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ABSTRACT
Considering the defocusing nonlinear Schr€odinger equation (NLSE)
in generic (bounded or unbounded) open sets U � R

n for n¼ 1, 2,
and 3, we prove the regularity of weak, non-vanishing solutions at
infinity or at the boundary of U. Our approach is based on suitably
defined extension operators, along with a priori estimates for regular
functions, under certain assumptions on the smoothness of the
boundary. The results cover physically significant classes of solutions,
as dark-solitons and compacton waveforms, when the notion of such
solutions is extended in higher-dimensional set-ups.
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1. Introduction

The defocusing nonlinear Schr€odinger equation (NLSE)
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� Dvþ jvj2sv ¼ 0, s 2 N, (1.1)

is one of the universal mathematical models for wave propagation in nonlinear disper-
sive media. It appears in a plethora of physical contexts ranging from nonlinear optics
and plasma physics, to the description of Bose–Einstein condensates (BEC), and has
attracted extensive efforts from the physical [22] and mathematical viewpoint [2, 5, 6,
10, 13, 25, 30, 31]. This interest is due to its fascinating complex phenomenology
associated with the existence of localized waveforms supported on the top of a stable
continuous background. In 1D set-ups, one of the most famous such waveforms is
the dark-soliton: when s¼ 1 (cubic 1D defocusing NLSE), the simplest expression of the
dark-soliton solution has the form
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v t, xð Þ ¼ eittanh
xffiffiffi
2

p : (1.2)

In 2D and 3D set-ups, the aforementioned solutions have highly nontrivial generaliza-
tions (if compared with the 1D case), described by the so-called vortices in 2D and vor-
tex rings in 3D, with a particular relevance to the emergence of complex spatiotemporal
structures in fluid mechanics and the physics of BECs.
The aim of this article is to discuss global-in-time existence and regularity properties

of such solutions for defocusing NLSE (1.1) in higher-dimensional settings. First, we
comment on some key works on the problem which motivated the present explorations,
and then, we discuss the novelties and extensions presented herein. The principal works
considering the existence of soliton-like solutions on the top of a finite background for
the NLSE equation on R, are [33–35]. The natural phase spaces proved to be the so-
called Zhidkov spaces XmðRÞ, with m being a natural number (their definition is stated
in the next section). In particular, Zhidkov spaces properly capture the description of
non-decaying solitonic structures satisfying non-vanishing boundary conditions. They
may cover the existence of solutions whose density juj2 but not the solution itself is
localized on the backround, such as “density dips” corresponding to solutions u with a
kink-like topological structure, as the dark solitons. Obviously, the behaviour of such
waveforms cannot be described by the standard Sobolev spaces HsðRÞ, or even by their
affine counterparts. The above fundamental papers established the local well-posedeness
of the NLSE in XmðRÞ: Representative references for the extensions of the problem on
R

n, are the contributions [15–17] and [21]. In [15] it is proved that the Cauchy prob-
lem for the NLSE is locally well-posed in XmðRnÞ for m > n=2: Furthermore, the justifi-
cation of the natural conservation laws for n � 2, implies global existence in X1ðRnÞ,
and additionally, justifies the stability results for dark solitons given in [24]. The energy
conservation for any dimension n � 2, for initial conditions u0 2 XmðRnÞ,m > n=2,
was first established in [21], extending accordingly, the global well-posedeness in
X2ðR2Þ: For extensions in higher dimensions n � 3 (and for a general class of nonli-
nearities) [16], the problem is restricted to the non-vanishing boundary condition for
the density, thus the problem is discussed in affine Sobolev spaces. The global well-pos-
edeness of the Gross–Pitaevskii (GPE) equation in u0 þ H1ðRnÞ, n¼ 2, 3, for non-van-
ishing initial conditions u0 at infinity, is proved in [17].
A first difference between our explorations in this article and the existing results so

far, is that the problem will be considered in an arbitrary open set of Rn, n¼ 1, 2, and
3. For instance, we shall seek solutions expressed in the form

v t, xð Þ ¼ eiq
2stw t, xð Þ, with w t, xð Þ ¼ u t, xð Þ þ fðxÞ, (1.3)

for q > 0 as well as

s 2 N, if n ¼ 1, 2,
s ¼ 1, if n ¼ 3:

�
(1.4)

Then, we consider (1.1) for x 2 U � R
n, n ¼ 1, 2, 3, where U is open, and t 2 J0 � R,

an open interval containing t0 ¼ 0: In (1.3), we assume that u : J0 � �U ! C and f :
�U ! C are sufficiently smooth. Substituting the ansatz (1.3) in (1.1), we actually seek
solutions of the problem
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� D uþ fð Þ þ uþ fj j2s � q2s
� �

uþ fð Þ ¼ 0, in J�0 � U,

u ¼ u0, in t ¼ 0f g � �U ,

u ¼ 0, in J0 � @U, and u !jxj!1
0, in J0 � �U ,

8>>>><
>>>>:

(1.5)

where J�0 ¼ J0 n f0g:
Note that the last condition in (1.5) covers the following cases:

1. U ¼ R
n: In this case, we shall require that uðt, xÞ vanishes as jxj ! 1, so that

accordingly v(t, x) shares the same decaying behavior with fðxÞ on a constant
background of intensity q > 0: This case corresponds to solutions decaying as
jxj ! 1, on the top of a non-vanishing background, and generalizes the notion
of dark-solitons in the higher-dimensional setting (see e.g., [15, 16, 21]).

2. U � R
n, unbounded. In this case u¼ 0 on J0 � @U, with uðt, xÞ ! 0 as jxj !

1 in J0 � �U :

3. U bounded. In this case u¼ 0 on J0 � @U:

The last two cases are of physical significance: motivated by the class of compacton
solutions of the NLSE, [28, 29], seeking solutions of the form (1.3) in a generic U, gen-
eralizes the notion of non-vanishing compactons in higher-dimensional settings. Recall
that a compact wave is a solitary wave with a compact support, outside which it van-
ishes identically. A robust1 compact wave is called a compacton. There is great variety
of dark compactons, for example in 1D, such as cuspons (cusp-alike density dips), com-
pact kinks (kinkons), or dark compactons (smooth density dips), see [27] for a descrip-
tion. To highlight further the role of the terms appearing in the NLSE of the problem
(1.5), let us note the following: substitution of the first expression vðt, xÞ ¼ eiq

2stwðt, xÞ
gives the following GPE type equation for w

i
@w
@t

� Dwþ jwj2s � q2s
� �

w ¼ 0, (1.6)

see e.g., [17] for q ¼ 1: Then, in the case of the 1D cubic NLSE (n ¼ 1, s ¼ 1), the dark
soliton solution (1.2) corresponds to q ¼ 1: Thus, the constant q represents the ampli-
tude of the finite background in the multi-dimensional setting, as mentioned above.
The term �q2sðuþ fÞ in (1.5) appears after inserting the expression (1.3) for w in (1.6).
In the above-generalized set-up for the domains U, the main results of [16] are

extended in [19], by weakening the regularity assumptions on f. Furthermore, moti-
vated by the variety of dark compactons with respect to their regularity, a first study for
the H2-regularity of solutions of the problem (1.5) when n ¼ 1, was considered in [20].
In this article, we extend the latter regularity result for both cases of the spatial

domains discussed above, in the following cases of nonlinearity exponents and spatial
dimensions:

1A robust wave is an orbitally stable solitary wave that almost preserves its shape (in an appropriate norm) after
interacting with another solitary wave or, more generally, with another (arbitrary) localized disturbance, [29].

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 3



s 2 N, if n ¼ 1,
s ¼ 1, if n ¼ 2:

�
(1.7)

The classical approach for the weak solvability, which allows for the derivation of esti-
mates for the energy of the solutions, is based on the “regularized nonlinearity” tech-
nique, presented in [5]. Here, we introduce an alternative approach, which not only
permits the derivation of such estimates, but it is also applied to derive the aforemen-
tioned regularity results. In more detail, this approach can be described in the following
two key points:

1. Local-in time weak solutions and their extension to global. First, we use an energy
method to establish local-in time existence of weak solutions for the problem
(1.5); see also [5, Chapter 3] for the standard Cauchy problem for the NLS equa-
tion in the general domain. However, as underlined above, the energy method is
drastically modified so that to extend the local existence results in the general
domains U including R

N , and not only in R
N which is the case of [15, 16]:

Instead of the “regularized nonlinearity” technique, the Galerkin approximations
are combined with an approximative domain expansion scheme for the original
domain U. This is achieved by introducing suitable extension/restriction opera-
tors and cutoff functions. The existence of global in time solutions is associated
with the uniqueness of local-in time ones for arbitrary time intervals shown
above (see also [5, Theorem 3.3.9] for a related argument). For the case of gen-
eral bounded or unbounded domains, we are applying suitable versions of either
the Sobolev (n¼ 1), or the Trudinger/Gagliardo–Nirenberg (n¼ 2, [26]) inequal-
ities in order to establish uniqueness for arbitrary time intervals J0 as above, and
thus, their continuation for all t 2 R: In the case where U ¼ R

n, n¼ 1, 2, 3,
Strichartz (dispersive) estimates are replacing the above inequalities, as in the
proof of [19, Proposition 11].

2. Regularity of solutions. We derive suitable estimates of the extension operators
defined on sets with adequately smooth boundaries along with certain a priori
estimates for regular functions in order to estimate the high-order weak deriva-
tives of the nonlinearity. These estimates are proved by a combination of multi-
variate Fa�a di Bruno formula and Gagliardo–Nirenberg type inequalities. These
estimates are used to extend the regularity results in the case of bounded sets
and in the case of the whole of Rn, generalizing the results of [21], which cover
only the case U ¼ R

n: An additional feature is that in the case of bounded
domains we provide information on the dependence of the elliptic regularity esti-
mates from boundary characteristics. It should also be remarked that while all
regular solutions are proved to be unique and global, the regularity proofs are
independent of uniqueness.

