(z,0), Vée(0,e], Vk.
ze(oU),,

In virtue of condition 1. in the aforementioned definition, OU =Uy, (OU),. Hence, for every
d, the collection {Us}, is also an open cover of OU that inherits all of the properties of the
definition which characterize the collection {Uy},. Moreover, we can easily deduce that

U\U(;:UI’WUU(;,/C:U(UMCOU), V5€(0,E].
k k

9 We naturally consider that UgezBs(x)=@. However, we can exclude all the vacuous components of the open
cover, so that we can assume (0U), #@ for every k.
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Step 15
We write
P, P,
x T Yk %3 2k,
1 2k

where x stands for the background coordinates, yy is as in [Definition 1.2.7]and z; stands for
the coordinates that “straighten out the boundary”, i.e

2 = vy, and zn, = Yo, =R (Y) -

We notice that since every ®;, and ¥y, are rigid motions, then they are also isometries, as
well as |det (J @y, )| =|det (JP1,)|=1, for every k. Moreover, det (JPy,)=det (J¥y, )=1 for
every k, and also, in virtue of condition 3. in the aforementioned definition, it is direct to
check that every ®5, and Wy, are Lipschitz continuous with Lip(®s, ) <I(L) and Lip(Ps, )<
K(L). Therefore, setting @y, = $g, o®;, and Uy := Uy, o ¥y, for every k, we deduce that
|det (JP@g)|=|det (JP)|=1 for every k (a direct application of the chain rule), as well as that
every @y, is a bi-K(L)-Lipschitz transformation with ¥, =®;!, that is

Step 2a

r1-T
|’C1(L)2|_|(I)k($l) (I)k('JJ2)|<IC(L) |:L‘1 1‘2| Vzlil,:zzgeR’ﬂ VE.
Let 0<d<d'<e and d:= . We consider the sets

Usi €Us 1 & (Uaf,k)d =(Uek)gy & (U5',k)2d =(Uek)gy & (Uéf,k)Sd =(Uer)y & Ueck, VK,

hence

@, (Us) € Pu(Us k) & Pu((Uek)gy) & Pu((Uen)oy) € Pu((Uer)y) & @r(Uei), V.
In view of Step 15, we deduce that

(5,—(5 _ diSt(Ug)k, 8U5’,k})
k(L) K(L)

<dist(®x(Usx), 0Pk (Us 1)), uniformly for every k,

as well as

dist(®r(Usr 1), 0P ((Ue k) 5y)) < K(1+L)d = d'
dist( @5 ((Ue k) 3q: 0Pk ((Uek)9y))) <d’

diSt((I)k((Us k)zdvaq)k((Ue k) )))
(

<d uniformly for every k.
dist (@ ((Ue k) g 0P (Usi)))) < ',

For every k we choose a cut-off function ¢ eC°(R™;[0,1]) such that

L. supp(¢x) € Px(Us' k),
2. ¢p=1in Py (Us ) and
3. \|V¢k”Lw(Rn) < %, uniformly for every k.

Now, for every k we consider the sets

D), (UsunU) & @1 (Us xnU) € @4 ((Uz 1) 5ynU) &
¢ q)k((Ua,k)zde) & ‘I)k((Ue,k)dnU) & (I)k(Ue,kmU)

and for convenience we denote the above group of sets as

le EDQk ngk gD4k $D5k $D6k7 vk.
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Step 25
If n#1, for every i=1,...,n~1 and he(-d’,d’)", we consider the operators

8;’):1 : F(Deg,) > F(Ds, ) and a;: :F(Ds, ) > F(Dy,), for every k,

as well as the operators
Vinon : F(Ds,) > F(Da,), Vk.
with
Vinaov =05 " (67 (97]v)), voeF(Ds,), Vk.

We can now deal as in Step 1 of the proof of to show that

(E0(Diy D)) Vin  {oeH (Do) | (0] (Do, 0{z0=01) = (0}}

- {UEH&(DGk) | supp(v) EDigk}, Vi, h,k.

Step 2y
Since Lyu=f, then ((R(U,U-xnU))oLy) u=(R(U,U. xnU)) f for every k also (sce Defini-]
tion 1.2.5)). Therefore, in virtue of [Lemma 1.2.3) we deduce that

(Lk, (uoWr),v)=(foWy,v), YoeH)(Ds,), VE,

where
ko = Z (a;joTy) (8i<I>kTo\Ilk) (8j<I>kSo\Ilk), a.e. in Dg,, for every r,s=1,...,n
ig=1
and
0
k= K:(L)a
for every k. In view of the second part of [Remark 1.2.10] and [Proposition]

1.2.8] we directly obtain that @, e W (Dg, ) for every k, with
[@ w1 (g, ) S allwr.e v, ooy KL lalwro iy VE-
Additionally%} uoW; e H(Ds,) and fyoWeL?(Ds,) for every k, with
190 (00 2y KTt (01000
and
1£0Wal 1o,y Sy o

Step 3a
In n#1, for every k and i=1,...,n-1, we choose v; =—((Ey(Da,,Ds,))oVi ne, ) into the
variational equation Ly, (uo¥)=foW in H '(Ds, ), and then we deal exactly as in the proof

of minding to apply [Proposition 1.2.9instead of to get that
D& (uoW;)eL?(Dy,) for every aeNZ with |a|=2 and a#(0,...,0,2), and every k, with

. 11
DB 120, S (55 5 [Tl (s, )
% (190 (o®) a(py, ) 1okl 2y, )
or else
D¢ ) K 1 L L
1D o) 2,y < 5 B g alrmqo )

x (19t 3,00 1 () o)) - -

10 See Step 36 below for the reason why we estimate these terms in Ds,, and not in whole Dg, .
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Step 35
For a=(0,...,0,2), we first notice that the uniform ellipticity condition implies that

[@nn|2Re(@nn) 20>0, a.e. in Dy, ,

and so @py, 0, a.e. in Dg,. Moreover, since 9U €Lip(e, K, L), then ay,, is (bounded and)

Lipschitz continuous (from the second part of [Remark 1.2.10). Thereby, we return to each
Ly, (uo¥y)=foly, where we put

Eo(Dr,, De,, )V

, for arbitrary ¢, €C°(Dy,,), for every k.

ann

Therefore, by the definition of the weak derivatives, we have that

fleam(33(uoq;k))(a"(affn))dz:fle ]il o, (@i; (0%, (5o wy))) + f %dm

(i,5)#(n,n)

or else

Sy, @itaows)) "0z =

:[ i 07 (@ij (0L (o Wr))) + f + (0"Ann) (91 (0 Wy,)) idz,
D, ij=1 Ann

(@,3)#(n,n)

for every vy € C°(D1,) and every k. Therefore, again from the definition of the weak
derivative, we deduce that 9} (uo¥y) is weakly n-partially differentiable and DS (uoWy) €
L3(D,,) for every k, with

1

o 1
105 o) () SK 5 B o balwnom o )

% (19wl 2w, ) o0y 1 2 () o)) » VR

We note that, in the particular case n=1, the above estimate has the form

1
D5 o) 120y, <K - Il wrmo) ) (190t 000y * (000 » ¥
but that does not make any difference for us.
Step 3
Combining the estimates of Step 3a and 33, we obtain

1 1
[ o), ) K750 o e =)

< (It (1 00) I (@ 00)) - B

We also add the missing terms to both sides of the above estimate and we multiply by K(L)
to derive

2 ; 1 1
’C(L)J; ||V'Zu(u0\1}k)”L2(le) SK(m7L, 57 ”a‘HVVL“’(U))><

% (19wl 2, oy 00y Ml 2 () 0 )+ ¥
Now, from the fact that every @y, is rigid motions, combined with condition 3. in
that implies V&, is Lipschitz continuous with Lip(VCDQki ) <K(L), forevery i=1,...,n
and k, we deduce easily by the chain rule that every V®y, is Lipschitz continuous with

Lip(V®g,) <K(L). Thus, in view of [Theorem 1.2.3] we obtain

1 1
P R e

% (190l 2, 00y Ml 2 (00 0 )+ ¥
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Step 36

It is only left to use the above bound to estimate vauu||L2(U\U5). Employing

1.2.11} for every k we consider a cut-off function ¢ eC°(R";[0,1]), such that
1. supp(¢x)<U. x and
2. d)kEl in (Ug,k)d.

From condition 2. in[Definition 1.2.7| (see also Step lar), we have that every collection of K+1
of supp(¢x)nU’s has empty intersection, that is, for every xeU\U, at most K of ¢p(x) are

non-zero. From

1. the fact the indefinite integral of a non-negative measurable function (with respect to a
measure) is a measure itself (which is a direct consequence of the Beppo Levi theorem),

2. the latter estimate,

3. the Beppo Levi theorem, or alternatively the Tonelli theorem for the counting measure
in a subset of Z (where every k exists) and the Lebesgue measure in U\U,, and

4. the fact that ¥, ¢ <K in U\Uq,

in this order, we then get

f |V12Uu|2d33: f |V12Uu|2dx ls Zf |V12Uu|2dx2§
U\U5 Uk (U(;,;CI'WU) k U(;,;CI'WU
2. 1 1 2 2
S’C 77-[/777 1,00 f w d <
(55 B g lobwimn ) S [, Il sl
1 1 2 2 3.
<K g5 g lohwnmn) Z x5l 417
(L7 Ll (1wl +1f12) 3 ez €
- 5,_57 ’07 a Wie(U) UU. wl| + f ) - ¢k UOBS

4. 1 1 2 |2
(5L gl [ 19wl 15,

thereby the desired estimate follows. As far as point 2. is concerned, it follows exactly as in

Step 3 of [Theorem 1.2
O

Remark 1.2.11. U being an extension set is essential for the proof of[Theorem 1.2.5
Now, we combine [Theorem 1.2.4] and [Theorem 1.2.5| for the regularity up to boundary.

Proposition 1.2.13. Let U with OU € Lip®(e, K, L) and (u, f) € H}(U)x H(U) be such that
Lou=f. If aeWh>(U) and feL*(U), then

” Hl U <_’C ” H (U (H ”l U Hf”l )
;’wu 2( ) 71<7L7 97 a w1t ( ) ;wu 2( ) 2(U) .

2. Lyu=f a.e. inU.
Proof. Tt suffices to notice that, by fixing 0<d; <d<ds<e we have §—d1=Ce and d5—-6=Ce. O
The higher regularity result then follows.
Corollary 1.2.6. Let meN~{1}, U with QU eLip™ (e, K, L) and (u, f)e Hi(U)xH 1 (U) be such
that Lou=f. If aeW™ L°(U) and fe H™2(U), then ue H™(U)nHL(U), with

Ui . 1 1
JZ; HV%JUHLz(U) SK(gaKva éa ”CLHW""L‘”(U)) (HVUJUHLQ(U)+||fHH7”*2(U)) .

Proof. We show it by induction on m.
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Step 1
The case m=2 is nothing but [Proposition 1.2.13|itself.

Step 2
Here follows the induction hypothesis on an arbitrary meN~{1,2}: for every U with U
Lip™(e, K, L), ae W™ 1°*(U) and fe H™ 2(U), we have that ue H™(U)nH}(U), where u
solves L,u=f, with

jZ;||V{UU||Lz(U)sIC(E,K,L, solalymosm ) (190l 2y 1 Lima)

Step 3
Now, we assume that ae W™ (U) and fe H™ ' (U) for some U with oU eLip™* (e, K, L),
and also that ue H}(U) solves L,u=f. By the induction hypothesis ue H™(U) with the
above estimate. For every aeN{ with |a|=m~-1 and every ¢ eC>(U), we set (—1)‘°‘|D0‘1/) in
the variational equation L£,u=f. In virtue of the fact that the differential operators of the
form D? commute with each other along with the Leibniz rule, we deduce from the induction
hypothesis (i.e. ue H™(U)) and the definition of the weak derivatives that

[va-a((vwopg)a)dx:fl] (D& f+I)1pd,
where
I={sum of terms C (Dy'a;;) (Dy2u), for ay,as €N such that 1< |aq], o] <m},
or else
(LyoDg)u=D4f+1, in H'(U),

since v is arbitrary. From the case m=2, we derive that D%ue H*(U) with

1 1 _
||(V12”0D3))UHL2(U) S’C(E,K,L, éa HaHWI»w(U)) (vau||[,2(U)+”D3;f+IHL2(U)) )

and from the induction hypothesis (i.e. we H™(U) along with the respective estimate), we
get

1 1
”(Vizung)uH]ﬂ(U) SK(E7K7L7 5’ HaHW”L"”(U)) (HVWUHL2(U)+HfHHm*1(U)) )

or else

. 1 1
||Vu,+1u||L2(U) SIC(E7K3La 57 Ha”Wmvw(U)) (HVwUHLQ(U)+Hf‘|Hm*1(U)) )

since « is arbitrary. In virtue of the above estimate along with the estimate of the induction
hypothesis, we obtain the desired result, that is ue H™*1(U) with

m+1 ) 1 1
]Z=:2 ||V2UUHL2(U5)SIC(E7K5L7 57 Ha”W"‘vw(U)) (HVTUUHLQ(U)+HfHHm’l(U)) .

O

Remark 1.2.12. The estimate in[Corollary 1.2.6 can be generalized in order for us to consider
functions with non-zero trace, i.e. Tu=g#0. Indeed, it suffices to generalize Theorem 3.37 in
[38] for the extension-in-U operator™ of the trace operator T, where OU eLip™ (e, K, L), and then
to set the difference u—Tg into the estimate. In fact we can generalize the result for the space
{ueLlloc(U) | viueL2(U), for j=1,...,m, and [Tu] (8U):g}, e.g. for Xi*(U), by defining the
trace operator only locally. However, such approaches exceed the scope of the present study.

Remark 1.2.13. In the classic reference books (see, e.g, [20], or [15], or [38]), the second-
order uniformly elliptic operator in H*(U) has the general form L& = L, +b-Vu + cu, for
b=(b;), € L=(U) and ce L= (U), which in general does not induces a symmetric bilinear form
nor an isomorphism from H}(Up) onto H ' (Up) (see . However, we note that
the elliptic reqularity results of a solution ue H*(U) of L,u=f in H*(U) appeared z'n
[1.2.19 and [Subsection 1.2.19 are trivially true also for L, since all we have to do is to consider

w?’?
f&=f-b-Vyu-cu instead of f in the variational equation.
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A priori estimates

In this section, we are interested in the sets Up (see [Definition 1.2.3)) with OUp eLip™ (¢, K, L).

Theorem 1.2.6. Let meN, Up with OUp € Lip™ (e, K, L) and L, (a,0) with a e W™ 1> (Up).
Then,

1. L, induces an isomorphism from H™(Up)nH(Up) onto H™%(Up) and

2. form#1 and every ue H™(Up)nHE(Up) we have

D LRI (8 N ) [ (A P L ey

Proof. Point 1. follows easily from the combination of [Proposition 1.2.1| with [Corollary 1.2.6] and
Point 2. follows from Point 1. along with the estimate in O

Proposition 1.2.14. Let meN~{1}, Up with OUpeLip™ (¢, K, L), Ly (a,0) with ae W™ 1> (Up)
and ue H™(Up)nH}(Up). If

(Liu)eHy(Up), ¥j=0,..., [%J—l (compatibility conditions),

then we have

1 1
D e
VwoLi}) u||L2(Up)+ Z HL{UUHU(UP)
jENm JeN,
2j+1<m 27<m

Proof. We show the desired estimate by induction on m, only for even m, i.e. m =2k for some
keN, since the other case follows analogously. Therefore, we want to show that

2k . 1 1 k-1 . k .
j; ||v‘17uu“L2(UP) SIC(E’K7L7 @? ”aHWmfl,oo(UP)) (];O ||(vaLZU)uHL2(Up)+J; ”L{Uu”L%Up)) .

Step 1
The case k=1 follows directly from the estimate in
Step 2

Here follows the induction hypothesis on an arbitrary ke Nx{1}: for every Up with OUp €
Lip®*(e, K, L), every Ly (a,0) with ac W21 (Up) and every ue H**(U)nHL(U), if

(Li,u)eHy(Up), Vj=0,..., k-1,

then we have

1 1
Z ||V u||L2(U )_ ( K L HGHW% Lo (Up ))

- ‘ k
x (]Z% ||(VwoLfD)U||L2(UP) Z |1Z3, u||L2(UP)) .

