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Abstract We show global well-posedness of certain type of strong-in-time and
weak-in-space solutions for the Cauchy problem of the 1-dimensional nonlinear
Schrédinger equation, in various cases of open sets, bounded and unbounded. These
solutions do not vanish at the boundary or at infinity.
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1 Introduction

The 1-dimensional nonlinear Schrodinger equation (NLS) emerges as a first order
model in a variety of fields—from high intensity laser beam propagation, to Bose-
Einstein condensation, to water waves theory, etc. The NLS is completely integrable,
hence solvable, in one dimension on the infinite line, or with periodic boundary
conditions.

In this work we consider the one-dimensional defocusing NLS equation

iV+vg—|v|*v=0, V(t,x)eJ*xU, (1.1)

where v : J xU — C, with J an interval CR such that 0e J, U an open set CIR
and o> 0.

We are interested in solutions with a prescribed initial condition on {f =0} x U.
Moreover, v is either not necessarily equal to zero on J x QU , or not necessarily such

N. Gialelis - I. G. Stratis (<)

Department of Mathematics, National and Kapodistrian University of Athens,
Panepistimioupolis, 15784 Zographou (Athens), Greece

e-mail: istratis@math.uoa.gr

N. Gialelis
e-mail: ngialelis@math.uoa.gr

© Springer Nature Switzerland AG 2019 337
A. Karapetyants et al. (eds.), Modern Methods in Operator Theory

and Harmonic Analysis, Springer Proceedings in Mathematics & Statistics 291,
https://doi.org/10.1007/978-3-030-26748-3_19



338 N. Gialelis and I. G. Stratis

that lim|y|—.o v=0 on J x U. In the case that U is unbounded we assume that v has
a constant amplitude at infinity.

Since we are interested in all possible cases of open sets, U could be bounded
(e.g., aball) or unbounded—with or without empty boundary (e.g., R or IR, respec-
tively). Let us recall that when U =1R, the existence of many such solutions is well-

known, e.g. the black soliton v(t, x) =l tanh<2_%x), for a=2. In the present

work we look for solutions of the form v(¢, x) =e’" (u(t, x)+((x)), for r R and
u, ¢ complex-valued functions over J x U and U, respectively, such that u# vanishes
at the boundary and at infinity, but ¢, in contrast, survives. The arising problem then
becomes

i+ U+ —(u+¢|"+r) u+¢) =0, Y, x)eJ*xU
u=ug, on {t=0}xU (1.2)

u=0, on J xOU and u Llnact 0, onJxU,

for given r, ¢ and also ug : U — C which vanishes at the boundary and at infinity.
The problem (1.2) for U =R and

a=271forteIN:={1,2,...} and r=—p" for p>0, (1.3)

has been studied in [8]. There itis stated thatif ¢ € C#(R), D¢ € H*(IR), and addition-
ally (I¢I>—p) € L*(R), then (1.2) is globally well-posed in H'(R) and the energy
of the solution is conserved.

Recently, in [10], the above result is extended not only by weakening the assump-
tions on ¢ but also by considering more general cases of U CIR, other than the
Euclidean space itself. Namely, it is shown that the problem (1.2) is globally and
uniquely solvable in H{ (U) for any open U C R, if ( € X' (U), the Zhidkov space
over U (see the notations below) and additionally if «, 7 are as in (1.3); for unbounded
U itis further assumed that (|¢|*—p) € L>(U).

In this work we introduce sufficient conditions on ( that establish the continuous
dependence on the initial data, as well as the conservation of energy. We show that
in bounded sets there is no need for extra assumptions on . On the other hand, in
unbounded sets the assumptions on ¢ are stronger than the ones for the bounded
case, yet still, they remain weaker than the ones in [8] for the case U =1R and they
ascertain the rigorous proof of the well-posedness of the problem.

The present paper is organized as follows: the problem is formulated for two dif-
ferent sets of assumptions in Sect. 2, where the necessary notation is also introduced.
The well-posedness of the problem for bounded U —with “minimal” assumptions on
(—is treated in Sect. 3. We note that both the strong H -regularity and the continu-
ous dependence of the solution on the initial data require the conservation of energy;
the latter is established without any additional assumption in the case of bounded U'.
However, as shown in Sect. 4, for unbounded U the energy is proved to be conserved
under stronger assumptions on ¢. The underlying reason for this, is that in the case
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of unbounded U the backward-in-time existence is not guaranteed by the “mini-
mal” assumptions of Sect.3; to surpass this obstacle we employ an approximation
by regular solutions for which the energy is actually conserved.

2 Preliminaries

We start with some notation used throughout the paper:

1. J denotes any bounded interval such that O e J, J+ :=JNR4 and U for any open
CR.
2. If p,q,r €[l,00] and k,m €INy:={0, 1,2, ...}, we write

v = lwnrwys lemo =1 g @)

i smro =1 Nwerwnr s i pai—mu =1 lwerqm—nwy)-

We omit p=00, /=R and U =1R from the notation.
3. If meIN, then X" (U) stands for the Zhidkov space over U, defined as

X"(U):={ueL™®W) | D*ueL*U), Vke(l,..., m}}

and equipped with its natural norm [|-||yu) :=Ilo,c0.0 + Yy | D¥|g 5 - The
first version of such spaces over R is introduced in [13] and a generalization for
higher dimensions (along with certain modifications) is done in [7-9, 14]. In this
work, however, we consider X™ over any open set.

4. Let F(U;; C) be afunction space over U; C U, CIRR and f € F(U,). We denote by
&y, f its extension by zero in U, \U; and &y, F(Uy) = {Esz | fe]—'(Ul)}. We
omit U =R from these notations. Moreover, if g€ F(U,), we denote by Ry, g
and Ry, F(U,) the restriction of ¢ in U, and the set of these restricted functions,
respectively.

5. We write C and ¢ for any non-negative constant factor and exponent, respectively.
These constants may be explicitly calculated in terms of known quantities and
may change from line to line and also within a certain line in a given computation.
We also employ the letter K for any increasing function K : [0, 00)" — [0, 00).
When J and U appear as subscripts in an element, they denote that this depends
on them, while their absence designates independence.

6. Ifu:JxU — C,withu(t,-)eF(U) foreach t € J, then, following the notation
of, e.g., [0, 11], we associate with u the mapping u : J — F(U; C), defined by
[u(®)](x):=u(t, x), forevery xeU and t € J.