In summary, the above results extend the existence of non-vanishing, global-in time
solutions, for the case of bounded or unbounded multidimensional domains, covering a
wide class of physically relevant waveforms, while they associate their regularity, shown
so far only for U ¼ R

n, with the properties of their boundary. The proposed approach,
being fairly generic, can be potentially applied to other relevant higher-dimensional
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NLS or GPE counterparts as the sublinear NLS [37], or models incorporating dissipative
effects [18, 22]. The energy method approach could also be extended for establishing
the existence and regularity of non-vanishing solutions beyond NLS equations; we refer
to [37] for compacton solutions of the complex sublinear Klein–Gordon equation.
This article is organized as follows: In Section 2, after the proof of some auxiliary

results relevant to the properties of operators defined by the nonlinear term, we weakly
formulate the problem (1.5). For this purpose, we assume that f belongs to a Zhidkov
space, and impose suitable restrictions on f, in order to control its behavior at infinity,
or on the boundary of U. The conclusions of Subsection 2.3 are useful for the extension
of the local existence result in bounded sets (see Theorem 3.1), also in unbounded ones
(see Theorem 3.2). These theorems are the main results of Section 3 and are used in
conjunction with Sobolev or Trudinger-type or dispersive-type estimates, to establish
uniqueness and global-in time existence. The questions about regularity are answered in
Section 4. Therein, we derive the estimates of the extension operators (Theorem A.1)
and combine them with a priori estimates for regular functions (see Proposition A.9) as
mentioned above. This way, we estimate the derivatives of the nonlinearity (see
Corollary 4.2 for n ¼ 1 and Corollary 4.3 for n ¼ 2), employing the multivariate Fa�a di
Bruno formula and Gagliardo–Nirenberg type inequalities. The regularity result in
bounded sets is proved in Theorem 4.1 and Corollary 4.4, while for the whole of Rn in
Theorem 4.2.
Throughout the article, we systematically employ suitable extensions of some known

results which are included (for the sake of brevity without proof) in Appendix A.
Some notation.
We denote by C any generic positive constant, as well as, any increasing function C :

0,1½ 	m ! ð0,1	, for some m 2 N: The presence of the subscript 
w to a differential
operator for “space”-variables indicates that we consider the operator with the weak
(i.e., distributional) sense, while its absence indicates differentiations in the classical
sense. In what follows, U, Uj, j 2 N, are arbitrary open subsets of R

n: Also, XðUÞ
stands for a space of functions defined on U. If u 2 XðU;CÞ and also every derivative –
in some sense S – of the kth order (k 2 N0), i.e., every Da

Su, with a 2 N
n
0 and jaj ¼ k,

exists, then rk
Su stands for the vector having as components those derivatives.

Following the notation of, e.g., [12] and [32], if u : J � U ! C, with uðt, 
Þ 2 X for
each t 2 J, then we associate with u the mapping u : J ! X , defined by ½uðtÞ	ðxÞ :¼
uðt, xÞ, for every x 2 U and t 2 J: For the weak derivative (when it exists) of the
“time”-variable of a function-space-valued function u, we simply write u0:

2. Properties of operators and energy functionals – weak formulation of
the problem

As in [16], the problem (1.5) is naturally formulated in the class of Zhidkov spaces: for
every m 2 N,XmðUÞ will stand for the Zhidkov space over U, which is the Banach
space

XmðUÞ :¼ u 2 L1ðUÞ j rk
wu 2 L2ðUÞ, for k ¼ 1, :::,m

n o
,

endowed with the norm

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 5



jjujjXmðUÞ ¼ jjujjL1ðUÞ þ
X

1�k�m

jjrk
wujjL2ðUÞ:

We remark that, in this article, we will consider the spaces Xm over any open set U �
R

n, n¼ 1, 2, 3, and not only in R
n: The standard example of a function which is an

element of these spaces is tanhx; it belongs in \1
m¼1X

mðRÞ: We note that these spaces
considered over R were first introduced in [33]. Their generalizations in R

n, n � 1
(along with the suitable modifications), were first introduced in [15, 17, 36] and [16].

2.1. Basic continuity properties of operators

We proceed first by recalling some useful versions of the Gagliardo–Nirenberg inequal-
ities, and, then by describing Lipschitz continuity properties of the nonlinear operators
involved in the problem (1.5). The former is stated in the following lemma.

Lemma 2.1. If

a 2
0,1ð Þ, if n ¼ 1, 2,

0,
4

n� 2

� �
, otherwise,

8><
>:

then

kukLaþ2 R
nð Þ � Ckrwuk

na
2 aþ2ð Þ
L2 R

nð Þkuk
1� na

2 aþ2ð Þ
L2 R

nð Þ , 8u 2 C1
c R

nð Þ,
or else

kukLaþ2ðUÞ � Ckrwuk
na

2 aþ2ð Þ
L2ðUÞkuk

1� na
2 aþ2ð Þ

L2ðUÞ , 8u 2 H1
0ðUÞ: (2.1)

Proof. This is a version of the Gagliardo–Nirenberg interpolation inequality (see, e.g.,
Theorem 1.3.7 in [5]). w

The first continuity property for operators refers to the power-law nonlinearity con-
sidered as a mapping on LpðUÞ-spaces, for suitable exponents p.

Lemma 2.2. If a 2 0,1Þ½ , then

kjujau� jvjavk
L
aþ2
aþ1ðUÞ � C kukaLaþ2ðUÞ þ kvkaLaþ2ðUÞ

� 	
ku� vkLaþ2ðUÞ, 8u, v 2 Laþ2ðUÞ:

(2.2)

Proof. It is a direct application of the elementary inequality

z1j jqz1 � z2j jqz2j j � Cq z1 � z2j j z1j jq þ z2j jq� �
, 8 z1, z2 2 C, 8q 2 0,1½ Þ, (2.3)

the H€older inequality for p1 ¼ aþ 1 and p2 ¼ aþ1
a , and the elementary inequality

z1 þ z2j jq � Cq z1j jq þ z2j jq� �
, 8 z1, z2 2 C, 8q 2 0,1½ Þ: (2.4)

w
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The next two propositions establish the well definiteness and continuity properties of
the nonlinear term

g u; q, s, fð Þ :¼ uþ fj j2s � q2s
� �

�u þ �f
� �

,

of the NLS (1.5), when considered as a nonlinear operator g : X ! Y, with X ,Y being
suitable functional spaces for our purposes. For brevity, in most of the cases, we will
simply write g(u) for the above nonlinear term. We assume that q and s are as in (1.4),
and that f 2 L1ðUÞ:
Proposition 2.1. Let u, v 2 H1

0ðUÞ:

1. If n ¼ 1, then

kgðuÞ � gðvÞkL2ðUÞ � C kukH1ðUÞ, kvkH1ðUÞ, kfkL1ðUÞ
� 	

ku� vkL2ðUÞ: (2.5)

2. If n ¼ 2, then

kgðuÞ � gðvÞkL2ðUÞ � C kukH1ðUÞ, kvkH1ðUÞ, kfkL1ðUÞ
� 	

�
� ku� vkL4ðUÞ þ ku� vkL2ðUÞ
� 	 (2.6)

and

kgðuÞ � gðvÞkL2ðUÞ � C kukH1ðUÞ, kvkH1ðUÞ, kfkL1ðUÞ
� 	

�
� ku� vk1

2
L2ðUÞ þ ku� vkL2ðUÞ

� 	
:

(2.7)

3. If n ¼ 3, then

kgðuÞ � gðvÞk
L
4
3ðUÞþL2ðUÞ � C kukH1ðUÞ, kvkH1ðUÞ, kfkL1ðUÞ

� 	
�

� ku� vkL4ðUÞ þ ku� vkL2ðUÞ
� 	 (2.8)

and

kgðuÞ � gðvÞk
L
4
3ðUÞþL2ðUÞ � C kukH1ðUÞ, kvkH1ðUÞ, kfkL1ðUÞ

� 	
�

� ku� vk1
4
L2ðUÞ þ ku� vkL2ðUÞ

� 	
:

(2.9)

Proof. Let n ¼ 1, 2: Using the inequality (2.3), we getð
U
gðuÞ � gðvÞj j2dx � C

ð
U

juj4s þ jvj4s
� �

u� vj j2dx þ C kfk4sL1ðUÞ þ 1
� 	

ku� vk2L2ðUÞ:

For n ¼ 1, we employ the scaling invariant embedding H1
0ðUÞ ,! L1ðUÞ to derive (2.5).

For n ¼ 2, we get (2.6) by applying H€older’s inequality (p1 ¼ p2 ¼ 2) and the scaling
invariant embedding H1

0ðUÞ ,! L#ðUÞ, for # 2 2,1Þ:½ Then, the inequality (2.7) follows
from (2.6) and (2.1). For n ¼ 3, we note first that

gðuÞ � gðvÞ :¼ I1 þ I2,

where
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I1 ¼ juj2�u � jvj2�v and I2

¼ 2�f juj2 � jvj2
� �

þ f �u2 � �v2ð Þ þ 2jfj2 � q2
� �

u� vð Þ þ �f
2
u� vð Þ:

By using (2.2), we deduce that I1 2 L
4
3ðUÞ, satisfying the inequality

kI1kL43ðUÞ � C kukH1ðUÞ, kvkH1ðUÞ
� 	

ku� vkL4ðUÞ:

For the term I2, we apply again H€older’s inequality (p1 ¼ p2 ¼ 2) and the scaling invari-
ant embedding H1

0ðUÞ ,! L#ðUÞ for # 2 2, 6½ 	, to get thatð
U
I2j j2dx � C kfkL1ðUÞ

� 	ð
U
u� vj j2 juj2 þ jvj2

� �
þ u� vj j2dx �

� C kukH1ðUÞ, kvkH1ðUÞ, kfkL1ðUÞ
� 	

ku� vk2L4ðUÞ þ ku� vk2L2ðUÞ
� 	

:

Hence, (2.8) follows by a combination of the above inequalities for I1 and I2. The proof of
(2.9) is a consequence of (2.8) combined with the Gagliardo–Nirenberg inequality (2.1). w