Step 3
Now, let Ly (a,0) with a e W2k*1(Up) and ue H***2(U)nH}(U) be arbitrary, for some
arbitrary Up with OUp eLip®**%(e, K, L), as well as

(L),u)eHy(Up), Vj=0,...,k.
Then (L,u)e H**(Up)nHg(Up) and
(L), (Lyu))eHy(Up), ¥j=0,... k-1,
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hence by the induction hypothesis, we obtain

2k ) 1 1
5 (Fho L) ul oy <K KoL Gl i )

k-1 4 ko
" ( Zo [(Vaeli) “||L2<UP)+,21 ”%H“”L%Up)) ’
j= j=

or else

2k ) 1 1
2 (G R PR (e S ey &

k . k+1 )
’ (.7—2:1 ||(VwOL{U) u||L2(UP)+jgg “iju“LQ(UP)) '

We add the missing terms, i.e. | Vuu| 12 gyt Lot 2y Hl (Vw0 L) ] 2 (17, t0 both sides,

to get
1 1
I9 0wt 2y * 1wt rze oy S 20 K L g lal iz = o) )
k ) k+1 )
" Z;||(Vw°L{u)“||L2<Up)+Z;”LZU““L%UP) HVurl i@yt
Jj= J=
HLwtl p2p) (Voo L) ul p2 gy
that is

1 1
192ty Lt iy K21 L g e )

k ) k+1 )
(S Uy Vbl )
7=0 j=1
We then write

1 1
K(?K,La 7’ Haﬂw%ﬂ,wwp)) (vauuLz(Up)+HLwUHH%(Up))S
1 1 k ; k+1 i
SK(E’K’L’ 6’ Ha”W”““'“(UP)) j;) [(vooli) UHL2(UP)+]Z=:1 ||quHL2(Up)

and we employ the estimate in for m=2k+2 to obtain the desired result, that

1S

2k+2 ) 1 1
]; ||VZUU||L2(UP) S’C(E,K,L, 5) ”aHV(/’QkJrLN(UP))><

k . k+1 .
Do CREAP S I A
J= J=

O

Remark 1.2.14. A plethora of sets U that appear in the applications do not belong in the class
of the results of this subsection, that is

U ¢{Up with dUpeLip™ (e, K, L)},

e.g.

1. certain unbounded sets such as exterior domains with uniformly reqular boundaries, hypo/epi-
graphs of “Cm’l(Rn_l)”-functions and the whole Euclidean space, belong to the class

{U with OU eLip™ (e, K, L) }{Up},
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2. sets with corners that satisfy the criterion for the Poincaré inequality, such as a bounded

triangle, belong to
{Up}~{U with 8U eLip? (e, K, L)},

3. any combination of the previous examples.
We can generalize the a priori estimates of the previous results for U as above (for the case of

U being as in the second example, the whole|Theorem 1.2.0 can be generalized), by considering a

sequence

{Uk}kC{UP with 8Up€Lipm(5,K7L)}a

such that U, » U and

1
sup {max{—,Kk,Lk}}<oo.
k €k

This approach, which is similar to already known ones concerning certain cases of sets (see, e.g.,
Section 3 in [30] for the case where U is bounded and convez), lies beyond the scope of this work.



Chapter 2

Non-vanishing solutions of the
defocusing NLSE

2.1 Introduction

The problem for U=R" with n=1,2,3 and « being as in @, along with more general cases
of non-linearity, has been studied in [I9]. There, it is shown that if » = —p” with p>0, as well
as ( e CEY(R"), V¢ e HY(R™), with k=1 if n=1 and k=2 if n = 2,3, and additionally
(I¢[*~p) e L2(R™), then (1) is globally and uniquely solvable in H!(R").

Here, we extend the results of the aforementioned paper, not only by weakening the assump-
tions, but also by considering more general cases of U CR"™, other than the Euclidean space itself.
Moreover, we study the regularity of the solutions.

This chapter is organized as follows: In [Section 2.2| we rigorously formulate the problem and
provide properties of the operators and the quantities that appear. Local existence, uniqueness,
globality and conservation of energy of the solutions is considered in In particular, for

the case of bounde(ﬂ U, we first show (see|[Theorem 2.3.1|) local existence for every

ae (0’“;)’ ifn=1,2 (2.1.1)
(Ovﬁ)v otherwise,

every r € R and every U, if (€ H'(U)nL***(U) (notice that H'(U)nL*"2(U) = H'(U) if oU ¢
Lip(e, K, L)). We also show (see local existence for every a as in @, every r=—p°T
with p >0 and every U, if ( € X'(U). Local existence in unbounded sets is studied next (see
Theorem 2.3.3|). For this purpose, we employ a technique which is based on the extension-by-zero
of certain approximations of solutions, each one of which is considered in a bigger bounded open
set than the domain of the previous one, in order to extend for any unbounded U, if
¢CeX'(U) and (|¢|-p)e L*(U). Uniqueness and globality is also provided for certain cases of o and
U (see [Proposition 2.3.1)), as well as the conservation of energy of the solutions (see [Proposition]
2.3.2)) and a consequence of this, concerning the well posedness of the problem (see|Corollary 2.3.1)).
Moreover, the regularity of the solutions of [Theorem 2.3.2| and [Theorem 2.3.3| for the cases

N, ifn=1
{TE onn (2.1.2)

r=1, ifn=2,

is studied in [Section 2.4} where the high-order regularity in bounded sets (see|Corollary 2.4.4) and
in whole Euclidean space (see|[Theorem 2.4.2)) is shown. The crux for obtaining the latter result is

the application of the estimate in [Proposition 1.2.14]

2.2 Formulation of the problem

In this section, we state the problem rigorously.

1 We note that all of the results concerning the case of bounded U, can also be applied to Hrl)er(R").

38
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2.2.1 A general non-linear operator

We assume that « is as in (2.1.1)), e L>(U)nL**2(U) for an arbitrary U and r€R. In virtue of

the scaling invariant embedding H3(U) < L*"2(U) (see|Corollary 1.2.1)), it is direct to derive that
(lu+¢|* (u+¢)) e LEE (U), Yue HE(U).

Moreover, from

1. the Holder inequality for p; = Z—*Q and po=a+2 and also p1,ps =2, as well as

+1

2. the scaling invariant embedding H3(U) = L**2(U),

we get, for every u,v e H}(U), that

‘fU (Jut I +7) (u+C) Bz

<Kl a1 0y 1 sy IS0 20 )10l oy (2:2.1)

at+2

Hence, for every A eR* we define gy : H}(U) — Y, (U) = Lo+t (U)+L2(U) < H'(U) to be the
non-linear and bounded (if we see it as an operator that maps to H~'(U)) operator such that

(w0, ¢, 1) = A (lu+¢|"+7) (a+C), YueHg(U),

or else
(ga(u),v) = X fU (Ju+¢|"+7) (a+{) vdz, Yu,veHy(U).

For the above operator we have the following estimate, for the proof of which we need a lemma.

Lemma 2.2.1. If a€[0,00), then

H|U|au—|v|aUHLgﬁ ) S (HUH%CYJr?(U)+HUH%“”(U)) lu=vlpaszy, Yu,0 e L2(U). (2:22)

Proof. Tt is direct application of the elementary inequality

||zl|qzl—|22|ng|£0q |21 — 23] (|zl|q+|22|q) , V21,22 €C, Vqe[0,00), (2.2.3)
the Holder inequality for p;=a+1 and ps= O‘T” and ([1.2.13). O

We also need the following Gagliardo-Nirenberg interpolation inequality (see, e.g., Theorem 1.3.7

n [I0]): for « being as in (2.1.1]) we have

[l v oy CI V| 5

uHL2 2(a+2) VueCZ (R™),

(Rm)
or else
[l sy SCIV ] 2 Ll 22555, ue HY(U). (2.2.4)

Proposition 2.2.1. For every u,v e H}(U) we have

HQA(U)—QA(U)HY(,(U)SIC(HuﬂHl(U),HUHHl(Uy Clumy) (e 7 sl 229
Proof. From and the scaling invariant embedding H}(U) = L*"2(U) we get

o () =92 (@) ly,, 1y <C (el 0y + 1057 0y + 1< Sav 0y ) =0 sz oy + 1] =] 2oy

or else

o7 ()= () ., 1 s/c(nunHl(U), [0l 11 0y 1 vz oy ) (Ha=0 ] posa oy + lu=0 ] o))

hence, employing (|2 we get the desired estimate. O
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Now, we further assume that (€ H'(U) and we consider an arbitrary £, (a,f) as in
1.2.11 We define NVy[#, ] : HI(U)”
Ly, (-+()+gy, such that

— C to be the form which is associated with the operator

Na[u,v] = (Lo (urC),v) + {ga(u) ,v), Yu,veH;(U).
We then restate the problem : for every uge Hy (U), we seek a solution
u=uy,eL=(Jo; Hy(U))nWh(Jo; H(U))

{(iu’,v) +Ny[u,v] =0, for every ve H:(U), a.e. in Jy (2.2.6)

u(0) = ug.
We note that we obtain the following estimate for the form N},
|Nx[u,v]|S’C(HaHLw(U)7 Il 2 oy 1S T e oy HCHLmz(U))HvHHl(U)» VuveHy(U),  (2:2.7)

directly from the Holder inequality (p;=p2=2) and (2.2.1)).
We further define the energy functional Ey : Hi (U) — [~00,00] by

Bx(50,6,r) = 2 LL+G4C]+ Gals,Gor),
where G : H3 (U) — [~00, 00], with
GG )= A [ V((liar)de,
where V : [0,00) — [0, 00) is defined as

1 1 a+2
V(zyo,r) = ——a" + Zra? + LM Ca (2.2.8)
a+2 2 2(a+2)

It is direct to check that for every C,>a+2 we have

Co || a 1
2o, Vo> | —2 1 — o 2.2.
<OV (), IZ(CQ—(a+2)) >|r (2.2.9)

For the functional G\ we have the following estimates.

Proposition 2.2.2. For every u,v e Hi(U) we have

1GA () =Ga@) <K ([l g0y 1010y 1 sz oy 1€ 2 oy ) %

- g (2.2.10)
(vl gy + vl oo )
and
G() <K (Jul g oy 1€l poenrys [ gy 1U1)- (2:211)

Proof. We notice that, for every fixed zelU we have
V(@) + @DV (@) + @)= [ (fsu(e) s (1-5) v+ (@) ds=
= [ lou)+ (1-5) o) @) "Rl (su(e) +(1-5) v(z) +¢(2)) () -2()) s+
+ fol rRe[(su(z)+(1-s)v(z)+{(x)) (u(z)-ov(x))]ds=
=Re( [ (lsule)+ (1) o)+ (@) ) (su(e) +(1-5) o(2) #¢(2)) (@) -2())ds )



CHAPTER 2. NON-VANISHING SOLUTIONS OF THE DEFOCUSING NLSE 41

that is
V(|u+(|)—V(|v+C|):Re(/:(|su+(1—5)v+§|o‘+r) (su+(1-s)v+() (E—T})ds), inU. (2.2.12)
Hence
! a+l
|V(|u+(|)—V(|v+C|)|s/O (Isu+(1=s) v+ | [sus (1-5) v+C]) [u-vlds <
! a+1), ja+l a+l; ja+l a+1
gcfo (5l (1) ol I ol o] (¢ ) fu—vlds <
<O (Jul ol [l +ol +[¢]) u-v],
and so
|GA(U)_GA(U)|S|)‘|fU|V(|U+C|)_V(|U+C|)|dzg
<C [ (1l ol 41 el ol+[¢]) lu=vlda,

From the Holder inequality for p; = z—ﬁ and py=«a+2 and also for pi,ps =2, as well as the scaling

invariant embedding H}(U) = L**2(U), we get

G () -G ()<l 1y 1ol 1 0y 1S vy oy )

% (lu=v] oz oy +lu=vl )
thus (2.2.10)) follows from ([2.2.4)).
As for (2.2.11f), we have that
GAO)1= N [ VIcHdz <K (1€ vz oy Il oy U1).

Then the result follows from ([2.2.10f) and the triangle inequality. L

Remark 2.2.1. A similar proof for|[Proposition 2.2.2 would be via the validation that gy is the
Gateauz derivative of G .

2.2.2 A special case of the non-linear operator

The operator g, is not useful for the study of the problem in unbounded domains. Here we see
how we can overcome this drawback, by considering different assumptions.

First, we assume that (e L?(U)nL**?(U)nL>®(U) and we extract some properties concerning
the aforementioned operator.

Proposition 2.2.3. Let u,v e Hj(U).

1. If n=1, then
193(8) =93 () 2oy <KLt i oy Vel oy K mon Yl oy (2:213)

2. If n=2, then
l9(0) =93 () |2 ary <KLl s 0y Vel oy ) (2.2.14)

><(HU—UHLAL(U)+||U_UHL2(U))
and
192() =930 120y <K sl i 0y [0l 0y 1< e o))

(2.2.15)

1
(Bl sy ol sy ).
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3. If n=3 and a=2, then

HgA(u)_g/\(U)HYZ(U) SK(HUHHl(U)? ”v”Hl(U)’ HCHL“’(U))X
(2.2.16)
x (lu=0l gy + lu=vl 2oy )

and

HgA(u)_g/\(U)HYZ(U) SK(HUHHl(U)? ”v”Hl(U)’ HCHLN(U))X
(2.2.17)

<(lu=ola oy Hl=vlisw) ).
Proof. Let n=1,2. By simple application of (2.2.3), we get
2 20 20 2 20 2
[ loa@=ga@)Pda<C [ (P +pl*) lu=oPda+C (IS5 0y +1) lu=vl o).
For n=1, we employ the scaling invariant embedding HJ (U) < L= (U) to derive (2.2.13). For n=2,
we get (2.2.14)) from the Holder inequality (p; =p2=2) and the scaling invariant Ha(U) « LY(U),
for ¥€[2,00). (2.2.15) follows from (2.2.14)) and (2.2.4). As for n=3 and a=2, we have

ga(u)=gr(v)=X(I1+12),

where
I =|u|*a—|v[*s and I,=2C (|u|2—|v|2)+g“ (ﬂ2—52)+(2|§|2+r) (u—v)+g‘2 (u—v).
Directly from (2.2.2) we get that I, e L&+ (U) with
1121 a5t gy SE (Il 0 1021 0y )= ooy

Additionally, from the Hélder inequality (p; =p2=2) and the scaling invariant embedding Hg (U) —
L?(U), for ¥€[2,6] we have

2 2 2 2 2
[ Pz <k (16 wy) [ Tl (juf +1of ) +lu=vfdo<
2 2
<K (1l 1 oy 10 a1 0y 1 m oy ) (=000 +lu=0 ] 20r))

hence ([2.2.16)) follows. We obtain (2.2.17) from (2.2.16|) along with (2.2.4). O
We further notice that, by dealing as for (2.2.16)), we also can have that

19 =3O s (1,08 )z <Kl wyo 190y 1€ e oy )

(2.2.18)
8 (““—UHLm(J;H(U))+||“‘”“LP2(J;L2(U))) )
for every u,v e H}(U) and py,ps €[1,00], if n=3 and a=2.
Proposition 2.2.4. Let u,v e H}(U),
eN if n=1,2
a=2r for {7 an " and r=—p*" for pe(0,00), (2.2.19)
=1, ifn=3
as well as (|C|-p)eL*(U).
1. If n=1,2, then
lgx(u)ll 2 vy SIC(HUHHl(U)v [<l 2o 0y H|C|-P||L2(U))- (2.2.20)

2. If n=3, then

(@) oy (Il 1 0y 1€ Lm0y NSl 2y )- (2.2.21)
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Proof. We notice that g,\(O):/\(|C|2T—p27)E, which belongs to L?(U). Indeed, by expanding via

a”-b" = (a—b)(a"‘1 +a" b+ . .+ab™ > +b"_1), (2.2.22)
we get
19(0) 2y <K (I€0 oy €01 o))
The results then follow from [Proposition 2.2.3| and the triangle inequality. O

Let us now notice that ¢ being in L?(U)nL**?(U) plays no essential role at any of the above
results. Hence, for

a, ras in (2.2.19) and (e L= (U) with (|¢|-p) e L*(U),

and for every \eR*, we define

\HAU) - {f/ o
by
A 7,¢p) = A (fuC[PT=p?7) (a+0) , YueHy(U),
or else

@ (w),0) =X [ (jus =) (+0) vdo, Va0 e HY(U),

which satisfies the estimates from (2.2.13)) to (2.2.18]), as well as (2.2.20) and (2.2.21)).
Now, we further assume that (e X! (U).