Next, recall Holder’s inequality: let U CIR", m e N\ {1}, { pr};=, C[1, oc], such that

p%+-~+p%=1 and uy e LP*(U) fork=1, ..., m. Then

/|M1---Mmldxil_[|uk|o.pk,y- 2.1
v k=1
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From (2.1) for p; = % and pp=a+2, a>0, it clearly holds that

1
/ el ol dx <125, 5 10lo .0 (22)
U

for u, v € L*?2(U).
In the sequel, we assume that >0, ( € LoP(U) and r e R.
From (2.2) and the scaling invariant embedding HOl (U) — L*?2(U), we define

g: H(U) - Y, = L% (U)+L2(U)— H~'(U) to be the nonlinear and bounded
operator such that

(g(u;a,g,r),m:/(|u+g|“+r) (u+¢) vdx, forve Hy(U).
U

For the above operator we have the following estimate.

Proposition 1 Let u, v € Hy (U). Then

lg@)—glly, SK(|M|1,2.U’ iy, |C|0,a+z,U)X

2.3)
x (lu=vlopp.v+lu—vlosy) -
Proof Foru,v € L*?(U), we have
||”|a”_|v|av|0,ﬁ,(/ =C (|”|(C),a+2,u+ |U|8,a+2,u) lu—vlo.a2.0- 2.4
This inequality follows by direct application of
[lz1"z1 =lz2|"221 = C lzi —z2| (121" +1221") , 21,22 €C, (2.5)

(2.1)for py=a+1and p,=“ aswellas |z)+22|” < C (|z1|” +|z2/"), p > 0. From
(2.4) and the scaling invariant embedding HO1 (U)= L2 (U) we get

lg(w)—g)lly, <C (|M|€,2,U+|U|§,Z,U+|C|8,a+z,y) lu—vlo.ap.u+
+ Clu—vlpou

and the result follows.

Now, we further assume that ¢ € H' (U) and we define N'T-, -] : (H, (U))2 — Cto
be the form which is associated with the operator D?(-4()—g, such that Nu, v]:=
(D*(u+¢), v)—(g(u) , v), for every u, v € Hj (U).

We then restate the problem (1.2): we seek a solution u; € L*(J; Hy (U))N
whe(J: H='(U)) of

i (W), v)+Nu,, v]=0, Yve Hj(U), ae.inJ

2.6
UJ(O)ZM(). ( )

We also provide an estimate for the form A.
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Proposition 2 Let u, v € Hj (U). Then

INTu, VIl <K (luly oo [0l 1Ch 200 ICloanu) - 2.7

Proof From (2.1) (p; = p» =2),(2.2) and the scaling invariant embedding HO1 U)—
L), we get INTu, v]| < CID+Qlo o, vl 2,04+ Clu+C1§ .1 1V1§ 51> hence
the result follows.

We further define the energy functional E : H& (U) - R U{oo} by

1
E(;a,(r) :=5|D(-+c>|§,2,U+G<-; o, (. r),

where G : Hi (U) — R U{oc}, with

G(;a,C, r)::/ V({-+Cl; o, r)dx,
U

where V : [0, o0) — [0, 00) is defined as

[0 a2

[r] o . 2.8)

1 1
V(x;a,r)i=——x"4—rx?
(x;a,r) a+2x +2rx +2(a+2)

It easily follows that for every constant C,, > 42 there exists a constant A, >0,
such that

X <C,V(x), Vx> A,. (2.9)

For the functional G we have the following estimates.

Proposition 3 Let u, v € Hi (U). If (G(u)—G(v)) €R, then

IGw)—GW)| <K (luly 2.0, 10l 2.0, ICl 205 IClo.aa.0) X

(2.10)
x (lu=vlo,pp.v+lu—vlo20)

and

G(Ll)SK(|“|1,2,Ua ICl1 2.0 1Cl0.ai2.0 > |U|) . (2.11)
Proof From

la
G(u)—G(v):/ d—G(su—i—(l—s) v)ds=
o @s (2.12)

1
:/ Re(g(su+(1—s)v),u—v)ds,
0
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(2.2) and the scaling invariant embedding HOl (U)= L“?2(U) we get
1G) =G W) =C (Julf 5,y +1v1 2,5 +HICIG a0 +ICI 5.0) %
X (|M—U|o.u+2.u+|M—U|o,2.u) .
As for (2.11), we notice that

1 1 (8% at2
G(O):/Uv(lq)dx:a_+2|C|8t§+2’y‘|‘§7|<|(2)’zty+—|r| “ Ul <

2 (a+2)
= K(|<|1,2.Uv IClo.at2.0» |U|) .
Then the result follows from (2.10) and the triangle inequality.

Let us now assume that ¢ € L*?(U)NL>(U). Two fine properties concerning the
operator g follow.

Proposition 4 Let u, v € Hy (U). Then (9(u)—g(v)) € L*(U) with
lg)—gW)loa.v <K (luly 2.0 W20+ IClo.se.v) =020 (2.13)

Proof By simple application of (2.5), we get

[ 9 =gPax < [ (PP P
U U

+ (€15 00,0 +C) It =015 2.
We then employ the scaling invariant embedding H} (U) <> L*®(U).

Proposition 5 Let u, v € Hy (U). If either |U| < oo, or |U| =00, a and r be as in
(1.3), as well as (|C|2—p) € L>(U), then g maps to L>(U) and

Ky (luly 2.0 1¢l0.00.0) » iflU|<o0

) . (2.14)
K(|”|1_2,U» I¢l0.00.0- | I€] —P|042,U> . otherwise.

|9(u)|o,2,U < {

Proof We notice that g(0) = (|¢|*+r)¢, which belongs to L*(U). Indeed, for |U| <
oo this is straightforward. For |U| =00, by expanding via

a"=b"=(a—b)(a" +a"b+. . .+ab+b"), (2.15)

we get [g(0)]g .y <K (ICIO,OO,U, ||C|2—p|0_2’U>. The result then follows from (2.13)
and the triangle inequality.
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Let us now notice that ¢ being in L*?(U) plays no essential role at any of the
above results. Hence, for

a,rasin (1.3)and (e L®(U) with (I¢[*—p)eL*(U),

we define g, : Hy(U) — L*(U) by

(90 7, C. ) v} = / (Iu+CIP" —p7) (u+Q) v, for ve HA(U),
U

which satisfies the above estimates.