A useful corollary of Proposition 2.1, following in particular from (2.8), is the
inequality

kgðuÞ � gðvÞk
Lp1 J;L

4
3ðUÞ

� �
þLp2 J;L2ðUÞð Þ � C kukH1ðUÞ, kvkH1ðUÞ, kfkL1ðUÞ

� 	
�

� ku� vkLp1 J;L4ðUÞð Þ þ ku� vkLp2 J;L2ðUÞð Þ
� 	

,
(2.10)

which holds for every u, v 2 H1
0ðUÞ and p1, p2 2 1,1½ 	, when n ¼ 3:

Proposition 2.2. Let u, v 2 H1
0ðUÞ, and assume that ðjfj � qÞ 2 L2ðUÞ:

1. If n ¼ 1, 2, then

kgðuÞkL2ðUÞ � C kukH1ðUÞ, kfkL1ðUÞ, kjfj � qkL2ðUÞ
� 	

: (2.11)

2. If n ¼ 3, then

kgðuÞk
L
4
3ðUÞþL2ðUÞ � C kukH1ðUÞ, kfkL1ðUÞ, kjfj � qkL2ðUÞ

� 	
: (2.12)

Proof. First, we prove that gð0Þ ¼ ðjfj2s � q2sÞ�f 2 L2ðUÞ: Indeed, by using the identity

an � bn ¼ a� bð Þ an�1 þ an�2bþ :::þ abn�2 þ bn�1ð Þ, (2.13)

we get

kgð0ÞkL2ðUÞ � C kfkL1ðUÞ, kjfj � qkL2ðUÞ
� 	

:

Then, the claimed inequalities follow from Proposition 2.1. w

Summarizing the above results, for q and s as in (1.4) and f 2 L1ðUÞ with ðjfj �
qÞ 2 L2ðUÞ, we deduce that
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g : H1
0ðUÞ ! L2ðUÞ, if n ¼ 1, 2

L
4
3ðUÞ þ L2ðUÞ, if n ¼ 3

,!H�1ðUÞ:
�

2.2. Definition of weak solutions and energy functionals

We proceed to the definition of weak solutions and associated energy functionals. We
start by further assuming that f 2 X1ðUÞ, and by defining the form N 
, 
½ 	 : H1

0ðUÞ �
H1

0ðUÞ ! C, as

N u, v½ 	 :¼ hDw uþ fð Þ, vi þ hgðuÞ, vi, 8 u, v 2 H1
0ðUÞ:

Then, the problem (1.5) is weakly formulated as follows: for every u0 2 H1
0ðUÞ, a weak

solution of the problem (1.5) is a function

u 2 L1 J0;H
1
0ðUÞ� � \W1,1 J0;H

�1ðUÞ� �
,

satisfying the formula

hiu0, vi þ N u, v½ 	 ¼ 0, for every v 2 H1
0ðUÞ, a:e: in J0,

uð0Þ ¼ u0:

�
(2.14)

From (2.11), (2.12) and H€older’s inequality, we get the following estimate for N ½u, v	 :
N u, v½ 	


 

 � C kukH1ðUÞ, kfkX1ðUÞ, kjfj � qkL2ðUÞ

� 	
kvkH1ðUÞ, 8 u, v 2 H1

0ðUÞ: (2.15)

For the above weak solutions, we shall consider the respective energy functional
E : H1

0ðUÞ ! 0,1½ 	,

E 
; q, s, fð Þ :¼ 1
2
krw 
 þ fð Þk2L2ðUÞ þ G 
; q, s, fð Þ:

In the definition of E, the functional G : H1
0ðUÞ ! 0,1½ 	 is given by

G 
; q, s, fð Þ :¼
ð
U
V 
 þ fj j; q, sð Þdx,

where V : 0,1Þ ! 0,1Þ½½ is defined as

V x; q, sð Þ :¼ 1
2sþ 2

x2sþ2 � 1
2
q2sx2 þ s

2sþ 2
q2sþ2: (2.16)

It is straightforward to check that for every constant Cs > 2sþ 2, we have

x2sþ2 � CsVðxÞ, 8x � Csq2s

Cs � 2sþ 2ð Þ

 ! 1
2s

> q: (2.17)

The functional G satisfies several estimates given in the following proposition.

Proposition 2.3. Let u, v 2 H1
0ðUÞ:

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 9



1. If n ¼ 1, 2, then

GðuÞ � GðvÞj j � C kukH1ðUÞ, kvkH1ðUÞ, kfkL1ðUÞ, kjfj � qkL2ðUÞ
� 	

�
�ku� vkL2ðUÞ:

(2.18)

2. If n ¼ 3, then

GðuÞ � GðvÞj j � C kukH1ðUÞ, kvkH1ðUÞ, kfkL1ðUÞ, kjfj � qkL2ðUÞ
� 	

�
� ku� vkL4ðUÞ þ ku� vkL2ðUÞ
� 	

,
(2.19)

GðuÞ � GðvÞj j � C kukH1ðUÞ, kvkH1ðUÞ, kfkL1ðUÞ, kjfj � qkL2ðUÞ
� 	

�
� ku� vk1

4
L2ðUÞ þ ku� vkL2ðUÞ

� 	
,

(2.20)

as well as

GðuÞ � C kukH1ðUÞ, kfkL1ðUÞ, kjfj � qkL2ðUÞ
� 	

: (2.21)

Proof. For every fixed x 2 U we use the mean value theorem to write

V uðxÞ þ fðxÞj jð Þ � V vðxÞ þ fðxÞj jð Þ

¼
ð1
0
suðxÞ þ 1� sð ÞvðxÞ þ fðxÞj j2sRe suðxÞ þ 1� sð ÞvðxÞ þ fðxÞ� �

�uðxÞ � �vðxÞð Þ� �
ds�

�
ð1
0
q2sRe suðxÞ þ 1� sð ÞvðxÞ þ fðxÞ� �

�uðxÞ � �vðxÞð Þ� �
ds ¼

¼ Re
ð1
0

suðxÞ þ 1� sð ÞvðxÞ þ fðxÞj j2s � q2s
� 	

suðxÞ þ 1� sð ÞvðxÞ þ fðxÞ� �
�uðxÞ � �vðxÞð Þds

 !
:

Hence, we have that for all x 2 U,

V uþ fj jð Þ � V vþ fj jð Þ

¼ Re
ð1
0

suþ 1� sð Þvþ fj j2s � q2s
� 	

suþ 1� sð Þvþ fð Þ �u � �vð Þds
 !

:

Using the identity (2.13), we expand the power-like terms in the right-hand side, get-
ting

V uþ fj jð Þ � V vþ fj jð Þ ¼ Re

�ð1
0

suþ 1� sð Þvþ fj j2 � q2
� 	

suþ 1� sð Þvþ fð Þ �u � �vð Þ�

� ð suþ 1� sð Þvþ fj j2 s�1ð Þ þ q2 suþ 1� sð Þvþ fj j2 s�2ð Þ þ :::þ

þ q2 s�2ð Þ suþ 1� sð Þvþ fj j2 þ q2 s�1ð ÞÞds
�
:

Setting w ¼ suþ ð1� sÞv, and further expanding the term wþ fj j2, we derive the
inequalities
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wþ fj j2 � q2
� �

wþ fð Þ

 

 ¼ jwj2 þ 2Re �fw
� �

þ jfj2 � q2
� �

wþ fð Þ

 

 �
� C kfkL1ðUÞ

� 	
jwj2 þ jwj þ jfj � qj j
� �

jwj þ jfjð Þ �

� C kfkL1ðUÞ
� 	

jwj3 þ jwj2 þ jwj þ jfj � qj j
� �

� C kfkL1ðUÞ
� 	

jwj3 þ jfj � qj j
� �

,

and

wþ fj j2 s�1ð Þ þ q2 wþ fj j2 s�2ð Þ þ :::þ q2 s�2ð Þ wþ fj j2 þ q2 s�1ð Þ



 


 � C wþ fj j2 s�1ð Þ þ 1




 


 �
� C jwj2 s�1ð Þ þ jfj2 s�1ð Þ þ 1




 


 � C kfkL1ðUÞ
� 	

jwj2 s�1ð Þ þ 1
� 	

:

Then, we have that

wþ fj j2 � q2
� �

wþ fð Þ

 

 wþ fj j2 s�1ð Þ þ q2 wþ fj j2 s�2ð Þ þ :::þ q2 s�2ð Þ wþ fj j2 þ q2 s�1ð Þ



 


 �

� C kfkL1ðUÞ
� 	

jwj2sþ1 þ jfj � qj j
� �

�

� C kfkL1ðUÞ
� 	

s2sþ1juj2sþ1 þ 1� sð Þ2sþ1jvj2sþ1 þ jfj � qj j
� 	

:

The latter, implies the estimate for V

V uþ fj jð Þ � V vþ fj jð Þj j � C kfkL1ðUÞ
� 	

juj2sþ1 þ jvj2sþ1 þ jfj � qj j
� �

u� vj j:

In turn, the functional G satisfies

GðuÞ � GðvÞj j � C kfkL1ðUÞ
� 	ð

U
juj2sþ1 þ jvj2sþ1 þ jfj � qj j
� �

u� vj jdx:

To conclude with the claimed estimates, we work similarly as in Propositions 2.1 and
2.2. For n ¼ 1, 2, we employ H€older’s inequality for p1 ¼ p2 ¼ 2 and the scaling invari-
ant embedding H1

0ðUÞ ,! L4sþ2ðUÞ to get (2.18). For n ¼ 3 and s ¼ 1, we get (2.19),
again from H€older’s inequality applied once for p1 ¼ 4

3 and p2 ¼ 4, then for p1 ¼ p2 ¼
2, and by using the scaling invariant embedding H1

0ðUÞ ,! L4ðUÞ: The estimate (2.20)
follows from (2.19), along with (2.1).
For the proof of (2.21), it suffices to show that

Gð0Þ � C kfkL1ðUÞ, kjfj � qkL2ðUÞ
� 	

:

To this end, we first observe that

Gð0Þ �
ð
U
V jfjð Þdx ¼

ð
U

1
2 sþ 1ð Þ jfj

2 sþ1ð Þ � 1
2
q2sjfj2 þ s

2 sþ 1ð Þ q
2 sþ1ð Þdx,

and next, we employ the identity

anþ1 � a nþ 1ð Þbn þ nbnþ1 ¼ a� bð Þ2 an�1 þ 2an�2bþ :::þ n� 1ð Þabn�2 þ nbn�1
� �

,

to obtain the desired estimate. w
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From Proposition 2.3, it follows that indeed, the functionals E,G : H1
0ðUÞ ! 0,1Þ½

are well defined.