Remark 2.2.2. Since (e X' (U) and (|¢|-p) e L*>(U), then, in virtue of |Corollary 1.2.4}, we have
that (|¢|-p)eH' (V).

Considering also an arbitrary L, (a,#) as in [Definition 1.2.1, we define Ny[x, ] : H&(U)2 -C

to be the form which is associated with the operator L, (-+()+dy, such that

A, v] = (Lo (urC),v) + (Ga(u),v), Yu,veHs(U).
Now, the problem becomes: for every uoeHé(U), we seek for a solution
u=uy, L= (Jo; Hy(U))nWh* (Jo; HH(U))
of

{<iu',v) + Na[u,v] =0, for every ve Hy(U), a.e. in Jo (2.2.23)

u(0) = ug.
Directly from ([2.2.20f) and (2.2.21)) and the Holder inequality, we derive the following estimate
L 01| <K (Nl e crys Il 1y 1 s crys DG = oy s orys ¥ v e HG(U). (2:2:24)

We also define the respective energy functional E\: H}(U) - [-00,00] by

1

X(';Tagap) = 5£[+C7+C] + é)\(';T7Cap)a

where G : H} (U) - [~00, 00], with

A Gp) = A [ V(i p)da,
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Proposition 2.2.5. For every u,v e Hi(U) we have

()~ Cr @) SK(Jul s 0y 1ol i oy 1€ m oy 11C1=0] 20y ) %

, (2.2.25)
XHU_UHLQ(U)a ifn=1,2
and
G () =Ca@ <Kl 130y 10111 0y 1m0y 1=l 20y ) %
(2.2.26)
< (lu=vl sy lu=vl ey ) s i =3,
or else
G () =G ()| <K ([l 11 0y 0] a1 0y 1€ e s 1C =l 20y ) %
i ' (2.2.27)
(lu=vlfa o+ lu=vlay ) i n=3,
as well as
CA@) <Kt 1.0y 1 e oy 11E1=01 201y ) (2.2.28)

Proof. The equation (2.2.12)) now becomes
1
V(|u+(|)—V(|v+§|):Re(/ (|su+(1—s)v+C|2T—p27)(su+(1—s)v+§) (a—@)ds), in U,
0
and expanding via (2.2.22)) we deduce

V(ju+¢]) - V(ju+<]) = Re( /01 (|su+ (1-s) v+ —p2) (su+(1-s)v+¢) (a-0v) x

2(7-1) 2(7-2) ‘..

x(|su+ (1-s)v+(| +plsu+ (1-5) v + | +

+p2 T D |su+ (1-s)v+ ([ + pZ(T‘l))ds).

Setting w:=su+(1-s) v and further expanding the term |w+(|*, we easily derive that

|(Jw+¢*=p2) (w+ Q)| =| (Jwl + 2Re(Cw) + [ - ) (w¢)| <
<K(I¢] Loy ) (1ol + ol ¢l 1) (ol +1c]) <
(I ey ) (0l o+ ol 1= ) K1 e oy ) (el 11111
as well as
‘|w + (P 2w + PP s p2T D 4 (P p2TD ‘ <C ||w +¢PY +1‘ <

<C ‘|w|2(7—1) +|<|2(T—1)+1‘ gIC( HCHLOQ(U)) (|w|2(7—1) +1) ’

hence
|(lw+¢I* =) Q) [lw+ P42 + P72k 42D (P p2 )| <
2T
<K (¢ =y ) (o7 +1IC1-0) <
<K<l ) (27 H ™+ (1=8) T P =)
and so
IV (Ju+ )=V (o + DI (IS Loy ) (P + 10l 4=l ) fu=v],
or else

Gr )= Cr @< (I¢ =) [ (1P +[oP7 +lIcI=pl) lu=vldr.
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For n=1,2 we employ the Hélder inequality for p; = po =2 and the scaling invariant embedding
H(U) = LY*2(U) to get (2.2.25)), while, for n=3 and 7 =1, we get (2.2.26) from the Holder
inequality for p; = % and py =4 and also for p; = ps = 2, as well as from the scaling invariant

embedding H}(U) - L*(U). (2.2.27) follows from ({2.2.26) along with (2.2.4)).

As far as ([2.2.28]) is concerned, it suffices to show that

GAO)| <K (I¢h 1m0y ISPl 2o )

Indeed,
1
U 2(r+1)

T

2(T+1)d
2(r+1)” .

_ ey 1o
GrOI<IN [ V(Iclim p)da=C G0 =07 Iel+

thus we employ the identity
a" M —a (n+1) b +nb"t = (a—b)z(an_1 +2a"?b+. .. +(n-1)ab" > +nb" ")
to obtain the desired estimate. O

It then follows that Ey,Gy : HL(U) — (=00, 00).

2.2.3 The non-linear operator on restrictions

Here, we make a note concerning the ability to define the operators and the functionals of the
previous subsections on restrictions of functions.

The scaling invariant Sobolev embeddings are the crux for the definition of the operators gy
and @), as well as the functionals E), G and E\, G on H&(U)7 for every U. Hence, in virtue of
by defining these operators and functionals for every ue H} (U) for some arbitrary
U, we can also consider them defined for every ((R(U,V))u)eH' (V) for every open VcU (note
that we have ((R(U,V))u)e H'(V) for every open V cU from [Proposition 1.2.2). This means
that we do not need to impose any regularity on OV in order to consider the scaling dependent
Sobolev embeddings of However, the above conclusion is evidently not true for
the bounds that are obtained with the use of , for which we need to employ the extension
operators of [Theorem [1.2.1]

For example, in order to get (2.2.1)) for every u,v e H}(U) for arbitrary U, we use the scaling
invariant embedding H}(U) < L**?(U). Let V c U be open. Instead of trying to apply an
embedding of the form H'(V) < L**?(V) in order to get for every ((R(U,V))u)eH (V)
and every ve H} (V'), we simply notice the trivial fact that

[(RU.V)) ) pasa vy <l posaqry <Clul oy, YV €U, YueHg (V).

Thus, dealing exactly as above (and focusing only on the results of [Subsection 2.2.2| which we
use later), we get, for every U and every u,v € H} (U), that

L? if n=1,2
o (R(UV)) : Hy(U) — {YQ((“//)): ilf ::37’ for every open VcU (2.2.29)
and
Exo(R(U,V)),Gxo(R(U,V)) : H3(U) - (=00, 00), for every open VU (2.2.30)

are well defined, with
[(@xo(R(U,V))) (u)=(@ro(R(U,V))) (u) (V)] 2¢v)

<Kl 1y 101111 0y 1€ e oy )% (2.2.31)
<[ (R(U, V) u=(R(U,V)) 0]l 2 vy, if =1,

[@o (R(U,V))) ()= (@0 (R(U, V))) (u)(0) | 2 <
<K (el a1 wrys 190 1y I om oy ) % (2.2.32)
% (1R, V)) u=(R(U,V)) 0] gy + [ (RO V) u=(RU, V) 0l 2y ) 5 i =2,
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[@r o (R(U,V))) ()= G0 (R(U,V))) () (0) ly, v <
<K (el 1 0y 10 oy 1€ D pom oy ) (2.2.33)
< (IR, V) u= (R, V)) 0l sy + L (R V) u= (R, V)) 0 2y ) i =3,

as well as
(Gre(R(U,V))) (w)=(Gro (R(U,V))) (v)]<
S’C(HUHHl(U)v HUHHl(U)a “CHL‘”(U)a H|C|—PHL2(U))>< (2.2.34)
<[ (R(U, V) u=(R(U,V)) v 121y, 1 n=1,2
and

(Gro(R(U,V))) ()~ (Gro(R(U, V))) (v)] <
(el a1 0y 10 3 oy 1€ om oy TG =] 2y ) (2.2.35)
% (IR, V)) u=(R(U,V)) 0] oy + [ (R V) u= (R V) 0l 2 1 ) i =3,

for every open VcU.

2.3 Weak solutions

In this section we study the weak solvability of (2.2.6) and (2.2.23) and the properties of the weak
solutions, for the defocusing case A>0. Note that we then have

E\, Gy t HY(U) - [0,00] and Ey, Gy : Hy(U) - [0, 00) . (2.3.1)

2.3.1 Local existence results

The following local existence results are somewhat “strong” ones, in the sense that the interval
of existence of a solution does not depend on the initial datum. Before we proceed, we state and
prove some preliminary lemmata.

Lemma 2.3.1. For every fe H '(U) there exists {f; };.L:OCL2(U) such that
(f,v) = /Uv% + > (") fidz, YveH(U)
j=1
and, in particular, we have
(v, f) =(f,0), YoeHs(U), VfeL*(U).

Proof. The first result follows from a direct application the complex version of Riesz-Fréchet rep-
resentation theorem (see, e.g., Proposition 11.27 in [8]). The second is a direct consequence of the
first one. O

Lemma 2.3.2. Let J be bounded, X, be a Banach space and X5 be a Banach space with the
Radon-Nikodym property with respect to the Lebesque measure in (J, B(J)).

1. Let {ug}, c L=(J;&1) and u = J - X, with u,(t) = u(t) in &y, for ae. teJ. If
[ug HL(X,(J;Xl) < C wuniformly for every k, then ue L*(J; X)) with HuHLm(J;Xl) < C, where
C is the same in both inequalities.

2. Let {ug},u{ulcL®(J; X3) with u — u in L°°(J;X2*, If |y ||L°°(J;X;)$C uniformly for
every k, then HuHL“(J;XZ*) <C, where C is the same in both inequalities.

2 That is, up — u in (L% (J;X5), L' (J; X2)). Note that L>=(J;X5) = (L' (J;X2))" (see, e.g., Theorem 1,
Section 1, Chapter IV in [13]).
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Proof. For Point 1., we derive that [[u(t)[ ,, <C, for a.e. teJ, from the (sequentially) weak lower
semi-continuity of the norm, hence the result follows. As for Point 2., let v € X5 be such that
|v] 4, <1 and set v: J - X5 the constant function with v(t):=v, for all teJ. We have

s+h
/ (ug,v)dt<Ch, for a.e. seJ° and every sufficiently small h>0

Considering the limit uz — u in L™ (J; X5), dividing both parts by h and then letting h \ 0, we
get, from the Lebesgue differentiation theorem, that (u(s),v)<C, for a.e. seJ°. Since v arbitrary,
the proof is complete. O

Lemma 2.3.3. Let 20 C" and z : Jy > C™ be the unique, maximal solution of the initial-value
problem

2'(t) =iF(2(t)), YieJ§
2(0) = 2o,

for an appropriate function F (e.g. locally Lipschitz). If zo € R™ and F(z) = F(%), then Jy is
symmetric around 0 and also z(t)=2z(-t), for all teJy.

Proof. We define —Jj := {teR| —teJo} and also y : —Jp - C" with y(t) = z(-t), for all te-Jp.
Since zpeR™ and F(z)=F(z), we can easily see that y solves the above problem (in —.Jy). Hence
—Jo S Jp, since z is the maximal solution. Therefore, Jy is symmetric around 0. We can now define
the function x : Jy — C™ as z(t):=z(-t), for all te.Jy and we deduce that x also solves the problem
(in Jp). Hence, z(-t)=x(t)=2(t), for all teJy, since z is unique. O

Lemma 2.3.4. Let meN, pe[l,00], Uy, Us, ¢peCP(Uy) and ueWy"?(Us). If we set
@Y = (R(Ul, U1 ﬂUg)) Ql) and v = (R(UQ, UlﬁUQ)) u,
then

(pv) WGP (UINU2), with [0y 1,00, <K (19

C’g‘(Ul))Hu”Wm«P(Ug)'

Proof. We assume that U;nUs; # @, otherwise we have nothing to show (see also Point 3. before

Definition 1.2.6)). In view of [Proposition 1.2.8] we derive that

(@) W™ (UyAUz), with |90y, SK(1€] e wanm Elwmo (s
hence
[0l @) K18 ) 1t wmon -
Now, we consider {uy}, cCg*(Usz), such that u, — u in W™P(U,) and in analogous manner we set
vg = (R(Uz, U1 nU2)) ug, Vk.
Evidently,
(pvr) eC™(UnUy).
In particular, we can deduce, by employing trivial arguments, that
(pvi) e CM(ULNU).
Applying (1.2.9), we derive that

||90Uk_S0'UHWm,p(U1mU2) ol ['2 (vk—U)mewp(Ung) gCHUk_vHWm,zo(Ung) <

SC||U]€_UHWWL,1>(U2) - O

and the desired result follows from the definition of W™""”-spaces. O
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Lemma 2.3.5. Let U be arbitrary. For every a = (a)zj=1 e L=(U) satisfying and @, an

equivalent norm for the normed space (Hﬂi(U), Il #2 7y ) s

(M + £1-1)

where HHIQ(U) is defined in an analogous manner as H&R(U) in the proof 0f|Pr0position 1.2. 1|.

Proof. We argue as in the proof of [Proposition 1.2.1] to validate that

Re((, %)) + L[ *,+]

is indeed an inner product for Hg(U). Hence,

1
) 1
(22 +£L1)°
is a norm for the aforementioned space. The equivalence follows from the fact that
2 2
auku”LZ’(U) <Llu,u]< ||aHL°°(U) ”unHLZ(U)v VUEHl(U)-
O

Theorem 2.3.1. IfU is bounded and uge H} (U), then for every bounded Jo there exists a solution

of , such that

OO N . S’C(|Uo Litr oy 1<l oy [ osncoy.
(2.3.2)

1
FaTp—
and also
Ex(u)<E\(ug) everywhere in Jy. (2.3.3)

_Moreover, if ug and ¢ are real-valued, then the above solution satisfies u(t)=u(-t), for every
teJy with |t|<dist (0,0Jp).

Proof. Here, we use the notation

1
~1( ol 0y 1 0y 1€ vz 3+l e 01

Now, based on

1. the fact that Ue{Up} (seeDefinition 1.2.3)) and also H} (U;R) > L*(U;R) (See
123).

2. the Fredholm theory and
3. the fact that the field C can be regarded as a vector space over the field R,

we deduce that the complete set of eigenfunctions for the operator £, restricted to Hg (U;R), is an
orthogonal basis of both Hg(U;C) and L*(U;C). Let {wy},., c Hj(U;R) be the aforementioned
basis, appropriately normalized so that {wy},., is an orthonormal basis of L?(U;C). We then
employ the standard Faedo-Galerkin method.