Now, we further assume that ¢ € X' (U) and we define N[, -] : (Hol(U))2 — Cto
be the form which is associated with the operator D?(-4-¢) — gy, such that N [u, v]:=
(Dz(u+C) , v>— (gs(u) , v), forevery u, v € HOl (U). We note that apart from belong-
ing to L(H'(U); H™'(U)), D*€L(X'(U); H~'(U)) also, with its usual defi-
nition. Now, the problem (1.2) becomes: find a solution u; € L°°(J; HO1 (U)) N
Wl (J; H7Y(U)) of

i (), v)+N[uy, v]=0, Yoe Hj(U), ae.inJ 2.16)
u; (0) =uy. '
From (2.14) and (2.1) (for p; = p, =2), we derive the following estimate
Nl ol <K (o oo Kloay 1KP=ply, ) @17)

for every u, v € H} (U).
We also define the respective energy functional E, : H} (U) — R U{oo} by

1
E\(’ T, C’ :0) = EID(+<)|(2),2,U+GT(7 T, C’ P) ’
where G, : H)(U) — R U{o0}, with
Gt Copyi= [ VA+clim prdx,
U

for which we have

1Gs@) =G =K (Il 2. 1011 2.0 ICloos 1P =l ) %

><|M—U|o.z,U’

(2.18)
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from (2.12) and (2.14). Moreover, G,(0) <K(|C|O,00,U’
obtained casily from

ICP=ply 5. ) which is

a"™—a (n+1) b +nb™ = (a—b)z(a"_1 +2a"2b+.. 4+ (n— 1)ab"‘2+nb"—1).

Hence, from (2.18) and the triangle inequality we get

Go@) <K (1l 2.0 oot K20l ) (2.19)

for every u € Hol(U) and so Ey, G, : HOI(U) —- R,.
We also need the following results.

Proposition 6 Let H be a Hilbert space and F be a Banach space with the Radon-
Nikodym property with respect to the Lebesgue measure in (J, B(J)).

1. Let{w )2, CL®(J; H)andu : J — Hwithu(t) = u(t)inH, fora.e teJ.If
e ll .7y < C uniformly for allk € N, thenu € L= (J ; H) with || ;.3 < C,
where C is the same in both inequalities.

2. Let {ug}2,U{u} CL®(J; F*) with uy Zuin L®(J; FH.LIf e ll sy <
C uniformly for all k€N, then ||[u|| ;. 7)< C, where C is the same in both
inequalities.

3. Let pe[l,00) and {w ), Ufu}CLP(J; H) with up —u in LP(J;H). If
g ll Ly, 1y < C uniformly for all k €N, then |[all po;.29) < C, where C is the
same in both inequalities.

Proof 1. We derive that [u(?) ||, <C, for a.e. t € J, from the (sequentially) weak
lower semi-continuity of the norm. Then, the result follows directly.

2.Letve F be such that |[v]| <1 andsetv:J — F the constant function with
v(t):=v, forall t € J. We have

s+h
/ (ug, v) dt <Ch, for every s € J° and every sufficiently small 4 > 0.
P

Letting k — 00, dividing both parts by / and then letting 7 — 0, we get (u(s) , v) <
C, for every s € J°. Since v arbitrary, the proof is complete.
3. We deal as in 2.

Lemmal Letu:J — H"™(U) be such that ueC(j; L2(U)). Then u is weakly
continuous (as a function to H"(U)).

Proof Letfoe J and {1,}°°, C J be such that #, — fo. Let also ve C®(U). Then

IThatis, w¢ — u in a(L®(J; F*), L' (J; F)). Note that L®(J; F*)= (L' (J; F))" (see, e.g., [5]
Theorem 1, Sect.1V.1).
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|t —u(to) , v) | =

> / D*(u(t,)—u(to)) D*vdx
k=0 U

=<

PGk / (W(t,) —u(ty)) D*vdx
k=0 4

m
2.1
2%
< lu(t,)—u(t)lor.v Z |D le.Z,U -0,
k=0

hence, the result follows from the density argument and the fact that #, € J is arbitrary.

Lemma 2 LetH be a Hilbert space andu : J — H beweakly continuous. Iflally €
C(J), thenueC(J; H).

Proof Lettye J and {t,}52, C J be such that t, — 7. Then

lu(t,) —u(to) I3, = llu(t,) 13, — (lto) , w(t,))p—
— (u(ty)—u(ty) , u(fo)) 3 — O,

hence, the result follows since #y € Jis arbitrary.

Lemma 3 Let Uy CU, SR, me Ny and {ug )2, U{u} C H™ (Uy) such that uy — u
in H"™(Uy). Then Ry, ux — Ry,u in H™(Uy).

Proof Let ve C°(Uy). Then
m
(Ru,ux—Ruy,u, U)H”’(UI)ZZ/ D*(Ry,ux—Ruy,u) D*vdx =
k=0 VU1
_ N k k = _
_Z/ D¥(uy—u) D Eyzvdx_(uk—u,Eyzv)Hm(Uz) -0,
k=0 v U2

hence, the result follows from the density argument.

3 Solutions in Bounded Sets

In this section, we assume that U CIR” is bounded.

3.1 A General Result for r eIR

Theorem 1 Let M()EHOI(U). Then for every J, there exists a solution uy € L™
(J; HY(U))NWE>(J; HTY(U)) of (2.6), such that
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|uJ|0,J:1.2,U+|u/J|0,J;—1.U <K, G.D
where
_ K (luoly 2.0 IC11 2.0 |C|o,n+2,U) . ifr=0
o Ky (luoly 2.0+ 1¢l1 2,05 ICloarr) » i r <O
and also

E(u;) <E(ug), everywherein J. (3.2)

Moreover, if uy and C are real-valued, then w,;(t)=uy(—t), for all t€J with
[t] <dist (0, OJ).