Remark 2.1. An alternative proof for Proposition 2.3 can be given by verifying that g is
the Gateaux derivative of G.

2.3. Properties of non-linear operators on domain restrictions

Here, we make a note concerning the definition of operators and functionals discussed
previously, on restrictions of functions considered on subsets of the original domain.
For the definition, notation, and properties of these restrictions we refer to Appendix A
and its Subsections A.1, A.3, and A.4.
The scaling invariant Sobolev embeddings are essential for the definition of the oper-

ator g, as well as the functionals E, G on H1
0ðUÞ, for every U. Hence, in virtue of

Corollary A.1, by defining these operators and functionals for every u 2 H1
0ðUÞ for

some arbitrary U, we can also consider them defined for every ððRðU,VÞÞuÞ 2 H1ðVÞ
for every open V � U (note that we have ððRðU,VÞÞuÞ 2 H1ðVÞ for every open V � U
from Proposition A.1). This means that we do not need to impose any regularity
assumptions on @V in order to consider the scaling dependent Sobolev embeddings of
Corollary A.2. However, this is not true for the bounds derived by using (2.1), for
which we need to employ the results on restriction operators stated in Theorem A.1.
Thus, we get, for every U and every u, v 2 H1

0ðUÞ, that

g � R U,Vð Þð Þ : H1
0ðUÞ ! L2ðVÞ, if n ¼ 1, 2

L
4
3ðVÞ þ L2ðVÞ, if n ¼ 3,

for every open V � U,

�
(2.22)

and

E � R U,Vð Þð Þ,G � R U,Vð Þð Þ : H1
0ðUÞ ! 0,1½ Þ, for every open V � U, (2.23)

are well defined, and satisfy

k g � R U ,Vð Þð Þ� �ðuÞ � g � R U ,Vð Þð Þ� �ðuÞðvÞkL2ðVÞ �
� C kukH1ðUÞ, kvkH1ðUÞ, kfkL1ðUÞ

� 	
�

� k R U ,Vð Þð Þu� R U ,Vð Þð ÞvkL2ðVÞ, if n ¼ 1,

(2.24)

k g � R U ,Vð Þð Þ� �ðuÞ � g � R U ,Vð Þð Þ� �ðuÞðvÞkL2ðVÞ �
� C kukH1ðUÞ, kvkH1ðUÞ, kfkL1ðUÞ

� 	
�

� k R U ,Vð Þð Þu� R U ,Vð Þð ÞvkL4ðVÞ þ k R U ,Vð Þð Þu� R U ,Vð Þð ÞvkL2ðVÞ
� 	

, if n ¼ 2,

(2.25)
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k g � R U ,Vð Þð Þ� �ðuÞ � g � R U ,Vð Þð Þ� �ðuÞðvÞk
L
4
3ðVÞþL2ðVÞ �

� C kukH1ðUÞ, kvkH1ðUÞ, kfkL1ðUÞ
� 	

�

� k R U ,Vð Þð Þu� R U ,Vð Þð ÞvkL4ðVÞ þ k R U ,Vð Þð Þu� R U ,Vð Þð ÞvkL2ðVÞ
� 	

, if n ¼ 3,

(2.26)

as well as

G � R U,Vð Þð Þð ÞðuÞ � G � R U,Vð Þð Þð ÞðvÞj j �
� C kukH1ðUÞ, kvkH1ðUÞ, kfkL1ðUÞ, kjfj � qkL2ðUÞ

� 	
�

� k R U ,Vð Þð Þu� R U ,Vð Þð ÞvkL2ðVÞ, if n ¼ 1, 2,

(2.27)

and

G � R U,Vð Þð Þð ÞðuÞ � G � R U,Vð Þð Þð ÞðvÞj j �
� C kukH1ðUÞ, kvkH1ðUÞ, kfkL1ðUÞ, kjfj � qkL2ðUÞ

� 	
�

� k R U ,Vð Þð Þu� R U ,Vð Þð ÞvkL4ðVÞ þ k R U ,Vð Þð Þu� R U ,Vð Þð ÞvkL2ðVÞ
� 	

, if n ¼ 3,

(2.28)

for every open V � U:

3. Weak solutions

In this section, we prove the existence of weak solutions for the problem (1.5), by suit-
ably implementing the Faedo-Galerkin method. Before we proceed, we state and prove
some preliminary lemmata.

Lemma 3.1. For every f 2 H�1ðUÞ there exists fj
 �n

j¼0
� L2ðUÞ such that

hf , vi ¼
ð
U
vf0 þ

Xn
j¼1

@jvð Þfjdx, 8v 2 H1
0ðUÞ,

and, in particular, we have

v, fð Þ ¼ hf , vi, 8v 2 H1
0ðUÞ, 8f 2 L2ðUÞ:

Proof. The first result follows from a direct application of the complex version of
Riesz–Fr�echet representation theorem (see, e.g., Proposition 11.27 in [3]). The second is
a direct consequence of the first one. w

Lemma 3.2. Let J be bounded, X 1 be a Banach space and X 2 be a Banach space with the
Radon–Nikodym property with respect to the Lebesgue measure in ðJ,BðJÞÞ:

1. Let ukf gk � L1ðJ;X 1Þ and u : J ! X 1 with ukðtÞ * uðtÞ in X 1, for a.e. t 2 J. If
kukkL1ðJ;X1Þ � C uniformly for every k, then u 2 L1ðJ;X 1Þ with kukL1ðJ;X1Þ � C,
where C is the same in both inequalities.
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2. Let ukf gk [ fug � L1ðJ;X�
2Þ with uk �* u in L1ðJ;X�

2Þ2. If kukkL1ðJ;X�
2Þ � C uni-

formly for every k, then kukL1ðJ;X�
2Þ � C, where C is the same in both inequalities.

Proof. For Point 1., we derive that kuðtÞkX 1
� C, for a.e. t 2 J, from the (sequentially)

weak lower semi-continuity of the norm, hence the result follows. As for Point 2, let
v 2 X 2 be such that kvkX2

� 1 and set v : J ! X 2 the constant function with vðtÞ :¼ v,
for all t 2 J: We haveðsþh

s
huk, vidt � Ch, for a:e: s 2 J� and every sufficiently small h > 0:

Considering the limit uk * �u in L1ðJ;X�
2Þ, dividing both parts by h and then letting

h & 0, we get, from the Lebesgue differentiation theorem, that huðsÞ, vi � C, for a.e.
s 2 J�: Since v arbitrary, the proof is complete. w

Lemma 3.3. Let z0 2 C
n and z : J0 ! C

n be the unique, maximal solution of the initial-
value problem

z0ðtÞ ¼ iF zðtÞð Þ, 8t 2 J�0
zð0Þ ¼ z0

,

�

for an appropriate function F (e.g., locally Lipschitz). If z0 2 R
n and �FðzÞ ¼ Fð�zÞ, then J0

is symmetric around 0 and also zðtÞ ¼ �zð�tÞ, for all t 2 J0:

Proof. We define �J0 :¼ t 2 R j � t 2 J0f g and also y : �J0 ! C
n with yðtÞ :¼ �zð�tÞ,

for all t 2 � J0: Since z0 2 R
n and �FðzÞ ¼ Fð�zÞ, we can easily see that y solves the

above problem (in �J0). Hence �J0 � J0, since z is the maximal solution. Therefore, J0
is symmetric around 0. We can now define the function x : J0 ! C

n as xðtÞ :¼ �zð�tÞ,
for all t 2 J0 and we deduce that x also solves the problem (in J0). Hence, �zð�tÞ ¼
xðtÞ ¼ zðtÞ, for all t 2 J0, since z is unique. w

Lemma 3.4. Let m 2 N, p 2 1,1½ 	, U1, U2, / 2 C1
c ðU1Þ and u 2 Wm, p

0 ðU2Þ. If we set
u :¼ R U1,U1 \ U2ð Þð Þ/ and v :¼ R U2,U1 \ U2ð Þð Þu,

then

uvð Þ 2 Wm, p
0 U1 \ U2ð Þ, with kuvkWm, p U1\U2ð Þ � C k/kCm

B U1ð Þ
� 	

kukWm, p U2ð Þ:

Proof. We assume that U1 \ U2 6¼ ;, otherwise we have nothing to show (see also Point
3. before Definition A.3). In view of Proposition A.7, we derive that

uvð Þ 2 Wm, p U1 \ U2ð Þ, with kuvkWm, p U1\U2ð Þ � C kukCm
B U1\U2ð Þ

� 	
kvkWm, p U1\U2ð Þ,

hence

2That is, uk * �u in rðL1ðJ;X�
2Þ, L1ðJ;X 2ÞÞ: Note that L1ðJ;X�

2Þ ffi ðL1ðJ;X 2ÞÞ� (see, e.g., Theorem 1, Section 1,
Chapter IV in [8]).
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kuvkWm, p U1\U2ð Þ � C k/kCm
B U1ð Þ

� 	
kukWm, p U2ð Þ:

Now, we consider ukf gk � C1
c ðU2Þ, such that uk ! u in Wm, pðU2Þ and in an analogous

manner we set

vk :¼ R U2,U1 \ U2ð Þð Þuk, 8k:
Evidently,

uvkð Þ 2 Cm U1 \ U2ð Þ:
In particular, we can easily deduce that

uvkð Þ 2 Cm
c U1 \ U2ð Þ:

Applying (A.3), we derive that

kuvk � uvkWm, p U1\U2ð Þ ¼ ku vk � vð ÞkWm, p U1\U2ð Þ � Ckvk � vkWm, p U1\U2ð Þ �
� Ckuk � ukWm, p U2ð Þ ! 0

and the desired result follows from the definition of Wm, p
0 -spaces. w

Theorem 3.1. If U is bounded, then for every u0 2 H1
0ðUÞ and every bounded interval J0

there exists a solution of (2.14), such that

kukL1 J0;H1ðUÞð Þ þ ku0kL1 J0;H�1ðUÞð Þ � C ku0kH1ðUÞ, kfkX1ðUÞ, kjfj � qkL2ðUÞ, J0j j
� 	