Step la
For every m e N we define d,,, € C*(Jo,,;C™), with d,,(t) = (d%,(t))
maximal solution of the initial-value problem

m

oy L0 be the unique

dm,(t) = Fin(dm (1)), VtEJO*m
dm (0) = ((wr, u0))iZy (= ((uo, wi))iy, in view of [Lemma 2.31),
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where F,, eC>(R?*™;C™) with
FF(2) = iNALY zwg, wy ], for every z:=(z);", €C™, for every k=1,...,m.
i=1

We note that the smoothness of F,, follows from directly applying (N times, for arbitrary
NeN) the common Leibniz integral rule. Now, we define umeC‘X’(Jo s HY(U; (C)), with

m?

m

wn(t) = Y d, (Hwy.
k=1

In view of it is direct to verify that

(i, wi) + Na[um, wi ] = 0 everywhere in Jy,, for every k=1,...,m. (2.3.4)

Step 18
By its definition and the Bessel-Parseval identity, we have

W (0) = g in L2(U) and [ (0)] 12y < ol 2o (2.3.5)

Furthermore, we can argue as in Step 3. of the proof of Theorem 2, Section 6.5 in [I5] to
deduce

wn(0) = g in (HY (U), (L[ ])%) and (L{um(0),un(0)])% <(Llug, up])?.  (2:3.6)

(S

For the definition of the normed space (H&R(U), (L[, ])%) see the proof of [Proposition 1.2.1
Now, these facts has two immediate consequences: First, the bound in (2.3.6)) implies

0> |V (1 (0)) HL2(U) (L[ (0),1,,(0)]) 2 <(Luo, uo])? < HaHEw(U) |V wuo HL2(U)a

that is
1
ZCON PSS CR T e s

This bound and the respective one in ([2.3.5)) give us

9Oy <K 5 I o o sy
hence, in view of 7 we derive
Ex\(u,,(0))<K. (2.3.7)
Second, the convergence in states that
L1, (0)=ug, um(0)-uo] - 0,

hence, implies that

Voo (U (0)) = Voo in L2(U), and so u,,(0) - ug in Hy(U). (2.3.8)
We now expand

L[y (0)+¢ um (0)+¢]=L[um (0), um (0)]+2L[unm (0), (]+L[¢, (]

The first term converges to £[ug, ug] directly from the convergence in ([2.3.6)), while the second
term goes to 2L[ug, (] from the Holder inequality (p; =p2=2) along with the convergence in

(2.3.8]). Hence
Lu,(0)+¢, um (0)+¢] = Luo+¢, uo+(]-
Moreover, from and the convergence in , we get
Ga(um(0)) = Ga(uo).
Combining the last two convergences, we conclude to

E)\(llm(())) - E)\(’LL()). (239)
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Step 2«

We multiply the variational equation in 1' by dﬁl,(t), sum for k=1,...,m, and consider
the real parts of both sides, to obtain

d
%EA(um):O, that is Ex(un,)=E\(u,,(0)) everywhere in Jy,_, (2.3.10)

hence, from (2.3.7) we get

Ex(u,,) <K everywhere in .Jy, , uniformly for every meN,

and so, from we deduce
Ly +C up,+C]<K,
which implies
|Vt 2y < K-

Thus Jy,, =R for every m, as well as

I g1 oy <K everywhere in R, uniformly for every meN,
since for the Poincaré constant Cyy we have Cyy =K (|U]), therefore

I | o (g1 () S K, YmeN. (2.3.11)

Step 25

We fix an arbitrary ve H}(U) with |vl g1y <1 and write v="Pv & (Z-P)v, where P is the

projection in span{wg};-,. Since ul, € span{wy},-, and N,[h,g] is linear for g, from the
variational equation in (2.3.4)) we get that

(it v) = —Ny[um,, Pv].
Applying (2.2.7)) and (2.3.11]) we derive
[(iu,,', v)| <K,

hence

Hum,”L‘x’(R;H-l(U)) =[iu, HLN(R;H%(U)) <K, VmeN. (2.3.12)

Step 3a

We fix an arbitrary bounded Jy. From (2.3.11)), (2.3.12), Point i) of Theorem 1.3.14 in [10]E|
and Point 1. of [Lemma 2.3.2] there exist a subsequence {u, };-, <{um},._; and a function

u=uy, eL™(Jo; Hy(U))nWh (Jo; H(U)),
such that
u,,

, —~uin Hj(U) everywhere in J, and also lall oo o201 (o) <K. (2.3.13)

Step 373

H™'(U) is separable since H}(U) is separable, hence by the Dunford-Pettis theorem (see,
e.g., Theorem 1, Section 3, Chaprter IIT in [I3]) we have L (Jo; H™2(U)) = (L*(Jo; Hy(U)
(see, e.g., Theorem 1, Section 1, Chapter IV in [I3]). In virtue of the above, from

the Banach-Alaoglu-Bourbaki theorem (see, e.g., Theorem 3.16 in [§]) and Point 2. ofj
there exist a subsequence of {u,,, };-,, which we still denote as such and a function

heL>(Jo; H'(U)),
such that
u,,’ = hin L>=(Jo; HH(U)) and also 1Bl poo (o171 () <K. (2.3.14)

Let 1eC(J5) and ve H} (U) be arbitrary. From

3 We note that in [I0], the normed space (H(%R(U), ”'HHl(U)) is considered instead of HZ(U). However, it

becomes clear from its proof that the aforementioned result is also valid in our case.
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the linearity of the functional,

the convergence in ([2.3.14)),
Lemma 1.1, Chapter 11T in [44],

the definition of the weak derivative,

the dominated convergence theorem and
the convergence in ([2.3.13)),

we obtain

A

3

1_~ 2_ : ! 1. ! 9.
[]O (b, v) bt & /J (i)t 2 Jim [ G/ popit & Jim /J (U, 0) Pt &

Lhim [ (up,,v)vdt E - lim f (W, v) ' dt Z — lim f (U, 0)'dt &
Jo Lroco JJy 700 JJy

I /oo

o [ i G warE - [ Gwoyart - [ uopart
4. 13 /
- [Jo (ll,'U) wdt - /]0 (11 7'0) 1/)dt,

hence h=u’, since ¥ and v are arbitrary.

Step 4
Since H}(U) == L*(U) = H'(U), from (2.3.11)), (2.3.12) and the Aubin-Lions-Simon

lemma (see, e.g., Theorem I11.5.16 in [7], or else Theorem 8.62 along with Exercise 8.63 in
[35]), there exist a subsequence of {u,, };-;, which we still denote as such, and a function

yeC(Jo; L*(U)), such that
W, >y in C(Jo; L*(U)). (2.3.15)

From the convergence in (2.3.13]), we deduce that y=u. This fact has two direct consequences:
First, u satisfies the initial condition, i.e.

u(0) = uo,

which follows from (2.3.15)) for ¢ =0 combined with u,,(0) = ug in L?(U) from Step 18.
Second, from (2.2.5)) and (2.2.10)), as well as (2.3.11]), the bound in (2.3.13)) and (2.3.15)), we

get
9 (1) = ga(w) in C(Jo: Ya(U)). (2.3.16)
and also
Gxr(pm,) = G (u) uniformly in Jy. (2.3.17)
Step 5

We now show that u satisfies the variational equation in (2.2.6). Let now ¢ e C°(Jj) and
fix NeN. We choose m; such that N <m; and vespan{wk}kzl, hence, by the linearity of the

inner product, we get from (2.3.4) that
[] (10, Y0) (Lo (W, +C), P0) +(gr (W, ), Pv)dt =0.
0
From the convergence in (2.3.14)) we get

/Jo (1, Yo)dt — []O (ia’,pv)dt.

From the convergence in (2.3.13]) we have

(Lyv,0pm,) = (Lyv,u), everywhere in Jy,
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since the functional (£,v,-) : Hj(U) — C is linear and bounded, or else

(L, Wy, ) = (L, u) everywhere in Jy.

From (we deal as in Point 1. of Step 1 of the proof of [Proposition 1.2.1]), we then obtain

(LW, v)=(Lyv, 0, ) = (Lyv,u)=(L,u,v) everywhere in Jy,
and so
(LW, +C),1bv) = (L, (u+(),1v) everywhere in Jy.
Hence, from the dominated convergence theorem, we get
[ a0 vyt > [ (£ (ur0) o),
0 0

From the Hélder inequality (p;=p2=2) and (2.3.16)), we also deduce

[ (o (un) iyt > [ {ax(w). vt

Since 1 is arbitrary, u satisfies the variational equation for every vespan{wk},ivzl. We then
get the desired result from the density argument, since IV is arbitrary.

Step 6

As far as (2.3.3)) is concerned, let €>0 be arbitrary. From ([2.3.9) and the equation in ([2.3.10)),

we deduce that there exists mg=mg(¢), such that
Ey(u,,) < Ex(ug) + € everywhere in R, for every m>my. (2.3.18)
Now, it can be verified that the convergence in implies that
W, = uin Hy (U) everywhere in Jj.

Indeed, let fe (H&R (U ))* be arbitrary. In view of the bijective isometry between the complex
dual and the real dual (see also the proof of [Proposition 1.2.1)), there exists he H™'(U) such
that f=Re(h). From (2.3.13) we deduce that

(h,,,,) = (h,u) everywhere in Jo,

thus
Re((h,u,,,)) = Re({h,u)) everywhere in Jy,
that is
(f,um,) = (f,u) everywhere in Jy

and the desired result follows by the arbitrariness of f. This fact has two direct consequences:
First, we get

L[u,,¢] - L[u,(] everywhere in Jp, (2.3.19)

since L[-,¢] e (H}, (U ))* Second, by the (sequentially) weak lower semi-continuity of the

(L[, -])%—norm, we obtain

(L], u])% < 1i}ninf(£[uml,uml])% everywhere in Jy. (2.3.20)
Vakeol
Combining (2.3.17)), (2.3.19)) and (2.3.20) we deduce
E\(u) < li{ninf Ex(uy,,) everywhere in Jp. (2.3.21)
/oo

From (2.3.21)) and (2.3.18)]), we have

Ey(u) < E\(ug) + € everywhere in Jy

and we get the desired result from the arbitrariness of e.
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Step 7
Finally,

1. if ¢ is real-valued, then F,,(z)=F,,(%), for every zeC™ and
2. if g is real-valued, then d,,(0)eR™.

Hence, under these two assumptions, we apply to get that d,,(t) = d,(~t)
and so U, (t) = u,,(-t), for every t € R and every m € N, which of course is equivalent to
U, (t)=u,,(-t), for every teR and every meN. Now, the (conjugate) symmetry u(t)=u(-t),
for every t e Jy with [t| < dist (0,0.Jy), follows straight from the aforementioned symmetry
along with the convergence in (2.3.13)) or (2.3.15]).

O

Theorem 2.3.2. If U is bounded and uoeH&(U), then for every bounded Jy there exists a solution

of , such that

Il Lo (s 0y 10 oo (g1 (1) <
1 (2.3.22)
S’C(HUoHHl(U), I<hxr @y NEl=2l L2 (0ry 7’ lall oy |J0|)

and also
Ex(u)<E\(ug) everywhere in J. (2.3.23)

_Moreover, if ug and ¢ are real-valued, then the above solution satisfies u(t)=u(~t), for every
teJy with |t|<dist (0,0Jp).

Proof. Here, we use the notation

1
:=’C(HUO HHl(U)7 HCHXl(U)v H|C|—PHL2(U)7 9’ HaHLw(U))

and

1
=K Fol s 0y 1€ sy E1= Pl o halmrys ol )

Based on the proof of it is essential to modify only its Steps 18 and 2.

Modified Step 13
Employing (2.2.28) instead of (2.2.11)), (2.3.7) gets the form

Ex(u,,(0))<K, VmeN. (2.3.24)

Modified Step 2«
Instead of (2.3.7) we employ (2.3.24) to deduce

E\(u,,) <K everywhere in Jy, , for every meN (2.3.25)

and so, from 1} we deduce L[up,+¢,u,,+¢] <K, which implies IVwumlre <K. Thus
Jo,. =R for every m, as well as

m

| Vst | o 2 0y) K5 ¥meN. (2.3.26)

In order to derive a bound for the L?-norm which is independent of |U|, we have to find a
different route instead of applying the Poincaré inequality. We note that

Gx(u,) <K, VmeN, (2.3.27)

which follows from ([2.3.25)) along with the fact that £[u,,+,u,,+(]>0. Moreover, in view
of (2.2.9)), we fix some C7>a+2 and we have that

=

>V <01V (x), for every x2Cy, for some Co>p2. (2.3.28)
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Setting
Qt) = {zeU||un(t)+¢|>max {Cs,1}} c U, VteR,

we get, from (2.3.28) and (2.3.27) (and the fact that A>0 of course), that

fﬂ()|um+g|8dxgiﬁ, VmeN, Vse(-o00,2(r+1)]. (2.3.29)
t

Then, we multiply the variational equation (2.3.4) (for Ay instead of Ny) by d¥, (), sum for

k=1,...,m and take imaginary parts of both sides, and thus, in view of we
obtain

1d . C
5&”117”‘&2([]) —Imﬁj V(- aVyUyde - )\Im((|um+C|2 —p? ) (um+C),um) =0.

For the middle term we apply the Holder inequality (p; =p2=2) and use the bound (2.3.26]),
while for the third term we expand in view of (2.2.22)), to deduce that

t
/ ([U|um|27+1dx)ds
0

In order to estimate the spatial integral, we write

[|um|2”1dx:f c |um|2|um|27_1dx+f ? dz <
U Q) nU Q(t)

27-1
d

), VteR, VmeN. (2.3.30)

.
Il 20y < 11+

<

I O et
{weU|\um|smax{02,1}+HC”L°°(U)} (2 3 31)
329 e

+C/ |C|2T+1+|um+g|27’+1dx 2
Q(t)

(2.3.29) 2 ~ ~ 2
< K(I¢) gm0y ) T 720y + K < K (14 201y ) -

Let Jy be arbitrary. From ([2.3.30f) and (2.3.31)), we derive that

t 2
PR S

I\um\liz(U)SKJo(1+ ) Vtedy, YmeN

and so, by the Gronwall inequality,

Tl oo (gg:22 0y < K;,, for every meN. (2.3.32)

From (22.3.26]) and (2.3.32)) we conclude to

HumHLw(Jo;Hl(U))SiCJO? vaN (2333)

Modified Step 23
We make use of (2.2.24) and (2.3.33), instead of (2.2.7) and (2.3.11)), respectively, to get that

Hu’:nHL‘x’(JO,H*I(U))SKJO7 VmeN. (2334)

Modified Step 3
Instead of (2.3.11)) and (2.3.12)) we employ (2.3.33)) and (2.3.34)), respectively.

Modified Step 4
Instead of (2.3.11f) and (2.3.12) we employ (2.3.33) and (2.3.34]), respectively. Moreover,
instead of (2.2.5) and (2.2.10) we employ (2.2.13), [2.2.15), (2.2.17) and ([2.2.25), (2.2.27),

respectively.

O

Theorem 2.3.3. is also valid for every unbounded U.



CHAPTER 2. NON-VANISHING SOLUTIONS OF THE DEFOCUSING NLSE 55

Proof. In Step 1 we construct an approximation sequence for the initial datum and in Step 2 we
consider an approximation sequence of problems as well as their solutions. These problems are
considered in an expanding sequence of bounded sets that eventually cover the whole unbounded
set. In Step 3 we take the limit of the aforementioned approximation sequence of solutions, and
the verification that this limit is indeed a solution of the variational equation takes places in Step
4. The crux for the latter step is the application of |[Proposition 1.2.4] Lastly, in Step 5 we verify
the initial condition, the energy estimate and the symmetry of the solution. Now, as we do in the

proof of we write

1
T (L PV vy [ e e P )

Step la
We fix an arbitrary zoeU and we setf’]

By, = B(xo,k‘), VkeN.

In view of [Proposition 1.2.11] we consider a sequence {¢y}, cC°(R";[0,1]), such that

1. supp(¢x) < Bg+1, for every k,
2. ¢r=11in By, for every k, and
3. [Vér| o @ny <C, uniformly for every k.

We then set
Pr = (R(Rna Bk+2)) ¢k7 vk.
Evidently, ¢ eC°(By+2;[0,1]) for every k, with

1. supp(pk) € Bk+1, for every k,
2. =1 in By, for every k, and
3. [Verl o (By,,) <€, uniformly for every k.

Moreover, we set

Uy = BpnU, vg = (R(Bgs2, Urs2)) ¢k, vo, = (R(U, Uks2)) up and

Up, = Vgvo,, for every k.

In view of we have that

o, € Hy (Upy2), with [u, |1 (040) SClwol 1 (1), uniformly for every k. (2.3.35)

Step 13
‘We set

U0, 1= (&0 (U2, U))u0k7 k.

In virtue of [Proposition 1.2.3|along with (2.3.35)), we deduce that

ugo, € Hy (U), with [ugo, |0y = o, | 2 (o) SClwol 1 17y (2.3.36)
uniformly for every k.

Now, we claim that
ugo, = up in H(U). (2.3.37)
Indeed, from

1. (R(U,Uk)) ugo, = (R(U,Uy)) ug, for every k,

4 For convenience, in this proof we abuse the notation Us for §>0 (see[Remark 1.2.6)). When a natural number
appears as a subscript of a set, it indicates that this set is an element of a sequence.
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2. (R(U,UgnUgs1)) woo, = ((R(Br+2, UinUg+1)) or) (R(U, UgnUg41)) o), for every k,
3. (R(U,Ug,nU))ugo, =0, for every k and
1 [29),

we have that
g0, —ti0| 71 1y = [(R(U, UEAU)) (w00, =0) | 1 (v ) if
% [(((R(Brsz, UgnUkin)) i) = 1) ((R(U, UinUsn)) 0) | g1 (w5 )+
HRUUE AU ol g 0oty &

4.
< CNR(U, UgnUgin)) ol g1 (s o) + IR, Ugan 0U)) ol ey <
<CI(R(U, U12+1”U))UOHH1(U;+1mU) - 0.

Step 1v

We show that
Ex(uoo,) = Ex(uo). (2.3.38)
Indeed, from ([2.2.25)) and (2.2.27), along with (2.3.37), we obtain

(oo, ) = Ga(uo).