Proof STEP 1: We make use of the standard Faedo-Galerkin method. It holds
true that H(}(U : C)—>< L>(U; C), hence there exists a countable subset of
HOI(U; R)NC*® (U; ]R), which is an orthogonal basis of L>(U; ©), e.g., the com-
plete set of eigenfunctions for the operator —D? in H} (U; C).? Let {w;}32, C Hy
(U; R)NC™ (U; R) be that basis, appropriately normalized so that {w;};>, be an
orthonormal basis of L>(U; C). Fixing any m € N, we define d,, € C*> (J,,; C™), with
d,,(1):=[d}@),....d" (t)]T, to be the unique maximal solution of the initial-value
problem

d,, (1) = F(d, (1)), Ve
d,,(0)=[(uo, wy), ..., (uo, wy)1",

where F,, € C*(R*"; C") with

m
Fn’j(z):zij\/'[Zz[w,, wi], forallze C™, withz:=[zy, ..., Zul",
-1

forall k{1, ..., m}. Now, we define u,, € C*(J,,; H}(U: C)NC>(U; C)), with
u,, (1) :=Zd,§;(t) wy.
k=1
It is then trivial to verify that
i (w

m?

wy) + Mu,,, w]=0, everywhere in J,,, (3.3)

2This specific subset is an orthogonal basis of both HOl (U; C) and L2(U; C).
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for all ke{l,...,m}. Note that ug, =un(0,)=u,(0) = uy in L>(U) and
|tom o2, <luolo 2.u- Furthermore, oy |1 5y < lugly 2,y Indeed, since 3\ jarwy €
span {wy };, for some {a; };"; C C we have that (D%ug,,, tg,, ) = (D*uom, uo), hence
we get

|Du0m Iéyzgll = (Dzu()mv M()m) = (Duyg,,, Dug) <
1 1
< §|Duom|(2),2,y+§|D”0|(2),2,U'

Therefore |Dug,y,lo 2.7 <|Duolo2.u-
STEP 2: We multiply the variational equation in (3.3) by —dX'(¢), sum for k=

1, ..., m, and take real parts of both sides, and thus obtain
d . .
EE(um) =0, thatis E(u,,) < E(up), everywhere in J,,, (3.4)

hence, if r >0, we have that |u,, |, , y <X and thus J,, =IR. Since m € N is arbitrary,
we get |u,, |, .y </, for all m € N. Hence, we conclude that {u,,};_, is uniformly
bounded in L*(IR; Hj (U)), with

[wnlo.1 2.0 <K, YmelN. (3.5)

If r <0, from (2.11) we have that | Du,, |, y < E(u,,) <K and thus J,, =IR. There-
fore, from the Poincaré inequality, we also get [u,, |y, <K and thus (3.5) follows.

STEP 3: We fix an arbitrary ve HJ(U) with |v]; 5, <1 and writc v=Pv &
(Z—"P)v, where P is the projection in span {wy};",. Since u], € span {w;};_, and
NTh, g]is (conjugate) linear for g, from the variational equation in (3.3) we get that
(w),. v)=(u},, v) = (w),, Pv) =iNTu,, Pv]. Applying (2.7) we derive |(u;n, v)| <K.

Hence {u}, };10:1 is uniformly bounded in L™ (R; H~'(U)), with

[w,]._, p =K. ¥meN. (3.6)
STEP 4a:: We fix an arbitrary J. From (3.5), (3.6), Theorem 1.3.14 (i) in [4]
and Proposition 6 1., there exist a subsequence {um, }?: < {w,,}5>_, and a function

u; € L®(J; Hy(U))NWh(J: H7'(U)), such that
u,, (1) = uy(t) in Hy(U), forevery teJ and also [u;lo ;.1 20 <K. (3.7)

STEP 43: H~'(U) is separable since Hé (U) is separable, hence by the Dunford-
Pettis theorem (see, e.g., [5], Theorem 1, Sect.II1.3) we have L"O(J; H! (U)) =
(L'(J; H} (U)))". In virtue of the above, from (3.6), the Banach-Alaoglu-Bourbaki
theorem (see, e.g., [3], Theorem 3.16) and Propesition 6 2., there exist a subsequence
of {uml }21’ which we still denote as such and a function h e LOO(J; H™! (U)), such
that
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u;nl X hin L°°(J; H_I(U)) and also |h|y ;. y <K. (3.8)

From the convergence in (3.7), Lemma 1.1, Chap.3 in [11], along with the Leibniz
rule, we can derive that

/(u;ﬂ,wv)dte /(u;,wv)m, VyeCl(J°?),veHy(U),
J J

hence h=u/,.

STEP 5a: Since U is bounded, H} (U)<><> L*(U)~ H~'(U). Hence, from
(3.5), (3.6) and the Aubin—Lions—Simon lemma (see [2], Theorem I11.5.16), there
exist a subsequence of {uml }z \» Which we still denote as such and a function y €

C(J: LA(U)), such that
u,, > yin C(J; L*(U)). (3.9)
From the convergence in (3.7), we deduce that y=u;.

STEP 553: From (3.5), (3.9) and the Gagliardo—Nirenberg inequality (see, e.g.,
Theorem 1.3.7 in [4]) [ulo 40,0 < C1Duly 5 ylulg . > We have

u,, — u; in C(J; L**(U)). (3.10)
STEP 5~: From (2.3), (3.5), the bound in (3.7), (3.9) and (3.10) we get

g(um,) = guy) inC(J; Y,). (3.11)
STEP 6a: Let now e C(J°) and fix N € IN. We choose n; such that N <m,

andve span{wk},ivzl, hence, by the linearity of the inner product, we get from (3.3)
that

/i (. Vv)+ N, Yv]dr=0.
7

We then pass to the weak, *-weak and strong limits (since ¢v € L' (J; HOI(U))) to
get

/i(u&,zﬁv)-ﬁ-]\/[uj,zbv]dt:&
J

Since v is arbitrary, u, satisfies the variational equation in (2.6) for every ve
span{wk}ﬁ’:l. By the linear and continuous dependence on v, we get the desired
result, after letting N — oo.

STEP 6/3: For the initial condition, we fix an arbitrary #, € J*. Let v e H(} (U) be
arbitrary and ¢ e C! (7) such that ¢(0) #0 and ¢(fy) =0. We then have from [11],
Lemma 1.1, Chap. 3, along with the Leibniz rule, that
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/Ou(u;m,d)v) dt:—/oo(uml,q/)’v) dt—(uom,, ¢ (O)v),
fo (u;,(bv)dr:—/o (uy, ¢'v)dt—(u,; (0), 9 (O0)v).

Passing to the x-weak limits in the first equality, using that u,, — ug in L%(U) and
the fact that v e HO1 (U) is arbitrary, we derive that u; (0) =uy.