(3.1)

and also

EðuÞ � E u0ð Þ everywhere in J0 : (3.2)

Moreover, if u0 and f are real-valued, then the above solution satisfies uðtÞ ¼ �uð�tÞ, for
every t 2 J0 with jtj � distð0, @J0Þ:

Proof. Here, we use the notation

~C :¼ C ku0kH1ðUÞ, kfkX1ðUÞ, kjfj � qkL2ðUÞ
� 	

and

~CJ0 :¼ C ku0kH1ðUÞ, kfkX1ðUÞ, kjfj � qkL2ðUÞ, J0j j
� 	

:

Now, based on

1. the fact that U 2 UPf g (see Subsection A.8.3) and also H1
0ðU;RÞ ,! ,! L2ðU;RÞ

(see Proposition A.6),
2. the Fredholm theory and
3. the fact that the field C can be regarded as a vector space over the field R,

we deduce that the complete set of eigenfunctions for the operator �Dw restricted to
H1

0ðU;RÞ, is an orthogonal basis of both H1
0ðU;CÞ and L2ðU;CÞ: Let wkf g1k¼1 �

H1
0ðU;RÞ be the aforementioned basis, appropriately normalized so that wkf g1k¼1 is an

orthonormal basis of L2ðU;CÞ: We then employ the standard Faedo-Galerkin method.
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Step 1a
For every m 2 N, we define dm 2 C1ðJ0m ;CmÞ, with dmðtÞ :¼ ðdkmðtÞÞmk¼1, to be the

unique maximal solution of the initial-value problem

dm0ðtÞ ¼ Fm dmðtÞð Þ, 8t 2 J�0m
dmð0Þ ¼ wk , u0ð Þð Þmk¼1 ð ¼ hu0,wkið Þmk¼1, in view of Lemma 3:1Þ,

�

where Fm 2 C1ðR2m;CmÞ with

FkmðzÞ :¼ iN
Xm
l¼1

zlwl,wk

" #
, for every z :¼ zlð Þml¼1 2 C

m, for every k ¼ 1, :::,m:

We note that the smoothness of Fm follows by directly applying (N times, for arbitrary
N 2 N) the common Leibniz integral rule. Now, we define um 2 C1ðJ0m ;H1

0ðU;CÞÞ,
with

umðtÞ :¼
Xm
k¼1

dkmðtÞwk:

In view of Lemma 3.1, it is easy to verify that

hium0,wki þ N um,wk½ 	 ¼ 0 everywhere in J0m , for every k ¼ 1, :::,m: (3.3)

Step 1b
By using the Bessel–Parseval identity, we get that

umð0Þ ! u0 in L2ðUÞ and kumð0ÞkL2ðUÞ � ku0kL2ðUÞ: (3.4)

Furthermore, we can argue as in [12, Step 3. Theorem 2, Section 6.5], to deduce

rwumð0Þ ! rwu0 in L2ðUÞ and krw umð0Þð ÞkL2ðUÞ � krwu0kL2ðUÞ: (3.5)

Now, these limiting relations have two immediate consequences: First, the bounds in
(3.4) and (3.5) imply that kumð0ÞkH1ðUÞ � ku0kH1ðUÞ, hence, in view of (2.21), we derive

E umð0Þð Þ � ~C: (3.6)

Second, the convergences in (3.4) and (3.5) imply that umð0Þ ! u0 in H1ðUÞ:
Moreover, from (2.18), (2.20), and the convergence in (3.4), we get Gðumð0ÞÞ ! Gðu0Þ:
Combining the last two convergences, we conclude to

E umð0Þð Þ ! E u0ð Þ: (3.7)

Step 2a
We multiply the variational equation in (3.3) by dkm0ðtÞ, sum over k ¼ 1, :::,m, and

taking the real parts of both sides, to get

d
dt

E umð Þ ¼ 0, that is E umð Þ ¼ E umð0Þð Þ everywhere in J0m : (3.8)

Hence, from (3.6) we have that

E umð Þ � ~C everywhere in J0m , uniformly for every m 2 N: (3.9)
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Therefore, from the fact that G is positive-valued, we deduce that krwðum þ fÞkL2ðUÞ �
~C, which implies

krwumkL2ðUÞ � ~C: (3.10)

In order to derive a bound for the L2-norm which is independent of jUj, we follow a
different route, instead of applying the Poincar�e inequality. We note that

G umð Þ � ~C, 8m 2 N, (3.11)

which follows from (3.9). Moreover, in view of (2.17), we fix some C1 > 2sþ 2 and we
have that

x2 sþ1ð Þ � C1VðxÞ, for every x � C2, for some C2 > q
1
2: (3.12)

Setting

XðtÞ :¼ x 2 U j umðtÞ þ fj j � max C2, 1f g � � U, 8t 2 R,

we get, from (3.12) and (3.11) (and the fact that k > 0), thatð
XðtÞ

um þ fj jsdx � ~C, 8m 2 N, 8s 2 �1, 2 sþ 1ð Þð 	: (3.13)

Then, we multiply the variational Eq. (3.3) by dkmðtÞ, sum over k ¼ 1, :::,m, and keep-
ing imaginary parts on both sides, and thus, in view of Lemma 3.1, we get

1
2
d
dt

kumk2L2ðUÞ � Im rwf,rumð Þ � Im um þ fj j2s � q2s
� �

um þ fð Þ,um
� �

¼ 0:

For the middle term, we apply H€older’s inequality (p1 ¼ p2 ¼ 2) and use the bound
(3.10), while for the third term we expand in view of (2.13), to deduce that

kumk2L2ðUÞ � ~C jtj þ
ðt
0

ð
U
umj j2sþ1dx

� �
ds












 !
, 8t 2 R, 8m 2 N: (3.14)

In order to estimate the spatial integral, we writeð
U
jumj2sþ1dx ¼

ð
XðtÞc\U

jumj2jumj2s�1dxþ
ð
XðtÞ

jumj2sþ1dx

�
ð
fx2Ujjumj�maxfC2, 1gþkfkL1ðUÞg

jumj2jumj2s�1dx

þ C
ð
XðtÞ

jfj2sþ1 þ jum þ fj2sþ1dx

�
ð3:13Þ

CðkfkL1ðUÞÞkumk2L2ðUÞ þ ~C � ~Cð1þ kumk2L2ðUÞÞ:

(3.15)

Let J0 be arbitrary. From (3.14) and (3.15), we derive that

kumk2L2ðUÞ � ~CJ0 1þ
ðt
0
kumk2L2ðUÞds












 !
, 8t 2 J0 , 8m 2 N:
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Hence, by the Gr€onwall’s inequality,

kumkL1 J0;L2ðUÞð Þ � ~CJ0 , for every m 2 N: (3.16)

From (3.10) and (3.16) we conclude to

kumkL1 J0;H1ðUÞð Þ � ~CJ0 , 8m 2 N: (3.17)

Step 2b
We fix an arbitrary v 2 H1

0ðUÞ with kvkH1ðUÞ � 1 and write v ¼ Pv�ðI � PÞv,
where P is the projection on span wkf gmk¼1: Since u0m 2 span wkf gmk¼1 and N h, g½ 	 is lin-
ear on g, from the variational equation in (3.3) we get that

hium0, vi ¼ �N um,Pv½ 	:
Applying (2.15) and (3.17) we derive

hium0, vij j � ~CJ0 :

Therefore

ku0mkL1 R;H�1ðUÞð Þ ¼ kiu0mkL1 R;H�1ðUÞð Þ � ~CJ0 , 8m 2 N: (3.18)

Step 3a
We fix an arbitrary bounded J0. From (3.17), (3.18), point i) of Theorem 1.3.14 in [5]3

and point 1 of Lemma 3.2, there exist a subsequence umlf g1l¼1
� umf g1m¼1 and a function

u ¼ uJ0 2 L1 J0;H
1
0ðUÞ� � \W1,1 J0;H

�1ðUÞ� �
,

such that

uml * u in H1
0ðUÞ everywhere in J0 and also kukL1 J0;H1ðUÞð Þ � ~C: (3.19)

Step 3b
H�1ðUÞ is separable since H1

0ðUÞ is separable, hence by the Dunford–Pettis theorem
(see, e.g., Theorem 1, Section 3, Chapter III in [8]) we have L1ðJ0;H�1ðUÞÞ ffi
ðL1ðJ0;H1

0ðUÞÞÞ� (see, e.g., Theorem 1, Section 1, Chapter IV in [8]). In virtue of the
above, from (3.18), the Banach–Alaoglu–Bourbaki theorem (see, e.g., Theorem 3.16 in
[3]) and Point 2 of Lemma 3.2, there exist a subsequence of umlf g1l¼1

(not relabelled)
and a function

h 2 L1 J0;H
�1ðUÞ� �

,

such that

uml
0�*h in L1 J0;H

�1ðUÞ� �
with khkL1 J0;H�1ðUÞð Þ � ~C: (3.20)

Let w 2 C1
c ðJ�0 Þ and v 2 H1

0ðUÞ be arbitrary. From

1. the linearity of the functional,
2. the convergence in (3.20),

3We note that in [5], the normed space ðH1
0R ðUÞ, k 
 kH1ðUÞÞ is considered instead of H1