Additionally, we expand as

L[ugo, +¢, uoo, +¢]=L[woo, , woo, ] +2L oo, , C]+L[C, ]

The second term converges to 2L[ug, (], since

Llugo,,, (]-L[uo, (1= L[uoo, —uo, (] <
< HaHL""(U) ||Vw(uook _UO) HL"’(U) HVU)C”LZ(U) - 07

from the Hoélder inequality (p; =p2=2) and (2.3.37). As for the first term, we have that it
converges to L[ug, up], since

L[uoo,, , woo, ]~ L[uo, uo]=L[uoo, w0, uoo, ]+ L[uo, uoo, o] <
<K(lal = orys [0l 111 (1)) 190 (200, =120 2y = O,
by dealing as before and also employing the bound in . Hence
Llugo,, +¢, o0, +¢] > LLug+(, uo+(]

and ([2.3.38)) follows.

Step 2ar

Let Jy be arbitrary and bounded. For every k, we consider ([2.2.23)) in Ug,o instead of U,
where we take ug, as our initial datum instead of ug, and we set

w, € L= (Jo; Hy (Ups2) )W (Jos H (Upa2))
to be a solution that provides. For every uy we have that

[ Lo (et (02)) * 108 | e (g1 () <
1 (2.3.39)
< K(IIUok |1 02y 1€k Dx 00y 1USI=P) i 22 00 7’ lakl oo (v, IJo|),

where

Gk = (R(U,U+2)) ¢; ([¢l=p)y, = (R(U, Uk+2)) (I¢|-p) and
ay = (R(U,Ugs2)) a, for every k
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and
EA(uk)SEA(uok)SEA(uOOk) everywhere in Jy, (2.3.40)

as well as uy,(t) = uz(~t), for every te.Jy with |t| <dist (0,0.Jp), if ug (hence if ug,) and ¢
(hence (i) are real-valued. From the bound in (2.3.35)), along with the increasing property
of IC and the fact that the bound in (2.3.39)) is independent of U, (2.3.39) gets the form

HukHLw(Jo;Hl(Ukm))+||uk'HLw(JO;H,1(Uk+2))SIAC’JO, uniformly for every k. (2.3.41)

Step 20
In view of [Lemma 2.3.4] and (2.3.41)) we have that

(viug) € Hy (Upya), with [vpug |1 (t700) C 0 ‘|H1(Uk+2)SKJO, uniformly for every k,

where vy is as in Step la. Hence, in view of [Proposition 1.2.3] we define

VkeL”(Jo;Hé(U)) as vi = (Eg(Ugs2,U)) (vguy), for every k, (2.3.42)
with HkaLw(Jo;Hl(U))SIEJO, uniformly for every k. o

Moreover, in view of we have that
(v ((R(U, Ugs2)) v)) € Hy (Uga2), with
[ok (R(U, Urs2)) )| g1 0,0 SCIol g1 1y for every ve Hy (U),
uniformly for every k.
Hence, employing 7 for every k we define
f,e L=(Jo; H(U)) by (fr,v) = (W', v (R(U, Uks2)) v)),
for every ve Hy(U), for every k, with |fj, HL(,O(H,l(U))SIEJO, (2.3.43)
uniformly for every k.
We now claim that
v e L= (Jo; Hy(U))nL=(Jo; HH(U)), with v}, = £y, for every k. (2.3.44)
Indeed, let ve Hi(U) be arbitrary. Employing

1. Lemma 1.1, Chapter III in [44],
2. Lemma 2.3.Tand

3. the fact that vy is real-valued for every k,

we derive

(£r,v) = (W', vk (R(U, Uks2)) 0)) & (g, o ((R(U, Upsz)) v))' %

2 (wp, v ((R(U, Upa2)) v)) & (fU

we vk (R(U, Uksz)) @)dx)' _

lo+

([, (€0 0)) () ) = (o, 0) (o) ) 2

Z ((So(Uk+2» U)) (Ukuk)’ ’U),.

Therefore, from the arbitrariness of v along with Lemma 1.1, Chapter III in [44], we get

2.3.44).

Step 2~
For every open and bounded V cU, there exists ky €N, such that V cUy,o for every k>ky .
Now, for every fixed such V', we deﬁntﬂ

Vv g = (R(Ugs2, V) up) e L= (Jo; H' (V)), for every kxky, 5345
with [Vviel e (0.1 (vy) <K j,, uniformly for every such k. (2.3.45)

5 We highlight that we do not claim that vv,kEL‘x’(Jo; Hé(V)) for every k>ky .
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where the bound above follows directly from the bound in (2.3.41). Moreover, in view of
Definition 1.2.5|and the bound in (2.3.41)), we claim that

vy €L (Jo; HY (V)L™ (Jo; H(V)), with vy, = (R(Uks2,V)) (wy'),

2.3.46
for every k>ky, thus HVVvk,”L“’(JO-H‘l(V))’ uniformly for every such k. ( )
Indeed, let ve H} (V') be arbitrary. From

1
2. Lemma 1.1, Chapter IIT in [44] and

3. [Lemma 2.3.

we derive, for every k>ky , that
(R(Uks2, V) ("), 0) & (ui, (E0(V, Usa)) v) & (up, (Eo(V, Upsa) ) v) 2

% (g, (Eo(V, Upia)) ) = ([U

e ((&o(V. Uk+2))a)dx)' _

k+

([ (R V) w) #) = (Rsear V)] (R Ui V) e

thus, (2.3.46) follows from the arbitrariness of v along with Lemma 1.1, Chapter IIT in [44].
Additionally, we have

(ﬁw(av,e))VV’k = ((R(U}C+2,V))O£w(ak79)) uy, Vk>ky, (2347)

where
ay = (R(U,V))a.

Indeed, we consider an arbitrary ve H3 (V). From

1. [Definition 1.2.5

2. (L:2.40),

3. (1.2.5) and

4. the definition in ,

we get, for every k>ky, that
(R(Uriz, V)0 Lo (ar, 0)) e, v) = (Lulars0)) e, (E0(V,Urz)) v) =
) fUM ((Vwo(Eo(V,Uks2))) v) - a1V Uida 2
L (B, Uk))o9) )i -
- fv Vo - (R(Ugs2, V) (ak Vo T )dz =
- [ Vuv-av (RWke2, V))oV) W)da &

:i'/Vva'av((VwO(R(Uk+2,V)))Tk)dxi fvvwv-avvwmdx:
= <(£w(a’V79))VV,k7U)

and the desired result follows from the arbitrariness of v. Finally, in view of (2.2.29) and the
definition in (2.3.45)), ga(vy,k) is well defined for every k>ky , hence we directly get

g)\(VV,k) = ((R(Uk+2,V))o(Gr)) ug, Yk=ky. (2.3.48)

Step 3a
In virtue of the bounds in (2.3.42)) and (2.3.43) (along with (2.3.44))), we argue exactly as in
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Step 3 of the proof of [Theorem 2.3.1f in order to derive that there exist {ug, };-; c {ur}r.,

and a function

u=uy, e L= (Jo; Hy (U))nWh=(Jo; HH(U)),

such that
Vi, = (E0(Uk,+2,0)) (v, ug,) = u in H&(Uz everywhere in Jy (2.3.49)
and also [[ul pe( s, 71 (1)) <Ko
as well as
vi,) =’ in L®(Jo; H'(U)) and also 10 e (s 121 ) <K, (2.3.50)
Step 308

Let V cU be a fixed, arbitrary, open and bounded set. In virtue of the bounds in (2.3.45)
and , again we deal exactly as in Step 3 of the proof of [Theorem 2.3.1} but with one
exception, that is we employ a slightly modified Point i) of Theorem 1.3.14 in [I0] where we
consider H' (V') instead of HJ (V). We note that it is direct to check the validity of this
modification just by a straightforward adaptation of the proof of the aforementioned result.
Hence, we get a subsequence of {uy,},-;, which we still denote as such (we assume that
ki>ky, for every [eN, where ky is as in Step 2v), and a function

uy =uy, g, € L (Jo; H (V) )nW = (Jo; H (V)

such that
Vg = (R(Uys2, V) ug, —uy in H (V) everywhere in Jp, (2.3.51)
as well as
Vg = uy’ in L= (Jo; HH(V)). (2.3.52)
Step 3~

We claim that
(R(U,V))u=zuy and (R(U,V))u' =uy/, (2.3.53)
for every open and bounded V cU. o

Indeed, first of all, for every V' as above there exists [y €N, such that V cUy, for every [>1y .
Now, for the first equivalence we consider an arbitrary ¢peC° (V). We then use

1. the convergence in (2.3.49)),

2. V €Uy,42 for every l€N by the definition of the sequence {uy, },;,

3. (R(Ugy+2,V)) vk, =1 for every [ 21y, since (R(Uk,+2,Uk,)) v, =1 by the definition of vy,
for every [eN, as well as V cUy, for every [>ly, and

1. @55,

to deduce that
[ (R@ VYW odo= [ u(EV.0))o)dr ® Tim [ vi, (E(V.0)) é)dr =
~lm [ (ROUV)v,) dda -
~lim [ (R, V) (E0(Uk 2, 0)) (vry 1)) 6o =

= lim [ ((R(UV))o(E(Ur2. 1)) (v5,u5)) 2

1>l
“him [ (R V) (o) dda ® lim [ (R(Us2,V)) w,) da =
1>y 1>y
:limfvv,kl ¢dx4:'fuv¢dm
lroco JV \4
>y

everywhere in Jy, and the result follows from the arbitrariness of ¢. As for the second
equivalence, let e C(Jg) and ve H} (V) be arbitrary. From
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Definition 1.2.5

the linearity of the functional,

. the convergence in ([2.3.50)),

. Lemma 1.1, Chapter III in [44],

. jLemma z.9.

. V cUy,42 for every leN by the definition of the sequence {uy, },;,
. (R(Ug,+2,V)) vy, =1 for every 21y, and
. @359,

we have

1.
2.
3
4
5. the definition of the weak derivative,
6
7
8
9

/ 1. 1 2.
/JO (R(U, V)W, v) pdt = /JU (', (E(V,U))v) vt &
e [Jo (W', ((Eo(V,U))v))dt £2 lh/r?o /Jo (vi,"s 0 (Eo(V,U)) w))dt 2.

Zhim [ (v, (Eo(V,U))v) ot =

Lroo JJg
= lim " (U, 0k, (R(U, Upy42)) o (Eo(V,U))) v) ot &
= }f}g Jo (ur,, vk, (R(U,Uky+2))o(E(V,U))) v)'q/)dt 3
2-lim (g, (R(U,Uki2)) o (E0(V.U))) ) w'dt 2
2 _lli,r?o fJo (ky, vr;, ((R(U, Upy42)) 0 (E0(V,U))) v)y'dt =

=—lim " (Lk1+2 Uy, Vg, (((R(U,Uk”g))o(go(‘/,U)))U)dm)d/dt7:

oo

T _fim JO( fv ((R(Ukl+2,V))(vklukl))@dx)w'dt:

L /oo

“tim [ (R V) (o)) e

1 /00
I>ly

& lim (fv((R(Ukl+2,V))ukl)@dx)z//dt=—lim Jo(fvvv”” T;daz)z//dtz

I oo Jo
>

/oo
1>y >

lv

:—lim/ (vv,k“v)qp’dt%—nmf (vv,kl,v)w’dt‘lhmf (Vs 0) dt &
lrco JJg lroco JJg 1700 JJg
1>y 1>ly

1>y

L lim (Vv,kll7v)¢dt% lim (vv,kl',l/w)dt% / (uv',z/w)dtQ:'
I oo Jo l /oo Jo Jo
1>ly 1>y

Z [J (uy',v)dt,

0

thus, the desired result follows since ¥ and v are arbitrary. We also claim that

((R(U,V))oLy)u=(Ly(ay,0)) uy, for every open and bounded V cU.

Indeed, let ve HE (V') be arbitrary. From

Definition 1.2.5

1.2.5)) and
the first equivalence in (2.3.53)),

=
[N
=

1.
2.
3.
4.

(2.3.54)
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we get
(R(U,V))oLw)u,0) = (Lyu, (Eg(V,U)) v) =
- [ (Vo E(VU)) ) - av,de &
U
2 [ (E@i)eu)0)-avyiide = [ Tuo- (REUV)) (aVui)d -
— [ Vuv-av (R, V)9 @dz 2 [ Tuv-av (Vuo(RU,V))) w)ds &
E fv V- ay Vyayde = ((Ly(ay,0)) uy,v)
and the desired result follows from the arbitrariness of v. Finally, we have
((R(U,V))ogx)u=7gx(uy), for every open and bounded V cU. (2.3.55)

For the above equivalence, we only notice that, in view of the first equivalence in (2.3.53))
along with (2.2.29), gx(uy ) is well defined.

Step 4o
Since every uyg, satisfies the variational equation in Uy, 2, we have that

(iukl' +(Ly(ag,0)) (ukl +C:kl) +’§,\(ukl), 'Ukl) =0, Vo, EH&(Ukﬁg), VieN.
Hence, for every open and bounded V cU we have

<(R(Ukz+27v))(iukz,+(Lw(akaa))(ukz+gkz)+§>\(ukl))’v>:07 VUEH(%(V)v VIeN.

In virtue of the equivalence in ([2.3.46)), as well as the equivalences (2.3.47)) and (2.3.48) (along
with the definition of the sequence {uy, };-,), the above equation becomes

<iVV,kl, + (,Cw(av79)) (VV,kl+<V) +’§]I)\(Vvykl),’u> = O7 VUEH&(V), VlEN7 (2356)

where
Gv = (R(U,V))C.
Step 45
Directly from (2.3.52)) we have

f] (Vv o)dt > [J (iuy”, po)dt, VapeC= (), Yue HE(V). (2.3.57)

Moreover, in view of (2.3.51]), we argue exactly as in Step 5 of the proof of [Theorem 2.3.1| to
obtain

f]o((Lw(aV79))(VV,kz+<V)a¢U)dt_’[ ((Lw(ay,0)) (uy+Cv),Yv)dt, (2.3.58)

Jo

for every ¢ and v as above. Additionally, in virtue of the bound (2.3.42)) for k; instead of k&,
along with the scaling invariant compact embeddings (see [Proposition 1.2.5))

Hy(U) > (R(U,V)) (L*(U)) and Hy(U) == (R(U,V)) (L*(U)) (n=1,2,3),

we deduce that there exists a subsequence of {vy, },-,, which we still denote as such, and a
function ze]—'(,]o; L4(V)), such that

(R(U,V)) (Vi, () = z(t) in L*(V) and (R(U,V)) (v, (t)) - z(t) in L*(V), (2.3.59)
for every teJy. Since
vy = (R(U,V)) vy, Vizly, (2.3.60)
where [y is as in Step 3, we deduce, from , that
Z=uy. (2.3.61)
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In virtue of (2.3.59)), (2.3.60), (2.3.61)), along with (2.2.31)), (2.2.32)) and (2.2.33), we derive

that

L2(V), ifn=1,2

here in Jp.
Va(V), ifn=3, everywhere in Jy

A(Vvg) = ga(ay) in {

Hence, from the dominated convergence theorem we get

[ @vm) vt~ [ @) vt voeCT (), voeHI(V).  (2:3.62

Gathering (2.3.57), (2.3.58]) and (2.3.62)), we get from (2.3.56]) that

(z’uv' + (Ew((lv, 9)) (UV+<v) +§A(UV)7U> = 0, VDEH&(V) (2363)

Step 4y
In virtue of the second equivalence in (2.3.53)), as well as the equivalences (2.3.54]) and ([2.3.55)),
we get from (2.3.63)) that

(R(U,V)) (iu/ + Loy(u+¢) + T (u)) H’IE(V) 0.

Since V cU is arbitrary open and bounded, we deduce from [Proposition 1.2.4]that u satisfies
the variational equation in U.

Step ba
As far as the initial condition is concerned, we first note that

vi(0) > ug in HY(U). (2.3.64)
Indeed, we have
v (0) = (Eo(Uk+2,U)) (viuoy, ), Yk,

thus, we get (2.3.64]) by dealing exactly as in Step 15. Hence, combining (2.3.64)) with the
2.3.49

convergence in ([2.3.49) for t=0, we obtain u(0)=wuo.

Step 50
We show that

s(u)<E\ (ug) everywhere in Jp.