STEP Ta: Now, for (3.2), we first derive from (2.10), (3.9) and (3.10) that
G(um,) — G(uy), everywhere in J. On the other hand, from the convergence in
(3.7), (3.9), the fact that if w,, —u; in H'(U) and u,, — u; in L?>(U) then
Du,,, — u;in L?(U), as well as the weak lower semi-continuity of the L2-norm we
get |Dum, | 02.0 = |Duyly, i, everywhere in J. Combining these two results, we get
(3.2) from (3.4).

STEP 7 3Finally, if ¢ is real-valued, then F,, (z) = F,,(z), for all ze C" and if ug is
real-valued, then d,,(0) € IR™. Hence, under these two assumptions, it easily follows
that w,, (t) =u,,(—1), for all r €R. Now, the symmetry u;(t) =u;(—¢), forall r€J
with |¢] <dist (0, 0J), follows directly from the respective symmetry u,, (t) =u,, (—t)
for all t e R, m € N and the convergence in (3.7).

3.2 Uniqueness and Globality

Itis obvious that the uniqueness of the extracted local solutions implies the “globality”
of those solutions.

Proposition 7 The solution w; of Theorem I is unique everywhere in J.

Proof Let up,; =up, and u, , u;, be the corresponding solutions. Setting w:=
uy;|—uy2, we have

. HYU) .
iw +AW—(g(u“)—g(uJ,2)) =0, ae.in J. 3.12)

We apply the functional of (3.12) on w(), for arbitrary 7 € J and take the imaginary
parts of both parts to get us

,Veeld.

oo =] [ Notwn) =s(ur2) vl as

Since H!(U) < L*®(U), from (2.13) we deduce that

2
=< Cltl leo.[—r,r];O,Z.U ’

1
2 2
oo =C| [ Wi
0
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hence

2 2
W10, (—r.r1:02.0 SCIEINWIG (—f 020

For |¢] sufficiently small we have w=0. Now, we show that w=0in J; and in an
analogous fashion we can have that w=0in J_. Since we C(J, L*(U)), we set

§:=sup {toeJ |w=0 for all £ € [0, t()]}.

If s #sup J, then there exists § > 0 such that [s, s40] C J. Then the continuity of w
implies w(s) =0 and, by dealing as above, we deduce that w=0 for “a little further”
than s, which is a contradiction to the definition of s.

3.3 Conservation of Energy and Well-Posedness

Here, we utilize the existence backwards in time as well as the uniqueness of the
solution, in order to complete the puzzle of the well-posedness of the problem. First,
we show the following result.

Proposition 8 The energy of the unique solution w; of Theorem I is conserved,
that is

E(uy)=E(up), everywhere in J. (3.13)
Proof We show that the energy is conserved in J; and in an analogous fashion we

can get conservatio/g of the energy in .L_ Let tpe J;. We set Ji= [—19, 0] and we
define as vy € L®(J: Hy(U))NW">(J; H='(U)) a solution of

{i <v/f, v>+./\/'[v7, v] =0, Yoe H (U), ae.in T
vi(0)=u, (%),
which Theorem | provides us. From the uniqueness of the solution we have that

vi(f)=uy,(t), forall7e[—19, 0] and all € [0, 79]. Moreover, from (3.2) we have
that

E(u;(t9)) < E(uo) and E(v5(—t)) < E(uy(t))

and applying v7(t —tp) =u;(t), forall z €[O0, #], i.e. an equivalent formulation of
the above equality, we obtain

E(uy (1)) < E(up) and E(uo) < E(u, (1)) .

Since ty € J is arbitrary, we deduce (3.13) with J, instead of J.
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Corollary 1 The unique solution w; of Theorem 1 is a strong H, -solution in J,
ie.u;€C(J: Hy(U))NC'(J; HTY(U)), and is also continuously dependent on the
initial datum.

Proof For the regularity, since u; € C(J; L>(U)), we deduce thatuy is weakly con-
tinuous from Lemma 1 and also that |uy|p, y€C (7) by the triangle inequality.
Morcover, from (2.10) we also deduce that G (u;) € C(J). Therefore, from (3.13) we
getthat |uy|, 5 y € C(J) and thus, from Lemma 2, we obtain thatu, € C(J; H} (U))
and also, by the variational equation, that u, e C(J; H='(U)).

As far as the continuous dependence is concerned, we fix an arbitrary ug € HO1 ).
Let {uo.m }:Zo:l C Hé (U) be such that ug ,, — ugp in Hé (U). We write asuy and uy ,,,
for m € IN, the unique corresponding solutions of the problem (2.6). We deduce that
{u;}Ulu,,,}>  cC(J; Hi(U)) from above. We fix an arbitrary mg €N and then

m=1
there exists a constant C,,, such that

|“0””|1,2,U <luoly .,y +Cny, for all m €N such that m >my.

From (3.1), the above estimate, as well as the increasing property of K we have

s |O.J:l.2.U +uf, |0.J:—1,U =K,

for all m as above. Hence, by dealing as in the proof of Theorem 1 from STEP
4 to STEP 63, there exist a subsequence {u Tomy }Ii] - {u Lm}:):mo and a function

yeL>(J; Hy(U))NW>(J; H7!(U)), such that y solves the problem (2.6) and
also uy,, — y in C(J; LA U)NL***(U)). In view of Proposition 7, we deduce
that y=u,. Moreover, from (2.10), (3.1), the latter convergence, and (3.13), we

obtain that |uj,m, |l oy~ [us]y 5 ¢y uniformly in J. Hence, from Proposition 1.3.14

(iii) in [4] we get that uy,, — u, in C(J; H}(U)). Since {uo,m};j:l is arbitrary
;;1 C Hy (U) such that ug ,, — ug in Hgl(U), there
exists a subsequence {u,, }1021 {uom };le such thatuy ,,, — u; in C(J; Hy (U)).
Hence, u;,, — uy in C(J; Hy(U)) and since ug € Hy (U) is arbitrary we conclude
that the map ug — uy is continuous.

we deduce that for every {uo, }

3.4 Regularity

Here, we provide a regularity result, which is useful for the next section. We do not
intend to exhaust the whole subject, thus, we only show weak H?-regularity for a
particular type of the extracted solutions.