0ðUÞ: However, it becomes clear
from its proof that the aforementioned result is also valid in our case.
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3. Lemma 1.1, Chapter III in [32],
4. the definition of the weak derivative,
5. Lemma 3.1,
6. the dominated convergence theorem and
7. the convergence in (3.19),

we obtainð
J0

hh, viwdt¼1:
ð
J0

hh,wvidt¼2: lim
l!1

ð
J0

huml
0,wvidt¼1: lim

l!1

ð
J0

huml
0, viwdt

¼3: lim
l!1

ð
J0

huml , vi0wdt¼4: � lim
l!1

ð
J0

huml , viw0dt¼5: � lim
l!1

ð
J0

uml , vð Þw0dt

¼6: �
ð
J0

lim
l!1

uml , vð Þw0dt¼7: �
ð
J0

u, vð Þw0dt¼5: �
ð
J0

hu, viw0dt

¼4:
ð
J0

hu, vi0wdt¼3:
ð
J0

hu0, viwdt,

hence h  u0, since w and v are arbitrary.
Step 4
Since H1

0ðUÞ ,! ,! L2ðUÞ ,!H�1ðUÞ, from (3.17), (3.17) and the
Aubin–Lions–Simon Lemma [23, Theorem 8.62], there exist a subsequence of umlf g1l¼1
(still not relabelled) and y 2 CðJ0 ; L2ðUÞÞ, such that

uml ! y in C J0 ; L
2ðUÞ� �

: (3.21)

From the convergence in (3.19), we deduce that y  u: This fact has two direct conse-
quences: First, u satisfies the initial condition, i.e.,

uð0Þ  u0,

(as it follows from (3.21) for t ¼ 0 combined with umð0Þ ! u0 in L2ðUÞ from Step 1b).
Second, from (2.5), (2.7), (2.9), (2.18), (2.20), as well as (3.17), the bound in (3.19) and
(3.21), we get

g umlð Þ ! gðuÞ in C J0 ;YaðUÞ� �
, (3.22)

and also

G umlð Þ ! GðuÞ uniformly in J0 : (3.23)

Step 5
We will show that u satisfies the variational equation in (2.14). Let now w 2 C1

c ðJ�0 Þ
and fix N 2 N: We choose ml such that N � ml and v 2 span wkf gNk¼1: By the linearity
of the inner product and (3.3), we get thatð

J0

hiuml
0,wvi � hDw uml þ fð Þ,wvi þ hg umlð Þ,wvidt ¼ 0:
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From the convergence in (3.20) we getð
J0

hiuml
0,wvidt !

ð
J0

hiu0,wvidt,

while from the convergence in (3.19) we have

hDwv,umli ! hDwv,ui, everywhere in J0 ,

since the functional hDwv, 
i : H1
0ðUÞ ! C is linear and bounded, thus

hDwv,umli ! hDwv,ui everywhere in J0 :

Thus, we deduce that

hDwuml , vi ¼ hDwv,umli ! hDwv,ui ¼ hDwu, vi everywhere in J0 ,

and so

hDw uml þ fð Þ,wvi ! hDw uþ fð Þ,wvi everywhere in J0 :

Applying next the dominated convergence theorem, we getð
J0

hDw uml þ fð Þ,wvidt !
ð
J0

hDw uþ fð Þ,wvidt:

From H€older’s inequality (p1 ¼ p2 ¼ 2) and (3.22), we also deduceð
J0

hg umlð Þ,wvidt !
ð
J0

hgðuÞ,wvidt:

Since w is arbitrary, u satisfies the variational equation for every v 2 span wkf gNk¼1: We
then get the desired result from a density argument, since N is arbitrary.
Step 6
We proceed to the proof of (3.2). Let � > 0 be arbitrary. From (3.7) and the equation

in (3.8), we deduce that there exists m0 ¼ m0ð�Þ, such that

E umð Þ � E u0ð Þ þ �, everywhere in R, for every m � m0: (3.24)

Moreover, from the convergence in (3.19) along with the fact the operator rw :
W1, pðUÞ ! LpðUÞ is linear and continuous for every p 2 1,1½ 	 and every U, as well as
the equivalence of continuity and weak continuity of linear functionals [3, Theorem
3.10], we deduce that rwuml * rwu in L2ðUÞ, everywhere in J0 : Hence, from the weak
lower semi-continuity of the L2-norm, we get

krw uJ þ fð ÞkL2ðUÞ � liminf
l!1

krw uml þ fð ÞkL2ðUÞ, everywhere in J0 : (3.25)

Combining (3.23) and (3.25) we deduce that

EðuÞ � liminf
l!1

E umlð Þ everywhere in J0 : (3.26)

From (3.26) and (3.24), we have

EðuÞ � E u0ð Þ þ � everywhere in J0

which proves the claimed (3.2), since � is arbitrary.
Step 7
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Finally,

1. if f is real-valued, then FmðzÞ ¼ Fmð�zÞ, for every z 2 C
m and

2. if u0 is real-valued, then dmð0Þ 2 R
m:

Hence, under these two assumptions, we apply Lemma 3.3 to get that dmðtÞ ¼
dmð�tÞ and so umðtÞ ¼ umð�tÞ, for every t 2 R and every m 2 N, which is equivalent
to umðtÞ ¼ umð�tÞ, for every t 2 R and every m 2 N: Now, the (conjugate) symmetry
uðtÞ ¼ �uð�tÞ, for every t 2 J0 with jtj � distð0, @J0Þ, follows from the aforementioned
symmetry, along with the convergence in (3.19) or (3.21).

Theorem 3.2. Theorem 3.1 is also valid for every unbounded U.

Proof. In Step 1 we construct an approximation sequence for the initial data, and in
Step 2 we consider an approximation sequence of problems considered in an expanding
sequence of bounded sets that eventually cover the whole unbounded set. In Step 3, we
take the limit of the aforementioned approximation sequence of solutions, and then, in
Step 4, we verify that this limit is indeed a solution of the variational equation; the key
for the proof of this step is the application of Proposition A.3. In the last Step 5, we
verify the initial condition, the energy estimate, and the symmetry of the solution. As in
the proof of Theorem 3.1, we write

~CJ0 :¼ C ku0kH1ðUÞ, kfkX1ðUÞ, kjfj � qkL2ðUÞ, J0j j
� 	

:

Step 1a
We fix an arbitrary x0 2 U and we set

Bk :¼ B x0, kð Þ, 8k 2 N:

In view of Proposition A.8, we consider a sequence /kf gk � C1
c ðRn; 0, 1½ 	Þ, such that

1. suppð/kÞ � Bkþ1 , for every k,
2. /k  1 in Bk , for every k, and
3. kr/kkL1ðRnÞ � C, uniformly for every k.

We then set

uk :¼ R R
n,Bkþ2ð Þð Þ/k, 8k:

Evidently, uk 2 C1
c ðBkþ2; 0, 1½ 	Þ for every k, with

1. suppðukÞ � Bkþ1 , for every k,
2. uk  1 in Bk , for every k, and
3. krukkL1ðBkþ2Þ � C, uniformly for every k.
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Moreover, we set

Uk :¼ Bk \ U, vk :¼ R Bkþ2,Ukþ2ð Þð Þuk, v0k :¼ R U ,Ukþ2ð Þð Þu0 and
u0k :¼ vkv0k , for every k:

In view of Lemma 3.4, we have that

u0k 2 H1
0 Ukþ2ð Þ, with ku0kkH1 Ukþ2ð Þ � Cku0kH1ðUÞ, uniformly for every k: (3.27)

Step 1b
We set

u00k :¼ E0 Ukþ2,Uð Þð Þu0k , 8k:
In virtue of Proposition A.2 along with (3.27), we deduce that

u00k 2 H1
0ðUÞ, with ku00kkH1ðUÞ ¼ ku0kkH1 Ukþ2ð Þ � Cku0kH1ðUÞ,

uniformly for every k:
(3.28)

Now, we claim that

u00k ! u0 in H1ðUÞ: (3.29)

Indeed, from

1. ðRðU,UkÞÞu00k  ðRðU,UkÞÞu0, for every k,
2. ðRðU,Uc

k \ Ukþ1ÞÞu00k  ððRðBkþ2,Uc
k \ Ukþ1ÞÞukÞððRðU ,Uc

k \ Ukþ1ÞÞu0Þ, for
every k,

3. ðRðU,Uc
kþ1 \ UÞÞu00k  0, for every k and

4. (A.3),

we have that

ku00k �u0kH1ðUÞ ¼1: k R U ,Uc
k \U

� �� �
u00k �u0ð ÞkH1 Uc

k\Uð Þ
¼
3:

2: k R Bkþ2,U
c
k \Ukþ1

� �� �
uk

� �� 1
� � R U ,Uc

k \Ukþ1
� �� �

u0
� �kH1 Uc

k\Ukþ1ð Þ
þk R U ,Uc

kþ1 \U
� �� �

u0kH1 Uc
kþ1\Uð Þ

�4: Ck R U ,Uc
k \Ukþ1

� �� �
u0kH1 Uc

k\Ukþ1ð Þ þk R U ,Uc
kþ1 \U

� �� �
u0kH1 Uc

kþ1\Uð Þ
� Ck R U ,Uc

kþ1 \U
� �� �

u0kH1 Uc
kþ1\Uð Þ ! 0,as k!1:

Step 1c
We will show that

E u00kð Þ ! E u0ð Þ: (3.30)

Indeed, from (2.18) and (2.20), along with (3.29), we deduce the limit Gðu00kÞ ! Gðu0Þ:
Additionally, directly from (3.29), we get that krwðu00k þ fÞkL2ðUÞ !
krwðu0 þ fÞkL2ðUÞ, and thus, (3.30) follows.
Step 2a
Let J0 be arbitrary and bounded. For every k, we consider (2.14) in Ukþ2 instead of

U, and u0k as the initial condition instead of u0. Let
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uk 2 L1 J0;H
1
0 Ukþ2ð Þ

� � \W1,1 J0;H
�1 Ukþ2ð Þ

� �
be the corresponding solution that Theorem 3.1 provides. For every k we have that

kukkL1 J0;H1 Ukþ2ð Þð Þ þ ku0kkL1 J0;H�1 Ukþ2ð Þð Þ �
� C ku0kkH1 Ukþ2ð Þ, kfkkX1 Ukþ2ð Þ, k jfj � qð ÞkkL2 Ukþ2ð Þ, J0j j

� 	
,

(3.31)

where

fk :¼ R U,Ukþ2ð Þð Þf and jfj � qð Þk :¼ R U,Ukþ2ð Þð Þ jfj � qð Þ,
and

E ukð Þ � E u0kð Þ � E u00kð Þ everywhere in J0 : (3.32)