Indeed, we have from that

a(uy) < Ej(ug, ) everywhere in J,

hence, employing (2.3.40) and (2.3.1]), we deduce

)\(vv,k)s’EvA(uook) everywhere in Jy, for every open V cUy,q, for every k.
Let €>0 be arbitrary. In virtue of (2.3.38]), we have that there exists ko=ko(€), such that

A(vv,k)SEA(uo)+e everywhere in Jy, for every open V €Uy,o,

for every k>kg. (2:3.65)

From (2.3.59), (2.3.60), (2.3.61), along with (2.2.34) and (2.2.35), we derive that
é)\(VV’kl) - (Aj)\(uv), for every open and bounded V cU. (2.3.66)
Moreover, dealing as in Step 6 of the proof of we can verify that

implies

Vv, — Uy in Hg (V) everywhere in Jo, for every open and bounded VcU, (2.3.67)
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from which we directly get that

L[vy,¢] ~ L[uy,(] everywhere in Jy, for every open and bounded VcU. (2.3.68)

Additionally, considering Hg (V') equipped with the norm introduced in [Lemma 2.3.5 we
obtain from ([2.3.67) along with the (sequentially) weak lower semi-continuity of the respective

norm, that

[N

1
2 2 . . 2
(lav 7y +£lav ur ) < timin (lvvi I + 0w vvn])

everywhere in Jjy,

for every V as above. In virtue of the first convergence in (2.3.59) (along with (2.3.60) and
(2.3.61))), the above inequality reads

Lluy,uy] < li}n inf L[vv.k,, Vv, | everywhere in Jy, for every V as above.  (2.3.69)
/oo

We now consider k; for [ <[y instead of k in (2.3.65)). From (2.3.66)), (2.3.68) and (2.3.69),
we get

aluy) <E, (ug)+e everywhere in Jy, for every open and bounded V cU,
or else
E\(uy)<Ex(ug) everywhere in Jy, for every open and bounded V cU, (2.3.70)

since € is arbitrary. In virtue of the first equivalence in (2.3.53)), it is only left for us to
consider in (2.3.70)) an increasing sequence {V,cU}, of open and bounded sets with Vj, # U,
e.g. Vi, =Uy for every k, and to let £ # oo, in order to obtain the desired result.

Step 5y
The (conjugate) symmetry around ¢t=0 follows directly from the convergence in (2.3.49)) along
with the fact that every vy, satisfies the same symmetry.

O

Remark 2.3.1. Concerning the estimate

a(u)<E\(ug) everywhere in J,

we notice that for its proof in[Theorem 2.3.1 and [Theorem 2.3.9 we do not use (2.3.1), while in
we do. Skipping the details, we note that for the classic case (,p =0, where the

“charge”, i.e. a2y, is conserved, there is no need for the use of , not even m
Z33

2.3.2 Uniqueness and globality

It is obvious that the uniqueness of the local solutions of [Subsection 2.3.1|implies the “globality” of
those solutions. Before we proceed, we note that an upper bound for the constant in the following
version of the Gagliardo-Nirenberg interpolation inequality (2.2.4)

1-1 1
HUHLQT(U)SCHVUIUHL2EU)HU||£(U)7 VueHy(U), ¥7e[l,00), n=2, (2.3.71)
is
Cr3, (2.3.72)

for an elegant proof of which we refer to Lemma 2 in [40] and the references therein.

Proposition 2.3.1. Let u be as in|Theorem 2.3.1| with (e L= (U), as in|Theorem 2.3.3, or as in
[Mheorem 233 If

1. n=1,
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ii. n=2 and «e(0,2] (i.e. =1 for the case of the last two theorems), or
ii. U=R™ (n=1,2,3) and a is as in (J),
then u is unique everywhere in Jy.
Proof. Let up, uy be two solutions of the same problem, that the aforementioned theorems provide.
Setting wi=u;—us, we have
iw' + Low - (f(w) - f(uz)) T <D0, ae. in Jo, (2.3.73)

where f stands for either gy or gy, depending on the problem which we consider. We apply the
functional of (2.3.73)) on w(t), for arbitrary ¢ € Jy and take the imaginary parts of both parts to
get

Il 0 <] [ 1070~ fwa), wlas] vee T (2.3.71)

i. Since H}(U) = L°*(U), from (2.2.13)) (since (e L= (U)) we deduce that

2 ¢ 2
Il 220y < [ 19030

hence, from the Grénwall inequality, w=0 everywhere in .Jy and uniqueness follows.

ii. From (2.3.74) and the fact that (e L= (U), we get

t
WiZs) <C| [ 107 ) ), w)lds| <

t ) ) , )
SC’[O (|‘W\|L2(U)+/U(|u1\ +|ug| )|W| da:)ds ,

In order to estimate the spatial integral, let 7>2. Then, by the use of the Holder inequality
for p1=7 and pa=—75, we get

2 2(r-2)
f|111|2|W|2d95=f(|u1|T|w|2) |w] T <
U U
Lo \F 202 or  \T, 4 2(-2)
<( [ i) el o <( ) ol de) 1wl 1) g

Since H}(U) = L*(U), we apply (2.3.71)) and (2.3.72)) to get

Ve Jo.

(2.3.75)

-2)
[ i PtwPde<Criwl g

By repeating the above argument for the second term inside the parenthesis, we deduce, for

7 sufficiently large such that HWHLQ(U) <7‘HWHL2 that

(U)’

2(7-2)
[ Iwlionds

HW||L2(U)<CT , Vtedy.

Therefore,

<(Cl)Z, Vteds.

t 2(7-2)

| 1w gy s

Choosing tg€.Jy such that [to| is sufficiently small so that C'|tg|<1, we have that
L to 2(r-2)

lim inf ‘ L Il

which, in view of the Fatou lemma, implies that w=0 everywhere in [~ [to[,|to|]. By repeating
the above argument as many times as needed in order to cover Jy, we get the uniqueness.

<0,
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iii. We first note that we already have a stronger result, i.e. not nessesarily a=id, for n=1 and
for a subcase of n=2. We then show the result only for n=2,3. We recall that w takes the
form (see, e.g., Proposition 3.1.3 in [10]),

w=if0t T(t—5) (Ga(u1)-gx(uz))ds, for a.e. tedy, (2.3.76)

where T (t) stands for the linear and bounded operator from LT (R™) to LP(R™), for every
pe[2, 00] and every t£0, with
1 \2 a2 .
'T(t)u:(—_) et xu, YueL»T(R"), Vt+0 and
4mit
1 )"(5_;)

T (t P N—
I7¢ )”£(L”‘1 (R");LP(R")) (47T|t|
We have that the pairs (o0,2) and

{(4,4), if n=2

(8,4), ifn=3

are admissibleﬁ From (]2.3.76[), 02.2.14 , (]2.2.18[) for pq :% and py=1, as well as the Strichartz
estimate (see, e.g., Theorem 2.3.3 in [10], or Theorem 2.3 in [43]), we have

1wl = oszz oy + 190 Loz SC (WD ez Wl s sz ) s 1 =2

HWHL"“(=IO§L2(U))+HWHL%(J0;L4(U))SC HWHLI(J0§L2(U))+HWHL%(JO;LQ(U)) , ifn=3,

hence, from Lemma 4.2.2 in [10], w=0 everywhere in Jy and uniqueness follows.

2.3.3 Conservation of energy and well posedness

Here, we utilize the existence backwards in time as well as the uniqueness of a solution, in order
to complete the puzzle of the well posedness of the problem, for certain cases. First, we show the
following result, concerning the conservation of the energy of a solution.

Proposition 2.3.2. The energy of a unique solution u of[Theorem 2.3.1| [Theorem 2.3.4 or[The]
is conserved, that is

F(u)=F(ug) everywhere in Jy, (2.3.77)

where F' stands for either Ey or E\, depending on the problem which we consider.

Proof. Let t1,to eJy with t; <ty be arbitrary. We consider two solutions
W,Z GLw((tl—t27 tQ—tl) ; H&(U))ﬂwl’oo((tl —ta, tg—tl) N H_l(U)),

of the respective problems

(iw’,v)+ M[w,v]=0, for every ve H}(U), a.e. in (t;~ta,ta—11)
(2.3.78)
w(0)=u(t)
and
(iz',v)+ M[z,v] =0, for every ve H}(U), a.e. in (t;—ta,ta—t1)
z(0)=u(tz)
6 n

A pair (p,q)€[2,00]? is called admissible if %+% =% and (p,q,n)#(2,00,2).
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that the aforementioned theorems provide us, where M stands for either N or N A, depending on
the problem which we consider. We then have

F(W(tg—t1))SF(u(t1)) and F(Z(tl—tg)) SF(u(tg)). (2379)
Moreover, we claim that
w(t—t1) =u(t) =z(t-ta), Vte[ty,t2]. (2.3.80)

We show only the first equation and in analogous manner we derive the second one. From the
uniqueness of the solution in the time-interval [¢1,t2], it suffices to show that

w(-—t1)eL=((t1,t2) s Hy(U))nWh((t1,t2) s H(U))
with
{(z’(w(~—t1))',v)+M[w(-—t1),v]:O, for every e H}(U), a.e. in (t1,t2)
w(0)=u(ty).
For the first result, we only note that (W(‘—tl))IGLW((tl,tg) ;H‘l(U)) and in particular
(w(t-t1)) =w'(t-t1), for a.e. te(ty,ta),

by the use of the common chain rule for the normed-space-valued functions (see, e.g., Theorem
3.59 in [35]). As for the second result, in view of (2.3.78), it suffices to show only the variational
equation. Indeed, let 1 eC°((t1,t2)) be arbitrary. If we set ¢(t) =1 (t+t1) for every te(0,t2—1t1),
then ¢peC°((0,t2—11)). From

1. Lemma 1.1, Chapter III in [44],

2. the definition of the weak derivative,
3. Cemma 2.3.T and

4. the change of variables formula,

we have
b2t to—-11
ozfo ((iwuv)+M[w,v])¢dt§fo (i, o)+ Mo, ] 6t &
to—t1 tomts
‘/0‘ - <iW,’U) ¢’+M[W,1}]¢dt 3 fo _(iW7U)¢’+M[W,v]¢dt i

11~

4

) ft1t2 ~(iw(—t2), 09"+ Mw (1), v]ibdt 2
ARG CART AR TS
2:' ft2 ((iW(-—tl)aU)I+M[W(~—t1),1}]) ”(/Jdt 1:

t1
L G ot o MEw ), o) v,
thereby follows the desired equality, since ¢ is arbitrary. Now, implies that
w(ta—t1)=u(te) and z(t; —t2)=u(ty). (2.3.81)
Combining (2.3.79) and (2.3.81]), we get
F(u(t))=F(u(tz)),
thus, follows from the arbitrariness of t; and ts. O

Corollary 2.3.1. If a is as in and C = const, then a unique solution u of |Theorem 2.3.1
[Theorem 2.3.4 or|Theorem 2.3.9 is strong HE-solution in Jy, i.e.

ueC(Jo; Hy(U))nCH (Jo; HH(U)).

If, in addition, U is bounded, then u is also continuously dependent on the initial datum.
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Proof. For the regularity, since ueC’(JT); LQ(U)), we deduce that
lal 2y €C(Jo) (2.3.82)
by the triangle inequality, as well as that

P(u)eC(Jo) (2.3.83)

by (2.2.10)), (2.2.25) and (2.2.27)), where P stands for either G or Gy, depending on the the

problem which we consider. From ([2.3.77)), (2.3.83)), as well as the facts that a=id and ( =const,
we get that

L2 1y €C (o) (2.3.84)

Therefore, from (2.3.82) and (2.3.84)), we derive
lal g2 0ry €C (o),

which implies that ueC(jO; H} (U)) and so, by the variational equation, we get u’ eC’(jo; H (U))
As far as the continuous dependence for bounded U is concerned, we fix an arbitrary uge H} (U).
Let {ugm}cHg(U) be such that ug ., - ug in H(U), and so

a0, g+ ory <K (0]l 11 1 )-

We write as u and u,,, the unique corresponding solutions of the problem (2.2.6)) or (2.2.23). We
deduce that {u}u{u,,} c C(Jo; Hj(U)) from the previous regularity result. From (2.3.2) and

(2.3.22)), the above estimate, as well as the increasing property of K we have

[ e gy 10 | e 01 0y <K
where K is as in the proof of the corresponding theorems. Hence, by dealing as in the proof of
Theorem 2.3.1| from Step 3 to Step 5, there exist a subsequence {u,,,} € {u,,} and a function
yeL*(Jo; Hy (U))ﬂWl"x’(Jo; H’l(U)), such that y solves the problem 1 or (2.2.23) and also
W, >y in C(Jo; L*(U)), as well as P(u,,) —~ P(y).

From the uniqueness we deduce that y =u. Moreover, from the above convergences along with

(2.3.77)), we obtain that

lam, | g 1y = [l 17y umiformly in Jo-

Hence, from Point iii) of Proposition 3.1.14 in [I0] we get that u,,, - u in C(Jo; H3(U)). Since
{ugm} is arbitrary we deduce that for every {ug ,}cHj(U) such that ug ., - ug in H*(U), there
exists a subsequence {ug,m, } € {to,m} such that u,, - uin C(Jo; H}(U)). Hence, u,, — u in
C(J;;H&(U)) also, and since {ug,,} and ug are arbitrary we conclude that the map ug — u is
continuous. O

2.4 Regularity of solutions

Here, we study the regularity of solutions of In particular, we consider the problem
(2.2.23) only for the cases where 7 is as in . We recall that a solution of such a problem
possesses certain fine properties, such as uniqueness, globality and conservation of energy. We see
here that it also can be infinitely regular, if the initial datum is regular enough.

Before we proceed to the statement and proof of the main results, we provide some preliminary
ones. First, we derive an estimate with the use of the following Gagliardo-Nirenberg interpolation
inequality

j m i 1*%, . oo n
7 2 gy <CIT ] oy s V3= 0,1, Vue G (RY), (2.4.1)

which allows us to handle certain non-linearities such as ours.
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Proposition 2.4.1. Let meN and feC™([0,00);R). Then, for every ueC(R"™),

kz::l Vk(f(|“|2)“)‘L2(Rn (Z [v¥ 0l 2 gy )(kz:%)”f(k)L°°((0,|u2Lm(Rn>))“ e ) (2.4.2)

Proof. Let uwe CP(R™) and o€ Njj with 1< |a|<m be arbitrary. From the Leibniz rule and the

already known multivariate Fad di Bruno formula in we have that’]
0 I LT e T P

laa[+]ez|=|al,

|Ot1|21

f(f)D s Y Moy () D () D= 14 1,
|a1|‘+\a2>|1=|a|, 1<|BI<on |
[e 5N P4

where

9 O(
Mal,\5|(|u| ) ;

with i EI\I7 6j EN(T)L,

U 3105 !)m( 6j|“|2)w7

s(an,lBl) J

ps(ala |B|)::{(717 v 7/787515 . 'a(SS)

0<d1<...<0s, Z’yj:|ﬂ|, Z’y]ﬁj:al}
j=1

=1

and p<v for p,v eNj as in the aforementioned theorem.
I is easily estimated. Indeed,

1] 2 gy S 1D u] 12 gn)

I im0t~ ey
As far as I is concerned, we have

loa |

122y <C 2 ZHleLw (duttmen)) & 2 12

o1 [+]ez|=]al, I=1 s=1pg(as,l)
la1[>1
where
(i1 2) (o g2
(D i ) D2y I1 (D Hyl ) H( )Daz
= L2(Rn) 4=l is=1 L2(R")
From the Holder inequality for p; ;; :‘l(%ll, fori;=1,...,7;,j=1,...,5 and ps+1:%, we get

"
I< H slal 1‘[ 288 L HD“ u| e -
1=1 Lol (rn) Lle2l (rn)
From the Leibniz rule we have
DYuf’= Y DMiuD%ig,

[61,5+102,51=15;]

4
52, Ve get

thus, once again from the Holder inequality for p; = ‘(l;jj |_| and po= |
»J

|t

2 < 3 DM ae [D%u] e
L1551 (mry 1815 14162,51=15;1 ARG L2l (mn)

hence, applying (2.4.1]), we deduce that

J M
g <Cl7eh .

o] ey JEAN Mt

7 If n=1, then D5=D|5|, for every multi-index 3.
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Again from (2.4.1)), we get

\azl

Dy ol <O vy I 77 It
Il <0l N T

Therefore,
12 <C’||v u||L2(Rn) HUHLW(R"

and so

HIQHLZ(R")SC”vlaluHL2(Rn) ZHfl HLM

Joul T
1<|B|<] ] 1=1 )) L

0 HuHim(Rn)

If we further assume that f#const and f(0)=0, then the above estimate becomes

Ig vau(f(|UI2)u)‘ LZ(U) (Z ||V u”L?(U)) (l:z: ”f(k)HLw((o,HuHim(Rn)))|| |L°°(U))

for every uwe C°(U), along with the obvious generalization for f*(0)=0, with k=1,...,m-1.
This fact, however, does not make any difference for us here. Moreover, if n <2m, we directly
deduce that the above results holds for every ue HJ*(U) and every arbitrary U, by employing the
Eo(U,R™) operator and the scaling-invariant Sobolev embedding HJ*(U) = L*(U).