Theorem 2 Let u; be the unique, energy conserving, continuously dependent on
the initial datum, strong Hy, -solution of (2.6) in U =U7‘;] U;, for pairwise disjoint
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open (and bounded) intervals U ; with |Uj | >3 >0, forevery j €eIN. If ug=H} (U)N
H*(U), (e H*(U) and « is as in (1.3), then w; € L>®(J.: Hy(U)NH*(U))N
Whee(J,; L2(U)), with

|“J|o,1+:2,2,U+|UJ/|0’,+;0’2’USIC, (3.14)

where K:=K ;. y(luolyo.u. 1<lsap)-

Proof STEP 1: Let {u,}5_; be as in the proof of Theorem 1. We have that
[ttom 200 < ltolso - Indeed, since D*uq,, €span {w;}/L, we have (D4uom, Mom) =

(D*uom, uo), hence we get that

|D2u0m |(2),2,U = (D4u0ma MOm) = (D2u0m9 DZMO) <

1 2 1 2
= 5 |D2”0m |0,2,U+§ |D2”0|042,U’

therefore |D2u0m |0,2,U = |D2u0|0,2$U'

STEP 2: We multiply the variational equation in (3.3) by )\lzd_fn(t), where \; the
Ith eigenvalue of —D? on H} (U), sum for /=1, ..., m and take imaginary parts of
both sides to find

u, |(2)’2,U —Im(D4C, Dzum) -

—Im(D*[(Jup+CI* +7) (Wn+)]. D*u,,) =0.

(3.15)

Note that

(Dz(lum +C|2T (uy, +<))’ Dz“m) =

T4+1 27+1
= X T[Ipv@.+0 [ p"Gn+0. P |,
g1+ qar 1 =21=1 =742

hence we deduce, by application of (2.1) for p; = p, =2 that

|(D?(Jup+<IP7 (W +0), Du,)| <

T+1 27+1

< > J[P*@.+0 [] pr@.+0]  x

@1+t qer=21=1 I=742

x |D2“"1|0.2,U
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2

and again for p; = o

where /=1, ...,2741, to get

|(D?* (lun+C 7 (n+0)). D*uy)| <
2741

= Z H|Dql(“m+o|oiqi,u|D2(“"1+<)|0,24U'

G+t =2 1=1

Moreover, from the Gagliardo-Nirenberg inequality, in view of Theorem 8.6 in 3],
we have

j ! e 3 :
|D u|0’57,151( o |Dulg,  luly’s ;s for j=0,1,2,
I being an interval (bounded or not) and u € H>(I). Hence

2
|u|0?oo’U, for j=0,1,2.

|Dj”|0,§,U =C©) |D2“|§,2,U

From the above inequality, the embedding H'(U) < L>®(U) and (3.1), we then
have

|(D?(Jun+CI7 (a40), Duy)| <
<Clun+O R | D> @a+0lg 5 < (3.16)

Ku(luoli2u: 1¢hau) (H' |D*w |(2),2,U)'

Combining (3.15) and (3.16), we derive

|D?u,, |(2).2,U <Ky v(lwohou: ICls2u)

everywhere in Jy, from which, along with the estimates of Theorem 1, we obtain
that {u,,}°_, is bounded in C(J;; H*(U)). with

[Wnlo, s, 22,0 <K, VmeN. (3.17)

STEP 3: We set m =m;. Obviously, C(E; HZ(U))C—>L2(J+; H2(U)). There-
fore, applying Theorem 3, Sect.D.4 in [6] and Proposition 6 3., we get from (3.17)
that there exist a subsequence of {llm,}?il, which we still denote as such and a
function ve L>(J,; H*(U)), such that

3We can modify the reflection technique used for the proof of this result, in order to cover the
case of the extension of H2-functions. In particular, we can apply the reflection technique used for
Theorem 5.19 in [1].
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w,, — vin L2(Jy; H*(U)) and also [Vlg s, 200 <K. (3.18)

From (3.7), we can easily derive that v=u;.

STEP 4: From the embedding H'(U) < L (U) and (2.14), we get that g(u;(-))
maps to L?(U). Hence, from (3.18) and the variational equation in HO1 (U), wededuce
that u; solves the equation in L?(U) and

|“/J|o,f+;o,z,u <K (3.19)

3.5 A Special Case of Solutions

We notice that problem (2.16) allows us to consider ¢ which do not vanish at infinity,
if U is unbounded, hence the - -formulation is crucial for those sets. Before we
proceed with the study of the unbounded case, we provide the next result.

Theorem 3 Let u; be the unique, energy conserving, continuously dependent on
the initial datum, strong H&—solution of (2.16). Then

! 2,
luslosav+ Wy, oy =H. (3.20)

where 3 =K. (1ol 2.0 1< [16P =Pl 5. )
Moreover, if U :U?O:lUj,forpairwise disjoint open (and bounded) intervals U
with |U;| >8>0, for every j €N, ug€ Hy(UYNH?*(U) and € X*(U), then

e~

|“1|0J+;2,2.U+|“/J|0,J+;0,2,U <, (3:2D

where =K. (|u0|2,2.U, 1.

|C|2_p|0,2’y>'

Proof Let {u,}o-_, be as in the proof of Theorem 1. From (3.4) and (2.19) we get
Do, = K (ol 20 1€y [IKP=ply ) - YmEN.  (322)

Then, we multiply the variational equation in (3.3) by d_,’;(t), sum fork=1,..., m
and take imaginary parts of both sides, and thus obtain

1d
Ealumlg,zy _Im(DC, Du,,) —

- Im((|um+C|2T—pT) (w,+0Q), urn) =0.

(3.23)



On the 1-dim Defocusing NLS Equation with Non-vanishing Initial Data at Infinity 355

Applying (3.22) and expanding in view of (2.15), we deduce

d 2 2
5.5 = K (ol 20 1Cxo (1K=l 5 )

X (1+|“m %erlﬂ.u) =<0.

(3.24)

In order to estimate the non constant term inside the parcnthesis, we imitate the
technique which has already been developed for the proof of Lemma 3.3 in [8]. We

set B=(Ag,+1Clo.cou+1)7 where Ay, is asin (2.9), Q:= {x eU | lu,+(l< JE]
and R:=Q°NU. Then

|um|(2)zj+l,U=/ |um|2|um|2T_ldx+/ |“m|2T+1dX§
Q R
2 27—1
SIIXEU|I“m|§\/§+|C|u.m.l,y}|um| lw, | dx+
+C [plCP S wy (P Hdx <
2.9) . .
< (JEJFICIO.OO,U) 30 +CICl ooy [rdx+CGsm) < (325)
Cc
= (ﬁ+|<|0,w,U) |“m|(2).2,U+

Cl(lf[].w U | 2
=y |5y HCGs(uy) <
(‘/E_Kl():x,U) " 0’2'U ' "
(2.19)

= K (luoh 20 10w (1P =2l ) (14 10l 5.0 -
From (3.24) and (3.25), we derive that
|“m|0.2,U < X in J+, Vm eIN. (326)

From (3.22) and (3.26) we conclude that {u,}5_, is uniformly bounded in
C(Jy: HJ(U)), with

|llm |0,]+;1,2.U S%, Vm E]N (327)

In addition, we make use of (2.17) to get that {um’}fno:
C(J+: H7Y(U)), with

, is uniformly bounded in

|, ity S YmeN. (3.28)
We then deal as in Theorem 1 in order to obtain (3.20).