We also have that ukðtÞ ¼ ukð�tÞ, for every t 2 J0 with jtj � distð0, @J0Þ, if u0 (hence
u0k) and f (fk) are real-valued. From the bound in (3.27), along with the increasing
property of C and the fact that the bound in (3.31) is independent of U, the estimate
(3.31) can be written in the form

kukkL1 J0;H1 Ukþ2ð Þð Þ þ ku0kkL1 J0;H�1 Ukþ2ð Þð Þ � ~CJ0 , uniformly for every k: (3.33)

Step 2b
In view of Lemma 3.4 and (3.33), we have that

vkukð Þ 2 H1
0 Ukþ2ð Þ, with kvkukkH1 Ukþ2ð Þ � CkukkH1 Ukþ2ð Þ � ~CJ0 , uniformly for every k,

where vk is as in Step 1a: Hence, in view of Proposition A.2, we define

vk 2 L1 J0;H
1
0ðUÞ� �

as vk :¼ E0 Ukþ2,Uð Þð Þ vkukð Þ, for every k,

with kvkkL1 J0;H1ðUÞð Þ � ~CJ0 , uniformly for every k:
(3.34)

Moreover, in view of Lemma 3.4 we have that

vk R U,Ukþ2ð Þð Þvð Þð Þ 2 H1
0 Ukþ2ð Þ, with

kvk R U ,Ukþ2ð Þð Þvð ÞkH1 Ukþ2ð Þ � CkvkH1ðUÞ, for every v 2 H1
0ðUÞ,

uniformly for every k:

Hence, employing (3.33), for every k we define

fk 2 L1 J0;H
�1ðUÞ

� �
by hfk, vi :¼ huk0, vk R U,Ukþ2ð Þð Þvð Þi,

for every v 2 H1
0ðUÞ, for every k, with kfkkL1 H�1ðUÞð Þ � ~CJ0 ,

uniformly for every k:

(3.35)

We now claim that

vk 2 L1 J0;H
1
0ðUÞ� � \ L1 J0;H

�1ðUÞ
� �

, with v0k  fk, for every k: (3.36)

Indeed, let v 2 H1
0ðUÞ be arbitrary. Employing

1. Lemma 1.1, Chapter III in [32],
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2. Lemma 3.1, and
3. the fact that vk is real-valued for every k,

we derive

hfk, vi ¼ huk0, vk R U,Ukþ2ð Þð Þvð Þi¼1: huk, vk R U ,Ukþ2ð Þð Þvð Þi0

¼2: uk , vk R U ,Ukþ2ð Þð Þvð Þð Þ0 ¼3:
ð
Ukþ2

uk vk R U ,Ukþ2ð Þð Þ�vð Þdx
 !0

¼
ð
U

E0 Ukþ2,Uð Þð Þ vkukð Þ� �
�vdx

� �0
¼ E0 Ukþ2,Uð Þð Þ vkukð Þ, v� �0

¼2: h E0 Ukþ2,Uð Þð Þ vkukð Þ, vi0 ¼ hvk , vi0:
Therefore, from the arbitrariness of v, along with [32, Lemma 1.1, Chapter III], we
get (3.36).
Step 2c
For every open and bounded V � U, there exists kV 2 N, such that V � Ukþ2 for

every k � kV : Now, for every fixed such V, we define4

vV , k :¼ R Ukþ2,Vð Þð Þukð Þ 2 L1 J0;H1ðVÞ� �
, for every k � kV ,

with kvV , kkL1 J0;H1ðVÞð Þ � ~CJ0 , uniformly for every such k:
(3.37)

The bound above follows directly from the bound in (3.33). Moreover, in view of
Definition A.2 and the bound in (3.33), we claim that

vV , k 2 L1 J0;H1ðVÞ� � \ L1 J0;H�1ðVÞ� �
, with v0V , k  R Ukþ2,Vð Þð Þ u0k

� �
,

for every k � kV , thus kv0V , kkL1 J0;H�1ðVÞð Þ, uniformly for every such k:
(3.38)

Indeed, let v 2 H1
0ðVÞ be arbitrary. From

1. Definition A.2,
2. Lemma 1.1, Chapter III in [32] and
3. Lemma 3.1,

we derive, for every k � kV , that

h R Ukþ2,Vð Þð Þ uk
0ð Þ, vi¼1: huk0, E0 V ,Ukþ2ð Þð Þvi¼2: huk , E0 V ,Ukþ2ð Þð Þvi0

¼3: uk , E0 V ,Ukþ2ð Þð Þvð Þ0 ¼
ð
Ukþ2

uk E0 V ,Ukþ2ð Þð Þ�vð Þdx
 !0

¼
ð
V

R Ukþ2,Vð Þð Þukð Þ �vdx
� �0

¼ R Ukþ2,Vð Þð Þuk , vð Þ0

¼3: h R Ukþ2,Vð Þð Þuk , vi0 ¼ hvV , k , vi0:

4We highlight that we don’t claim that vV , k 2 L1ðJ0;H1
0ðVÞÞ for every k � kV :
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Thus, (3.38) follows from the arbitrariness of v along with [32, Lemma 1.1, Chapter III].
Additionally, we have

DwvV , k  R Ukþ2,Vð Þð Þ � Dwð Þuk, 8k � kV : (3.39)

To prove (3.39), we consider an arbitrary v 2 H1
0ðVÞ, and from

1. Definition A.2,
2. (A.2),
3. (A.1), and
4. the definition in (3.37),

we get, for every k � kV , that

h R Ukþ2,Vð Þð Þ � Dwð Þuk, vi¼1: hDwuk, E0 V ,Ukþ2ð Þð Þvi
¼ �

ð
Ukþ2

rwuk 
 rw � E0 V ,Ukþ2ð Þð Þð Þvð Þdx

¼2: �
ð
Ukþ2

rwuk 
 E0 V ,Ukþ2ð Þð Þ � rwð Þvð Þdx

¼ �
ð
V

R Ukþ2,Vð Þð Þ � rwð Þukð Þ 
 rwvdx

¼3: �
ð
V

rw � R Ukþ2,Vð Þð Þð Þukð Þ 
 rwvdx

¼4: �
ð
V
rwvV , k 
 rwvdx ¼ hDwvV , k, vi:

Then, the claimed (3.39) follows from the arbitrariness of v. Finally, in view of (2.22)
and the definition in (3.37), gðvV , kÞ is well defined for every k � kV : Hence, we directly
get

g vV , kð Þ  R Ukþ2,Vð Þð Þ � gð Þuk, 8k � kV : (3.40)

Step 3a
In virtue of the bounds in (3.34) and (3.35) (along with (3.36)), we argue exactly as

in Step 3 of the proof of Theorem 3.1, in order to derive that there exist uklf g1l¼1
�

ukf g1k¼1 and a function

u ¼ uJ0 2 L1 J0;H
1
0ðUÞ� � \W1,1 J0;H

�1ðUÞ
� �

,

such that

vkl ¼ E0 Uklþ2,Uð Þ� �
vkluklð Þ * u in H1

0ðUÞ everywhere in J0
with kukL1 J0;H1ðUÞð Þ � ~CJ0 ,

(3.41)

as well as

vkl
0 �* u0 in L1 J0;H

�1ðUÞ� �
and also ku0kL1 J0;H�1ðUÞð Þ � ~CJ0 : (3.42)

Step 3b
Let V � U be a fixed, arbitrary, open, and bounded set. In virtue of the bounds in

(3.37) and (3.38), again we work exactly as in Step 3 of the proof of Theorem 3.1, but
with one exception. That is, we employ a slightly modified version of [5, point i),
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Theorem 1.3.14], being valid if one would replace H1ðVÞ by H1
0ðVÞ, as we do herein.

Hence, we may get a subsequence of uklf g1l¼1
, (not relabelled), and we assume that kl �

kV , for every l 2 N, where kV is as in Step 2c: We also get a function

uV ¼ uV , J0 2 L1 J0;H
1ðVÞ� � \W1,1 J0;H

�1ðVÞ� �
,

such that

vV , kl ¼ R Uklþ2,Vð Þð Þukl * uV in H1ðVÞ everywhere in J0 , (3.43)

vV , kl
0 * �u0V in L1 J0;H

�1ðVÞ� �
: (3.44)

Step 3c
We claim that

R U ,Vð Þð Þu  uV and R U,Vð Þð Þu0  u0V ,
for every open and bounded V � U:

(3.45)

For the proof, we note first that for every V as above, there exists lV 2 N, such that
V � Ukl for every l � lV : Now, to justify the first equivalence in (3.45) we consider an
arbitrary / 2 C1

c ðVÞ: Then using

1. the convergence in (3.41),
2. V � Uklþ2 for every l 2 N by the definition of the sequence uklf g1l¼1

,
3. ðRðUklþ2,VÞÞvkl  1 for every l � lV , since ðRðUklþ2,UklÞÞvkl  1 by the defin-

ition of vkl for every l 2 N, as well as V � Ukl for every l � lV , and
4. (3.43),

we may deduce thatð
V

R U,Vð Þð Þuð Þ /dx ¼
ð
U
u E0 V ,Uð Þð Þ/ð Þdx

¼1: lim
l!1

ð
U
vkl E0 V ,Uð Þð Þ/ð Þdx ¼ lim

l!1

ð
V

R U,Vð Þð Þvkl
� �

/dx

¼ lim
l!1

ð
V

R U,Vð Þð Þ � E0 Uklþ2,Uð Þ� �� �
vkluklð Þ

� 	
/dx

¼ lim
l�lV

l!1

ð
V

R U,Vð Þð Þ � E0 Uklþ2,Uð Þ� �� �
vkluklð Þ

� 	
/dx

¼2: lim
l�lV

l!1

ð
V

R Uklþ2,Vð Þð Þ vkluklð Þ� �
/dx

¼3: lim
l�lV

l!1

ð
V

R Uklþ2,Vð Þð Þuklð Þ /dx ¼ lim
l�lV

l!1

ð
V
vV , kl /dx

¼4:
ð
V
uV /dx,

everywhere in J0 , and the result follows from the arbitrariness of /: For the second
equivalence of (3.45), let w 2 C1

c ðJ�0 Þ and v 2 H1
0ðVÞ be arbitrary. From

1. Definition A.2,
2. the linearity of the functional,
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3. the convergence in (3.42),
4. Lemma 1.1, Chapter III in [32],
5. the definition of the weak derivative,
6. Lemma 3.1,
7. V � Uklþ2 for every l 2 N by the definition of the sequence uklf g1l¼1