Now, in virtue of we extend [Proposition 2.4.1] for functions in non-zero-trace
Sobolev spaces.

Corollary 2.4.1. Let U with OU € Lip(e, K, L), m e N with n<2m, feC™([0,00);R) and ue
H™(U). Then (f(Juf*)u)e H™(U) also, with

m
k 2
I LAUTHD]
(3 17 ay) (5179 ootz 1200 )

Proof. Considering the extended function, (2.4.2)) gets the form

& [ (r (1))

K(K,L)x

(2.4.3)

<SP ((IE@ R uP) (e ) )|

k=1

<
L2(U) L2(R™)

C(sz: ||(Vko(€(U, R”))) u”L2(]Rn)) X

(k) n
(Z ||f ”L‘” (0, 1(EWR) ) ul2 o sy ))H(S(U R ))UHL‘”(R" )
From the bounds in [Theorem 1.2.1] we obtain

U 1
S (V5o (€W R)) ] o KK, L)(Z 1 ||Vku||L2(U)).

k=1

Moreover, in view of [Corollary 1.2.2) we have that uwe L*°(U), therefore, again from the aforemen-
tioned bounds we get

(&, Rn))UHLw(Rn) S’C(K)HUHL"“(U)a
thereby follows the desired result. O

For the next result we notice that if USR with OU eLip™ (e, K, L) for some meN, then in fact
0U eLip(e, K,0), and vice versa.
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Corollary 2.4.2. Let UcR with |U|<oo as well as OU eLip(e, K,0), meNx{1}, feC™([0,00);R),
ue H™(U) and (e X™(U). Then (f(|u+§|2) (u+<))eHm(U) also, with

39k (#(mecr?) ()

1 1
oy <K max {L IV} .l 0 €T o )¢

- (2.4.4)
k
} (1% ||kuy|L2(U)).
If, in addition, L., (a,0) is such that ae W™ 5°(U), ue H™(U)nHL(U), as well as
(Liu)e HL(U), w:o,...,{TJ—L
2
then we have
O ok
2w () @)
1 1
S’C(ET,IHR‘X{LV” } K, Hu”Hl(U)a HCHX"’(U)) Nallyym- 1°°(U)) (2.4.5)

x| 1+ Z ”(VwoLG)“”B(U)J’ Z ”LZUUHL?(U)
JeN, JeN,
2j+1<m 2j<m

Proof. We have that (e H™(U), since |U|< oo, hence (u+¢)e H™(U). Employing (2.4.3)), we get
m L 9
];HVw(f(IWCI ) @+O)| gy KU

g (Z ek ”Vg(“*Q”m(U)) (kzo [F e (orerct? o) |“+C|i°°<v)) :

For the term inside the first parenthesis we have

m 1 m
kz;) mk ”vﬁ(“+<)"L2(U) s Z x HV “HLZ(U)+ Z pr— “ ﬁJCHL?(U) s

<max{1 —} Z HV UHL2(U) HCHLZ(U)JFmaX{ } Z HV <HL2(U)—

<omax{1, 2} (3195l Hllrson IO el ooy
1 1
+Cmax{1 om }”CHXm(U)<CmaX{1 6}(2 ”V ULZ(U)+|U|H1(U))
1
e (L U1}y +Cmax {1, e o <
1 1
ngax{l, Emax{lﬂ |U|é}} (Z ||V7]fv’u’”L2(U)"'|u|H1(U)+|C”XW(U))S
k=2
1 1 m
gcmaX{L E—mmax{l, |U|i~}}max{1, ||uHH1(U)+HCHXm(U)} (Z HVfUu||L2(U)+1)=
k=2

1 1 m
:K(Eimmax{la |U|;}7 HuHHl(U)v HCHX’”(U)) (Z ||V§JU||L2(U)+1) .
k=2

As for the term inside the second parenthesis, we have that
1
il oy <K (2 Kl

from the scaling dependent embedding H'(U) < L°°(U) (see [Corollary 1.2.2)), which implies

DY P Laxi it P (8 L P (S e

Directly from (2.4.4)) and the bound in [Proposition 1.2.14} we get (2.4.5)). O
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Lastly, the following version of the Brezis-Gallouét-Wainger inequality

|u|Lm(R2)sK(|u|H1(R2>)(1+(1n(1+|v2u||L2(R2)))2), VueC (R?), (2.4.6)

which is a straightforward adaptation of Lemma 2 in [9], is essential for the following useful result.
In fact, we need a consequence of the above estimate.

Lemma 2.4.1. Let UcR? with U eLip(e, K, L) and meN~{1}. Then

1
1 m 2 m
\|u||Lm(U)SIC(g,K,L, |u|H1(U))(1+(1n(1+kz2|vfuu||L2(U))) ) Vue H™(U).  (2.4.7)

Proof. Let uwe H™(U) be arbitrary. Since m > 2, then u e L*°(U). Considering the extended
function, ([2.4.6]) gets the form

1 1
HuHL‘”(U)SIC(g7K’L7 HuHHl(U)) (1+(1H(1+‘V?UUHL2(U)))2 ) 7

thereby follows (2.4.7)).

O
Corollary 2.4.3. Let UcR? with |U|<oco as well as OU eLip(e, K, L), meN~{1}, ue H™(U) and
CeX™(U). Then (|u+<|2 (u+§))eHm(U) also, with

1 1
oy <K S ma (LU} K L sy U )

) i ) (2.4.8)
x (1+Z Hvﬁju”mw)) (1+ln(1+(z HVﬁuHLg(U)) ))
k=2 k=2

If, in addition, OU eLip™ (e, K, L), Ly(a,0) is such that ae W™ 1=(U), ue H™(U)nH} (U),
as well as

3k (el )|

(LI u)e HY(U), Vj:O,...,[%J—l,

then we have

<
L2(U)

5 95 (juef? we0))

k=

1
1 1 1
<10 o max {L U1}, K Ll sy 1oy s s mgon )

(1 Z H(VWOL{U)““L?(U)Jr Z HLZUUHLz(U) x (2.4.9)
jeN, jeN,
2j+1<m Siem

. 2 . 2
x| 1+In] 1+ Z H(VQUOL'ZU)U‘”LQ(U)-'— Z HL'zUuHLQ(U)
jeN, JeN,
2j+1<m 2j<m

Proof. We have that (e H™(U), since |U|< oo, hence (u+¢)e H™(U). Employing (2.4.3)), we get
> 7k (lu+ P (ur0))|
k=1

m 1 k 2
< .
iy KD (5 1960 Ol ) e
In order to estimate the term inside the parenthesis, we deal exactly as in and we
deduce that

3k (el 1))

1 1
Lz(U)SIC(EimmaX{L |U|2}aK7L7 HUHHl(U)v ”CHX’"(U))><

y (1+z ||v’fuu|L2(U)) a2 o,
=2
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For the last term, we employ (2.4.7) to get
2 2 2 2
¢l m 0y SC (Il Gm oy + 1m0y ) (I sy ) (14 Tl om0y ) €

1 m
gIC(;K,La ltl 2 7y HCHXm(U)) (1+1n (1+kZ ||Vfuu||L2(U)))s
=2

2
1 m
le(g,K,L, lull g2 07y HCIIxm(U)) (1+1n(1+(2 ’VZ”HH(U)) )) '
k=2

Now, directly from (2.4.8) and the bound in |Proposition 1.2.14] we get (2.4.9)). O

We are ready to proceed to the statement and the proof of the main results of this section.

Theorem 2.4.1. Let n=1,2, U be bounded, T be as in , uoeHé(U) and u be the solution
of (2.2.25) that|Theorem 2.3.2 provides. If

1. OU ey Lip™ (e, K, L),

2. aen=_, Wb (1),
3. CeNpr_y X™(U) and
4. uo €Ny H™(U)NHY(U), with (Lug) e Hy (U) for every jeNy,

then we L2 (RN _y H™(U)NHE(U))nW LS (R N5_g H™(U)), with

loc

lall o gm0y + 10 pom g2 0y €

1 1
SK(Em ma’X{la |U|> }7K7 L, |uo HHm(U)’ ||CHXm+2(U)7 ‘||C|‘P”L2(U)7 (2.4.10)

1
) 57 Ha”Wm-l,w(U)a |J0| )7

for every meN~{1} and every Jy.

Proof. Tt suffices to show (2.4.10). Let meN~{1} and Jy be arbitrary and we set
1 1
= K| Sy max {L VP } K, Ly, [0 sy 1€l xv oy IS0l 2o,

1
) 57 HaHWm—l,oe(U), |J()| )

Step 1

Let {uj},., be the Faedo-Galerkin approximations, as in the proof of [Theorem 2.3.2 We

recall that for every w; there exists A; >0, such that L,w; = \w; in H(U). In virtue of
[Proposition 1.2.13| L,,w; = jw; everywhere in U (and not just almost everywhere). Therefore,
L w; =X w, everywhere in U, for every jeN, that is L7 (u(0)) espan {wl};il, for every jeNg,

and so
{uk}z"lccw(R, ﬁHm(U)ﬂHé(U)),
as well as
(L7 (ur(0)), ux(0)) = (L7 (ur(0)), uo) , ¥;j€No. (2.4.11)
Moreover, we have
(L*(uy(0)), L7 (uy(0))) = (us(0), L™ (ux(0))), Vi, j eNo. (2.4.12)

Indeed, from
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1. the common integration by parts formula and
2. (),

we have, for every ieN and every jeNjy, that
[ Li(uy(0)) L7 (up (0))da = f div(a

T(voL™h) (ui(0))) L (uy (0))dar =
Lo [ aT (L) (ui(0)) - (o T7) (ur(0))d =

~ [ (L) (e(0)) - a(To L) (e (0

= fU (VoL'™) (u(0)) - aT (VoL7) (uy(0))da =
E 2T ) DT 0)de
and thus ) follows easily by induction. Now, we claim that
T Ot T IO
2j+1<m

2jSm
1 1
S16(771(5 Lm7 n
&

5o Nalwncsn o) ) ol sy
In view of [Proposition 1.2.14] it suffices to show

”(VOLJ)(uk O))||L2(U)+ Z ||Lj(uk(0) ||L2(U)— (1 HGHL“’(U))
2jfi“<m 3fem
x je%o, ”(VOL])UOHL?(U)_" ‘EZN, “LJUOHH(U)
2j+1<m 2j<m

Indeed, from

1. (B4,

2. @113,

3. . and

4

the common integration by parts formula along with .
we obtain, for every jeN, that

Wmemmw)uﬂmm»Ummm)ommL%mwm%
as well as

2 (uo, L¥ (ug(0))) & (L7 uo, L (ux(0)) )55\\Lj(uk(0))]]L2(U)

Al
I(7o2) @Dy € g EL(ToL) (e 0)), (T 1) (i (0))]
£ (U (), I (e (0))) &

2 (e(0), I (i (0))) 2
2 (w0, T (g (0)))

:
(L ) (T2 . [(727) (D)
< 517917 e 2y K5 Vollimn I (To L7 0]
Step 2

1

S LL(VoL?)uo, (VoL7) (ur(0))] <

We multiply the variational equation (2.3.4) (for N, instead of N; \)

dL (A for every jeN such that 25<m
—d%(t))\lzj”, for every jeN such that 2j+1<m
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sum for [=1,...,k, integrate by parts and take imaginary parts of both sides to find

1d

5 ey ~ 1 (L7 D) = B 27 (Jue+¢7) (k) ), ) = 0,

for every jeN with 25<m, and

1d ; , . _
i%ﬁ[lﬂuk, Ljuk] - Im[ (VOLJH) ¢-a(VoLd)ugdz—
U
i [ (7o17) (e (i +0)) - alVo L) g =0,
for every jeN with 2j+1<m. We sum the above equations for every j, integrate with respect

to ¢, employ the Young and the Holder inequality, as well as (2.4.5) and (2.4.9) along with
the estimate for the H'-norm of each uy from the proof of [Theorem 2.3.2] to obtain the

estimates
t
f Ads
0

ASIE(1+

), for every teJy, if n=1
and also

Agic'(1+ fOtA(1+ln(1+A))ds

), for every teJy, if n=2,

where

. 2 j 2
SRR (GO R PSS o LT S
j jeN;

2j+1<m 2j<m

Consequently, A<K everywhere in Jy, which, combined with the estimate for the H!-norm

of each uy, from the proof of gives us
1kl oo (gosmrm (0y) SK, VEEN,
since every uy, satisfies the necessary compatibility conditions for the validity of

[[:2.14] Now, dealing in an analogous manner as in Step 33 of the proof of
we deduce that ue L= (Jo; H™(U)) with

”u”L‘”(JO;H’”(U))SK:'

Moreover, directly from the differential equation, we deduce that u’e L™ (JO; H™2(U )) with

Hu,HL“’(JO;H'm—Q(U)) <K.

O

Employing the same argument as in the proof of [Theorem 2.4.1] after the differentiation of the

approximating equations with respect to the temporal variabld®, we can show by induction the
following generalization of the aforementioned result, the proof of which is omitted.

Corollary 2.4.4. Let n=1,2, U be bounded, T be as in , uoeH&(U) and u be the solution

of (2.2.25) that|Theorem 2.3.2 provides. If

1.
2.
3.

4.

oUeNy_ Lip™ (e, K, Ly,),

aeNpy Wb (U),

CeNem 1 X™(U) and

uo €Ny H™(U)NHG (U), with (Liug)e HY(U) for every jeNo,

8

As we have already notice in Step la of the proof of [Theorem 2.3.1} the Faedo-Galerkin approximations are

infinitely smooth with respect to t.
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then ueN2 We (R Nioy H™(U)), with

loc

. 1 1
) P SK(sm s {1, U2 K, Lo [0l s [ ey
(2.4.13)

1
) H|C|—PHL2(U)» 7 HCLHWm—l,m(U)» ol )v

for every jeNg, every meN\{1} and every Jy.

Now, we show the analogous regularity result for the case where U=R" (n=1,2 of course).

Theorem 2.4.2. Let n=1,2, 7 be as in , up € H*(R™) and u be the solution of
that[Theorem 2.3.3 provides. If

1. aeNe_y Wb (R™),
2. CeN>=_y X™(R™) and
3. up€Mp—g H™(R™),
then ueN2 Wi (R Ney H™(R™)), with

loc

||u(j)||Leo(JO;Hm(Rn)) SK(|U0 HHT”(]R")7 HCHX"”’Q(]R")7 |||C|_pHL2(R")7
(2.4.14)

1
) 67 ”aHWm/—lym(Rn)a |‘]0| )’

for every jeNy, every meN~{1} and every Jy.

Proof. We set

1
I ol gy 1€ ez ey G101 2y 3 Nl mr = s ol

Let {uk}zozl be the sequence of solutions, as in the proof of [Theorem 2.3.3] Since

Bie () Lip™ (&, K, Ly,),

m=1

then, in view of [Proposition 1.2.7] we deduce that

Up=Bye () Lip™(ke, K, L), VkeN.

m=1

Hence, {ug oo, Mo Wi (Rs NSy H™(Uks2) nHE (Uky2)), with

Hu’(Cj)HL""(JO;H’"(Umz)) SK(W max{l’ |U’”2|%}’K’ L, [0l m gny;

1
MSlxmsz@ny, IKl=pl L2y, 5o lalwn-r = gnys 1ol )

for every jeNy, every meN\{1} and every Jy. Since

1
1 1 Ug+2|? O, .
)™ max{l, |Ug+2|2 }: ((|k‘f;§|5)m <C(k+2)2 " <C uniformly for every keN,
therefore
i <K,

Lo (JosH™ (Ug+2))

for every j, m and Jy as above, and the same is true for the respective norms of v,(cj ). Now, dealing

as in Step 34 of the proof of [Theorem 2.3.1 we deduce that u) e L= (Jo; H™(R™)) with

||u(j) ||L°°(J0;H’"(R")) <K.
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Remark 2.4.1. The usual regularity results for unbounded sets appeared in the bibliography (see,
e.g., Chapter 10 in [8]) also concern sets with bounded boundaries, such as exterior domains, and
not only the whole Euclidean space. Such results can be obtained for the classic version of our
problem, i.e. for (,p =0, by the use of the technique we present here. However, it is not possible

to consider e =ke ~ oo in|Theorem 2.4.2 for the case of bounded (and non-empty) boundary.