As far as the estimate (3.21) is concerned, we deal exactly as in Theorem
2, employing (3.20) instead of (3.1), as well as the scaling invariant embedding

HOI(U) < L>®(U) instead of the scaling dependent H'(U) < L*(U).
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4 Solutions in Unbounded Sets

Here, we assume U C IR to be unbounded.

Theorem 4 Let uge Hy(U). Then there exists a unique and global solution u €
L2 (0, oo H&(U))HW,IU‘E’O (0, 00; H™'(U)) of (2.16) in the positive time ray, such
that

|uj+ |0»J+§1,2,U+|u/J+ |O.J+:—1 U <X, vy, “4.1)

where u;, :="R;, u and also
E(u) <E(ug), everywhere in R, . “4.2)

Moreover, if U = U;O:1 Uj, for pairwise disjoint open (bounded or not) intervals
U; with |U;|=6>0, for every jeN., uge H}(UYNH*(U) and (€ X*(U), then
ue L (0, 0o; Hi(U)YNH>(U))NW,;%(0, 00; L2(U)), with

loc loc
P

|u]+|0,1+;2,2,U+|“,J+|0’]+;0.2’Uft%/, vJ,. (4.3)

and also
E(u)=E(ug), everywhere in R, . 4.4

Proof We only show local existence in Hy (U). H*-regularity follows analogously.
Equation (4.4) is a direct result of the fact that the regular solution u satisfies the
equation in L?(U). We get uniqueness and globality exactly as in Proposition 7.
STEP 1: Since U is open, we fix an arbitrary B,(xo) C U. Let ug x :=Rynito, for
all k €IN, where {n; )72, is defined as follows: let f € C*°(IR) with
e" 1, t>0
f@):= 0. <0,

and {ax};2; CR} increasing, such that a; > ¢ for all k€N and a; /' co. We define
{m}eZ C € (R) by

S (ar—|x—xol)
f (x —xol —ar)+ f (ax—lx—xol)’

M (X5 X0, At Q) := VxelR, keIN\{1}

and

: o flai—lx—xo))
e B ) = o -t
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It is trivial to show that

1 B 1, B
, XE€Dg (x()z VkeN\ {1} and mx)= X e Q(x()) .
07 X € Buk (XO) s Os X e Bu1 (xo) .

M (x) = {
If, in addition, ayy —ay =a; —o=C uniformly for all k€N (i.e. C is independent
of k), then |D‘6771<|0 o= C, for some {Cy,}o7_o CRRy, uniformly for all k€IN and
every multi-index ( such that |3| =m. In particular, Co=1.
Therefore, for all kK €N, we have that

|M0,k|,,2.U <Cluoly2.v- (4.5)

We also notice that ug =0, in B, (x9)°NU, hence, by setting By := B, (xo) N U,
for every k € IN, we obtain that {RBkuO~k}](:il C H(} (By). Moreover,

uor — ugin L*(U) . (4.6)
Indeed,

|tox =10y . = 10— Ditolo 2. <luolo.2.,,_ wyer = 0-

STEP 2o: Let J4 be arbitrary. Fixing any k €N, we consider (2.16) in U = By,
where we take Rp,uox as our initial datum and we set u* € L™ (J5: Hy(By))N
Whee(J,; H='(By)) to be the solution that Theorem 3 provides. From its proof, it
follows that there exist {uf, }oo C C*®(Jy: Hy(UYNC>(U)). such that

m=1

k /

“IH =

0,J.;—1,By 4.7)
2
<Ky, ([n0s], 5 5. €158 120y, ) - V€N

|“5v |0.J+:142.Bk+

and

ub (1) — u*(t) in H}(By), foreverytelJ,,

rx 4.8
ut = utin L®(Jy; H7Y(BY)) . (4.8)
From (4.5), (4.7) and the increasing property of K we deduce that
k i/
|“m|0,1+;1.z,3k u, 0oLy <%, VmeNN. (4.9)

STEP 243: Since Ryppovut, =0, the extensions by zero v& :=Eyuk , forallm e IN,*

ot ms
are continuous in 9B \OU and thus {v& }>° C>(Jy; H}(U)). Evidently,

*For the H?-regularity, we define v&, :=n;Eyuf,, for all m e N.
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k _lk
|Vm |O,J+:1.2,U = |“m |0.J+;1.2,Bk
k! |k
|Vm | _| m ’
0,J4:—1,U 0,J4:—1, B¢
hence, from (4.9), we get that
k K/
v _ +|v <¥, VYmelN.
| VH|0.J+.1.2.U "o g —1U ’

STEP 2~: Dealing as in STEP 4 of the proof of Theorem 3, there exist
a subsequence {vk }fi] g{vk };ozl and a function vk e L®(Jy; Hy (U))NW!h>®

m; m

(J43 H7'(U)), such that

vh (1) = vE(1) in Hj(U), forevery te€ J,,
vE A vk i L>(J HTHW(U)), (4.10)

my

k kK’ =
<

Since k€N is arbitrary, {v¢};~ CL®(J.; HJ(U))NW"®(J; H7I(U)) and the
above estimate is satisfied for each k € IN.

STEP 3: Dealing again as before, there exist a subsequence {v"’ }7:1 - {Vk }:il
and a function u;, € L™ (J4; Hy (U))NW "> (J.; H~'(U)), such that

Vi (t) = ay, (¢) in H}(U), forevery teJy,
Vi Sw) in Lo(4 HN(U)), @.11)

<K.
Jo—1U

|“J+|]+;1,2,U+ u/1+

STEP 33: From (2.13), the estimate in (4.10) and Lemma 3.3.6 in [4] we deduce

. . 1 /= ..
that {g, (vk’)}[i] is bounded in C%2(J;: L*(U)). Hence, from Proposition 1.1.2
in [4], there exist a subsequence of {v¥} ™

11> Which we still denote as such, and a
function f € C(J4; L*(U)), such that

gs(V¥ (1)) = £(1) in L*(U), Vtel,. (4.12)

STEP 4a: Let 2 be any bounded open interval C U. For k € IN big enough so that
Q C By, we have

(V' Euv) =(u’, Ep,v) . (95(v') . Euv) = (95 (u) . Epv)

and <Vk,, SUU>:<uk/, gBkU> ) (4.13)

for every v € C°(€2). Indeed, for the first equality, we get from (4.10)
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k = k =
/UvngU vdx — /UV Eyvdx

and from (4.8)

my my

/vk Eyvdx = RBkvk Ep vdx — ukEBkl')dx.
U By By

The second equality follows similarly. The third equality follows from the first one
and Lemma 1.1, Chap. 3, in [11]. Now, since u” is a solution in By,

i <uk/, EBkv>+J\/; [u*, Epv]=0, YveCZ(Q), ae.in Jy,
hence, from (4.13),
i <Vk/, 5Uv>+M [Vk, &/v] =0, YveCX(Q), ae.in J,. (4.14)
STEP 48: From the first convergence in (4.11), the weak lower semi-continuity
of the H'-norm and the compact embedding H'(2) << L?(2), we obtain that
there exist a subsequence of {v"’ }721’ which we still denote as such, for which we
have

Vi(t) — uy (1) in L*(Q), Vte ;. (4.15)

We set k=k; in (4.14) and we pass to the limit [ — oo. From (4.11), (4.12) and
(4.15), we deduce that

/ (i (l.l/h, gUU)+<Au]+, 5UU>+ (f, 5UU>) 17)611‘ =0,
Iy

for every ve C°(R2) and v € C2°(J,), hence
i(u) . Eyv)+(Auy,, Eyv)+(f, Eyv) =0, YveCI(Q),ae.in J. (4.16)
STEP 4+~: From (4.12) and Lemma 3 we have
g5 (Rav¥ (1)) =Rags (V¥ (1)) = Ref(t) in L*(U), Ve I,. (4.17)
On the other hand, from (4.15) and Lemma 3,

Rav¥ (1) — Rauy, () in L*(Q), Vte ;.
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From (2.13) we get
95 (Rav¥ (1)) — gs(Rauy, (1)) =Rags(uy, (1)) in L*(U), Vtel,. (4.18)
From (4.17) and (4.18) we derive Rqgs(n) =Rof and so (4.16) gets the form
i(u) . Eyv)+Ni[uy,, Eyv] =0, YveCX(Q), ac.in J;.

Since 2 is arbitrary, u,, satisfies the variational equation in (2.16).
STEP 5: As far as the initial condition is concerned, let #y, v, ¢ be as in STEP 63
of the proof of Theorem 3. Then

/ (34 o) dr=— / (vE. 9v) di— (vE 0) 6 (0) ).
0 0

fo o 4.19)
/ (u,. ¢v>dt=—/ (uy,, ¢'v)dt—(uy, (0),¢O)v).
0 0
Moreover, (V£ (0) , ¢ (0) v) = (uf,(0) , ¢ (0) R,v), hence, by setting m =, and let-
ting [ — 0, we get

/0<vk/,¢v>dt:—/0(vk,¢/v) dt — (R, tor, ¢ (0) R, v) .
0 0

Since (RBkuok, ¢ (0) RBkv) = (uox, ¢ (0) v), we set k=k; and we pass to the limit
as | — oo, applying (4.6), to get

1y )
/0 (), pv)dr=— /0 (wy,, ¢'v) dt—(uo, ¢ (0)v). (4.20)

From the second equation in (4.19) and (4.20), we conclude to uy, (0) =u,.

In fact, for U =R, we need a weaker assumption on (, in order for the H 2.
regularity result of Theorem4 to hold. Indeed, in view of Theorem4, (2.13) and
(2.14), the following is a direct application of Theorem 5.3.1 and Remark 5.3.2 in

[4].

Theorem 5 Ifvo € H*(IR) and { € X*(R), then there exists a unique and global solu-
tion e L2 (0, 00; HY (U)NH(U)) W, (0, 00: L2(U)) of (2.16), with E(u) =

loc loc
E(ug) everywhere in R .

Proposition 9 Let U = U70=1 U;, for pairwise disjoint open (bounded or not) inter-

vals U; with |Uj|25>0,f0reveryjelN, uoeHOl(U),

¢ X*(U), ifU=R
X*(U), otherwise
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and u the corresponding weak H, -solution of (2.16). Then the energy of u is con-
served, w is a strong Hol—solution, continuously dependent on the initial datum.

Proof It suffices to show that the energy is conserved. Let J, be arbitrary and
{uo,m}:f:l CC>(U) be such that ug ,, — ug in Hy (U). We write as uy, and uy, ,,
for m € IN, the unique corresponding solutions of the problem (2.16). In view of The-
orems 4 and 5, we have that u,, ,, satisfies the differential equation in L*(U), for all
m €N, hence, we can easily derive that the energy of every uy, ,, is conserved, i.e.

E(uh,m) :E(uo,m) , VmeIN, everywhere in J,. 4.21)

Moreover, we have that uy, ,, — uy, in C(J4; L?(U)). Indeed, dealing as in the
proof of Proposition 7, we have that

¢
2 2
IWml(),infC‘/ |Wm|042.Uds, Vield,,
0

where w,,:=uy, ,—uy,, for all me€IN, therefore, the convergence follows from
the Gronwall inequality and the fact that ug,, — uo in L>(U). Now, we deal
as in the proof of Theorem 1 from STEP 4« to STEP 603, minding to exclude
STEP 5 and apply the above extracted convergence as well as (2.13), instead.

. o0 o0 .
Hence, there exist a subsequence {uy, 4, },—, < {u ‘]+’m}m=m0 and a function ye

L>(J; Hy(U))NW>(J; H7'(U)), such that y solves the problem (2.6) and also
u;., — yin C(Jy; L>(U)). From the uniqueness of the solution, we deduce that
y=uy, . Moreover, from (2.10), (4.1), the latter convergence and (4.21), we obtain

that [uy, |, , , — |us.]|,,, uniformly in J,. Applying the aforementioned con-

vergences, we then easily get from (4.21) that £ (u ]+) = E(up), everywhere in J,.
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