Remark 2.4.2. We can also deal with the regular problem in the semi-line, simply by considering
the odd or the even extension of both ug and (, depending on the behaviour of these functions at
the boundary.



Chapter 3

The inviscid limit of the linearly
damped and driven NLSE

3.1 Introduction

The goal in this chapter is to show, under certain conditions, that the linearly damped and driven
NLSE can be considered as a perturbation of the respective NLSE.

NLSE models with gain and loss effects have found applications to many physical fields such as
non-linear optics and fluid mechanics (see [3] and the references therein). The use of damping and
forcing effects for the NLSE is not a novelty for physicists (see, e.g., [5] and [39]). On the other
hand, some cases of the linearly damped and driven NLSE have already been studied, concerning
the solvability and the long time behavior of solutions and their attractors of Cauchy problems
(see, e.g., 211, [46], [34], [27], [2], [32], [28] and [29]). Comparisons between the two equations
have also been made (see, e.g., [16] about some blow-up issues). Even though these two equations
seem quite similar, they exhibit important differences. In particular, many of the symmetries of
the NLSE do not hold for the respective linearly damped and driven equation, such as the known
scaling symmetry, the Galilean invariance and the time reversal symmetry (see, e.g., [43]). To the
author’s best knowledge, some questions of “inviscid limit” type for these equations still remain
unasked. In [4], the respective linearly damped and driven NLSE arises from a perturbation study
of the sine-Gordon equation and in [48] it is shown that the NLSE is the inviscid limit of complex
Ginzburg-Landau equation. However, it is natural for us to expect that the linearly damped and
driven NLSE could be a perturbation of the NLSE and this viewpoint is the scope here.

In particular, we extract a sufficient relation between f and v of the form || f|=O(7), as v ~ 0

(see (3.4.1)), in order to get two approximation results in [Section 3.4l First (see
3.4.1] and [Corollary 3.4.1)), we approximate a solution (or the solution in case of uniqueness) v of

the problem by a sequence {u,,},, of solutions of the problems , as Ym N 0, fr, > 0 and
gy, = Vo- Second (see [Proposition 3.4.2), we estimate the rate of this approximation for n=1.

In proving the above results, we first show, in[Section 3.3} the existence of a bounded solution of
(8), which satisfies a certain estimate (see [Theorem 3.3.1]and [Theorem 3.3.2). The aforementioned
sufficient condition ||f|=0(7), as ¥ N 0, comes naturally from that estimate.

We note that, since our main interest lies in inviscid limit results, we deal with the defocusing
and the subcritical focusing case, as well as the critical focusing case with sufficiently small initial
datum (see ), where the analysis for the extraction of energy estimates is not that extended
in comparison with the supercritical focusing case for sufficiently small initial datum. Hence, we
exclude this case, not because of inefficiency of our approach, but in order to keep the work as
compact as possible and stay focused on our main result.

3.2 Formulation of the problem

We deal exactly as in the previous chapter in order to define, for every A€ R* and every « as in
a+2

2.1.1)), the operator gy : H}(U) » Lo+ (U) = H ' (U) to be the non-linear and bounded operator

such that

gx(u; @) = Au|, VueH&(U),

7
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or else
(ga(u), v) ::)\fU|u|aﬂvdm, Vu,v e HY(U),
with
l9x () =g 232 (1, KNl i 0rys [0 ars ) =0l vy, Vv eHG(U) - (3:2.1)
and
93 () =921, 252 gy SNl oy 1ol o Ju=vl gy ™ s Vasw eH(U). (3:22)

Moreover, for every 7y € [0,00), we define Ny o[, ] : H&(U)2 — C to be the form which is
associated with the operator L, (a,8)+gx+ivid, such that N ,[u,v]:=(Lyu, v)+(g(u),v)+iv (u,v),
for every u,v e H3 (U), satisfying the estimate

N it N Kl sy [0 s ) Va0 €HAU). (323)

We then restate the problems and : for every vg,ug € H}(U), we seek solutions

v,u GL“(JO;Hol(U))ﬁWLw(Joé H_l(U))

of
(iv',w) + Ny o[v,w] =0, YweH(U), ae. in (0,T) (3.2.4)
v(0) = vy, o
and of
(in’,w) + Ny 5 [u,w] = (f,w), YweH}(U), ae. in (0,7) (3.2.5)
u(0) = ug, o
respectively.

3.3 Weak existence results
Before we proceed with the main results of this section, we need some preliminary lemmata.

Lemma 3.3.1. Let a€(0,2), >0 and ue Hj(U). Then

lul 322 1y <€l Vel 2oy +CHUHL2§U’3” (3.3.1)

Proof. Direct application of the Young inequality with constant e>0 for p= -+ and ¢=

©2.4). "

into

Below follows a straightforward adaptation of a well-known result from [47] (see also Definition
8.1.13, as well as Theorems 8.1.4, 8.1.5 and 8.1.6 in [10], and Chapter B, Appendix in [43]).

Lemma 3.3.2. Let oz:% and Re HY(R™) be the spherically symmetric, positive ground state of
the elliptic equation ~AR+R=|R|*R, in H-1(R™). Then, the best constant C in

a+2

HuHLMz(U)£C||un|\ig(U)Hu|\zg(U)7 for every ue Hy (U), for any open UCR™ (3.3.2)
18

2
C=Cp= 02 (3.3.3)
2| R 2 my
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Theorem 3.3.1. If U is bounded, T,0 €(0,00), feW'>((0,T); L*(U)), uoe H}(U) and also
i. A>0, or
. 4
7. A<0 and ae(O, 7), or
n

1
4 0\ (3.34)
i1, A<0, as=— and max{||uo\|L2(U),C}<(—X) IR 12 (n)s

if we consider the problem (|3.2.4
where C'=

{ Hf||L°o((O Ty.L2(uy)s o we consider the problem (3.2.5)),

where R is as in|Theorem 3.3.9, then there exist solutions of (3.2.4) and (3.2.5), such that

1
¥Vl =yt 00 1V im0y S Lol oy 5 Jalmor) (33.5)
and
[l Lo 0.7y 21 0y 10 | Lo 0,721 (1)) €
1 (3.3.6)
<Kol oy {12l o sy g = )
respectively.

Proof. We only show the result for the problem (3.2.5)), since the respective result for the simpler
problem (3.2.4)) follows analogously. We set

1
) HaHLm(U))-

Asin we make use of the standard Faedo-Galerkin method, by considering the
complete set of eigenfunctions for the operator L, restricted to H}(U;R), which we denote as
{wy}4.,. This set is an orthogonal basis of both Hj(U;C) and L?(U;C). We also assume that
{wy}., is appropriately normalized so that it is an orthonormal basis of L?(U;C).

1
=K 1ol oy e {1, Y E s ~ oz

Step 1
For every meN we define d,,, € C*((0,T0);C™), with Tp <T and d,,(t) = (dfn(t))k |+ to be
the unique maximal solution of the initial-value problem

{dm’u) = Fu(t,dpn (1)), Vte(0,Tp)
din(0) = ((wr,u0)) ey (= (o, we))psy, in view of [Lemma 2.3.1)),

where F,, eC([0, 7], C™) (we note that W= ((0,7); L2(U)) = C([0,T]; L*(U))) with
FE (t don () = N A TS (8, ] = (s, £(2)) , Vh=1,.
=1
Now, we define u,,,eC*((0,7p); Hj (U;C)), with
u,,(t) = i Tm (t)wg.

In view of it is direct to verify that

(iuy,, wi) + Ny [, wi] = (£,wy) everywhere in (0,Tp), for every k=1,...,m. (3.3.7)
We can also deal as in Step 13 of the proof of to deduce that
1 0) 20 <t 0y 20 19t (O] oy <K 1m0 ) Pt o

as well as

u,,(0) - ug in L*(U).
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Step 2
We multiply the variational equation (3.3.7) by d¥ (¢), sum for k=1,...,m and take imagi-
nary parts of both sides to find

d 2 2
L o + 23 gy <210,

hence, from the Young inequality for e=3 (p=¢=2), we obtain

oy + 1 e < S
ag"miez@) T mlnz) = w0,y L2 )

which implies that To=T for every meN, as well as the estimate
1
”umHL""((O,T),LZ(U))SmaX{HUOHL2(U)a ;HfHWL""((O,T);L?(U))}a VmeN. (3.3.8)

Step 3
We multiply the variational equation (3.3.7) by d’;@'(t) +7dk (t), sum for k= 1,...,m and
take real parts of both sides to find

d 5 YA (a+1) 0?2
aj[umy f] + ’YJ[uma f] + §£[um, um] + W HumHLZ*-?(U) =- (f’, um) , (3.3.9)
where
1 A a+2 1 2
JI[v,g] = §£[um,um] + E”’U”LO‘+2(U) -Re(g,v), YveHy(U), YgeL*(U).

In view of the estimate in Step 1, along with the scaling invariant embedding H}(U) -
L**2(U), we have that

1
J[um(O),f(O)]S/C(HuO HHl(U)v HfHL‘”((O,T);LZ(U))a 9 Ha”L‘x’(U))'

In order to show
|Vewttm | 2oy <K, uniformly for every meN, (3.3.10)
we consider the three cases of (3.3.4).
i. Since

a+2

YA (a+1)
D 5 200

zL:[um,um]
2 a+2

from the Holder inequality (p=¢=2) and (3.3.8) we get

d ~
aj[um,f]-vyj[um,f]s Il 2 0y lE' 1 2 ry SKNE | oo 0,752 (0

which implies

~1
I [, f]<max {J[um(o), £(0)], ’C;Hf’HL“’((O,T);P(U))}'
Hence
%E[um, u,]<

~ ~1
SKIE] o (0,152 (1)) +max {J[UM(O)af(O)]a’C;Hf,HLN((O,T);Lz(U))}V

thereby we get (3.3.10]).
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ii. Employing (3.3.1]) for

a+2
Pl
2\ (a+1)

to estimate the last term on the left-hand side of (3.3.9)), we have

d ~
%j[uﬂ’Laf]+’yt7[uTVL7f]gK (7+Hf'||L°o((0,T);L2(U))) :
which implies

~ 1 ,
J[um,f]Smax{J[um(O),f],/c(1+;Hf P——

Therefore, applying again ((3.3.1]) for

) 2 1
€= (at ), for some (5&(0, 7),
A 2
we get
1 ~
§£[Um7um] <K (1 + HfHLw((o,T);Lz(U))) +
~ 1~
+max {j[um(o)a f],K (1 + ;K:Hf,”Lm((O,T);L%U)))}a
hence (3.3.10]) follows.

ili. Employing (3.3.2) for C'=C,, as in (3.3.3)) to estimate the last term on the left-hand
side of (3.3.9)), as well as (3.3.8]), we obtain

d ~
I, 19T [ BV <R (18] e 0 220y )

since
1 ACe 1 f «
§+9(a+2) (max |u0|0,2,U7;H ||L°°((0,T);L2(U)) ) >0.
(13.3.10) then follows.

From (3.3.8)) and ([3.3.10]) we conclude that

lwml o o,y 800 0y <K, uniformly for every meN. (3.3.11)

Step 4

We can deal as in Step 25 of the proof of [Theorem 2.3.1} minding to employ ([3.2.3) instead,

we derive that

||um'HLm((07T);H,1(U))£l€, uniformly for every meN. (3.3.12)

The rest of the proof follows from (3.3.11) and (3.3.12)), in analogous manner as in the
aforementioned proof.

O

Since the estimates (3.3.5)) and (3.3.6) are independent of U, we can deal as in the proof of
to show the following result, the proof of which is omitted.

Theorem 3.3.2. 18 also valid for every unbounded U.
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3.4 NLSE as limit case of linearly damped and driven NLSE

Here, we consider {uo,, },,U{vo}cH(U), {£,.},,cW'((0,T7);L*(U)) and {7y },, (0, 00), such
that
Ym N0,
£, > 01in WH=((0,7);L*(U)), with |, | 0.1y 22 (1)) =O(¥m) and (3.4.1)

ug,, = Up in H&(U)7
as m A oo.

Proposition 3.4.1. For every vy and {(uo,,,fm,¥m)},, asin (13.4.1 ), as well as every correspond-
ing sequence {W,,}, of solutions of (3.2.5), which[Theorem 3.3.1] or[3.5.9 provides, there ezist a
subsequence {Wp, },S{um},, and a solution v of (3.2.4)), such that

~v in Hy(U), everywhere in [0,T],
"y i L((0,T); HH(D)).

U,

Uy,

Proof. In view of the former proofs, it is sufficient to show that
{Hum ||L°°((O,T);H1(U))+ Hum/|‘L°°((O,T);H*1(U))}m

is uniformly bounded. Indeed, it is direct from the combination of (3.3.6) with (3.4.1)), that

, 1
||umHL°°((O,T);H1(U))+Hum HL“’((O,T);H-l(U))SK: HUO||H1(U)7§,HGHL°°(U) )

uniformly for every m. O

Before we proceed to the next result, we note that it is easy to check that [Proposition 2.3.1|
also holds for the solutions of (3.2.4) and (3.2.5)).

Corollary 3.4.1. If the solutions of and are unique, then, for every vy and

{(uo,,,fms¥Ym)},, as in , the corresponding sequence {uy,},. of solutions of con-
verges to the corresponding solution v of , in the sense that

U, =~V in H&(U), everywhere in [0,T],
w,’ = v’ in L=((0,T); HH(U)).

Proof. From [Proposition 3.4.1] and uniqueness, we have, for every such vy and {(uo,,,fm,vm)},m
that there exists a subsequence {u,,, },<{uy},, such that

—~vin Hj(U), everywhere in [0,T],
'Sy in L=((0,7); HH(D)).

Uy,

(3.4.2)

Uy,

Now, seeking a contradiction, we assume that a sequence {u,,},, does not converge to v in the
above first sense, i.e. there exists to€[0,7] such that

u,,(to) = v(to) in Hy(U).

Then there exist €>0, we Hi(U) and a subsequence of {u,,}
which we have

ms Which we still denote as such, for

| (W (t0), ) 11 0y = (v(t0), ) g iy | 26, ¥,

which is a contradiction to the first convergence of (3.4.2). The proof of the second convergence is
similar. O

In fact, if n=1, then u,, > v in C([0,7]; L*(U)) also, as we show below.
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Proposition 3.4.2. If n=1, then for every convergent sequence {u,,},. of solutions of to
a solution v of , as in [Proposition 3.4.1] or|Corollary 3.4.1], there exist

Cl:ol(HUOHHl(U)) and C2:C2(HUOHH1(U)7 ”fm‘|W1v°°((O,T);L2(U))”ym) with
C’2=O(’yfn) asm A oo,

such that
[ =V [ 720y <0, ~v0 ]| 72 (1) +C2 (e -1) , Vte[0,T], V. (3.4.3)
In particular, if
lwom=vol 21y =O(vm) asm 7 oo,
then
Iam =Vl Lo (0,1;22 (1)) =O(Ym) as m 7 oo.
Proof. Let m be arbitrary and set w,, =u,,-v. Then

W' + LW + ga(Wn) = ga (V) + iy, = (U) f,, ae. in (0,7).

Applying (2.2.3)) and dealing as usual we get

d 2 2 o o 2 2 :

d <C f . dz +C C m

W2y <C | Wl (| + V1) + Clwin 121y + Crin I m 2oy + (3.4.4)
2

+CEn w0, 7):22(0))

a.e. in (0,7). From (3.4.4) and the embedding Hg(U) < L*(U) we obtain (3.4.3) with

1 9 2
Co=K (ool 1) and Ca= o (K (Iwol i o) v+l i = o.y22(0 ) -
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