,
8. ðRðUklþ2,VÞÞvkl  1 for every l � lV , and
9. (3.44),

we have ð
J0

h R U,Vð Þð Þu0, viwdt¼1:
ð
J0

hu0, E0 V ,Uð Þð Þviwdt

¼2:
ð
J0

hu0,w E0 V ,Uð Þð Þvð Þidt

¼3: lim
l!1

ð
J0

hvkl 0,w E0 V ,Uð Þð Þvð Þidt

¼2: lim
l!1

ð
J0

hvkl 0, E0 V ,Uð Þð Þviwdt

¼ lim
l!1

ð
J0

hukl 0, vkl R U,Uklþ2ð Þð Þ � E0 V ,Uð Þð Þ� �
viwdt

¼4: lim
l!1

ð
J0

hukl , vkl R U ,Uklþ2ð Þð Þ � E0 V ,Uð Þð Þ� �
vi0wdt

¼5: � lim
l!1

ð
J0

hukl , vkl R U,Uklþ2ð Þð Þ � E0 V ,Uð Þð Þ� �
viw0dt

¼6: � lim
l!1

ð
J0

ukl , vkl R U,Uklþ2ð Þð Þ � E0 V ,Uð Þð Þ� �
v

� �
w0dt

¼ � lim
l!1

ð
J0

ð
Uklþ2

ukl vkl R U,Uklþ2ð Þð Þ � E0 V ,Uð Þð Þ� �
�v

� �
dx

 !
w0dt

¼7: � lim
l!1

ð
J0

ð
V

R Uklþ2,Vð Þð Þ vkluklð Þ� �
�vdx

� �
w0dt

¼ � liml�lV
l!1
Ð
J0

Ð
V R Uklþ2,Vð Þð Þ vkluklð Þ� �

�vdx
� 	

w0dt

¼8: � lim
l�lV

l!1

ð
J0

ð
V

R Uklþ2,Vð Þð Þuklð Þ�vdx
� �

w0dt

¼ � lim
l�lV

l!1

ð
J0

vV , kl , vð Þw0dt¼6: � lim
l�lV

l!1

ð
J0

hvV , kl , viw0dt

¼ � lim
l�lV

l!1

ð
J0

vV , kl , vð Þw0dt¼6: � lim
l�lV

l!1

ð
J0

hvV , kl , viw0dt

¼ � lim
l�lV

l!1

ð
J0

vV , kl , vð Þw0dt¼6: � lim
l�lV

l!1

ð
J0

hvV , kl , viw0dt

¼5: lim
l�lV

l!1

ð
J0

hvV , kl , vi0wdt¼4: lim
l�lV

l!1

ð
J0

hvV , kl 0, viwdt

¼2: lim
l�lV

l!1

ð
J0

hvV , kl 0,wvidt¼9:
ð
J0

huV 0,wvidt¼2:
ð
J0

huV 0, viwdt:
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Thus, the claimed equivalence follows, since w and v are arbitrary. We also claim that

R U,Vð Þð Þ � Dwð Þu  DwuV , for every open and bounded V � U: (3.46)

Indeed, let v 2 H1
0ðVÞ be arbitrary. From

1. Definition A.2,
2. (A.2),
3. (A.1), and
4. the first equivalence in (3.45),

we get

h R U,Vð Þð Þ � Dwð Þu, vi ¼1: hDwu, E0 V ,Uð Þð Þvi ¼ �ÐUrw�u 
 rw � E0 V ,Uð Þð Þð Þvð Þdx
¼2: �ÐUrw�u 
 E0 V ,Uð Þð Þ � rwð Þvð Þdx
¼ �ÐV R U,Vð Þð Þ � rwð Þ�uð Þ 
 rwvdx

¼3: �ÐV rw � R U,Vð Þð Þð Þ�uð Þ 
 rwvdx

¼4: �ÐVrwuV 
 rwvdx ¼ hDuV , vi:

Then, the claimed equivalence (3.46) follows from the arbitrariness of v. Finally, we
have

R U,Vð Þð Þ � g� �
u  g uVð Þ, for every open and bounded V � U: (3.47)

For the equivalence (3.47), we only need to notice that in view of the first equivalence
in (3.45), along with (2.22), gðuVÞ is well defined.
Step 4a
Since every ukl satisfies the variational equation in Uklþ2, we have that

hiukl 0 � Dw ukl þ fkl
� �þ g uklð Þ, vkli ¼ 0, 8vkl 2 H1

0 Uklþ2ð Þ, 8l 2 N:

Hence, for every open and bounded V � U we have

h R Uklþ2,Vð Þð Þ iukl
0 � Dw ukl þ fkl

� �þ g uklð Þ
� 	

, vi ¼ 0, 8v 2 H1
0ðVÞ, 8l 2 N:

In virtue of the equivalence in (3.38), as well as the equivalences (3.39) and (3.40)
(along with the definition of the sequence uklf g1l¼1

), the above equation becomes

hivV , kl
0 � Dw vV , kl þ fVð Þ þ g vV , klð Þ, vi ¼ 0, 8v 2 H1

0ðVÞ, 8l 2 N, (3.48)

where fV :¼ ðRðU,VÞÞf:
Step 4b
Directly from (3.44) we haveð

J0

hivV , kl 0,wvidt !
ð
J0

hiuV 0,wvidt, 8w 2 C1
c J�0
� �

, 8v 2 H1
0ðVÞ: (3.49)

Moreover, in view of (3.43), we argue exactly as in Step 5 of the proof of Theorem 3.1
to obtain ð

J0

hDw vV , kl þ fVð Þ,wvidt !
ð
J0

hDw uV þ fVð Þ,wvidt, (3.50)
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for every w and v as above. Additionally, in virtue of the bound (3.34) for kl instead of
k, along with the scaling invariant compact embeddings (see Proposition A.5)

H1
0ðUÞ ,! ,! R U,Vð Þð Þ L2ðUÞ� �

and H1
0ðUÞ ,! ,! R U ,Vð Þð Þ L4ðUÞ� � ðn ¼ 1, 2, 3Þ,

we deduce that there exists a subsequence of vklf g1l¼1
(not relabelled) and a function

z 2 XðJ0; L4ðVÞÞ, such that

R U,Vð Þð Þ vklðtÞ
� �! zðtÞ in L2ðVÞ and R U,Vð Þð Þ vklðtÞ

� �! zðtÞ in L4ðVÞ, (3.51)

for every t 2 J0: Since

vV , kl  R U,Vð Þð Þvkl , 8l � lV , (3.52)

where lV is as in Step 3c, we deduce, from (3.43), that

z  uV : (3.53)

In virtue of (3.51), (3.52), (3.53), along with (2.24), (2.25), and (2.26), we derive that

g vV , klð Þ ! g uVð Þ in
L2ðVÞ, if n ¼ 1, 2
L

4
3ðVÞ þ L2ðVÞ, if n ¼ 3,

everywhere in J0:

�

Hence, the dominated convergence theorem implies the limitð
J0

hg vV , klð Þ,wvidt !
ð
J0

hg uVð Þ,wvidt, 8w 2 C1
c J�0
� �

, 8v 2 H1
0ðVÞ: (3.54)

Gathering (3.49), (3.50), and (3.54), we get from (3.48) that

hiuV 0 � Dw uV þ fVð Þ þ g uVð Þ, vi ¼ 0, 8v 2 H1
0ðVÞ: (3.55)

Step 4c
In virtue of the second equivalence in (3.45), as well as the equivalences (3.46) and

(3.47), we get from (3.55) that

R U,Vð Þð Þ iu0 � Dw uþ fð Þ þ gðuÞ� � H
�1ðVÞ

0:

Since V � U is arbitrary open and bounded, we deduce from Proposition A.3 that u
satisfies the variational equation in U.
Step 5a
As far as the initial condition is concerned, we first note that

vkð0Þ ! u0 in H1ðUÞ: (3.56)

Indeed, we have

vkð0Þ ¼ E0 Ukþ2,Uð Þð Þ vku0kð Þ, 8k:
Thus, we get (3.56) by working exactly as in Step 1b: Therefore, by combining (3.56)
with the convergence in (3.41) for t ¼ 0, we deduce that uð0Þ  u0:
Step 5b
We will show that

EðuÞ � E u0ð Þ everywhere in J0 :

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 29



Indeed, we have from Theorem 3.1 that

E ukð Þ � E u0kð Þ everywhere in J0 :

Hence, from (3.32) and the fact that E is positive, we deduce

E vV , kð Þ � E u00kð Þ everywhere in J0 , for every open V � Ukþ2, for every k:

Let now � > 0 be arbitrary. In virtue of (3.30), we have that there exists k0 ¼ k0ð�Þ,
such that

E vV , kð Þ � E u0ð Þ þ � everywhere in J0 , for every open V � Ukþ2,
for every k � k0:

(3.57)

From (3.51), (3.52), (3.53), along with (2.27) and (2.28), we derive that

G vV , klð Þ ! G uVð Þ, for every open and bounded V � U: (3.58)

Moreover, from (3.43) along with the (sequentially) weak lower semi-continuity of the
H1-norm, we deduce that

kuVkH1ðVÞ � liminf
l!1

kvVklkH1ðVÞ everywhere in J0 :

In virtue of the first convergence in (3.51) (along with (3.52) and (3.53)), the above
inequality reads as

krwuVkL2ðVÞ � liminf
l!1

krwvVklkL2ðVÞ everywhere in J0 , for every V as above: (3.59)

In addition, it is straightforward to check from (3.43) that

Re vV , kl , fð Þ ! Re vV , fð Þ everywhere in J0 , for every open and bounded V � U:

(3.60)

Let now kl for l � lV instead of k in (3.57). From (3.58), (3.59), and (3.60), we get

E uVð Þ � E u0ð Þ þ � everywhere in J0 , for every open and bounded V � U ,

or else,

E uVð Þ � E u0ð Þ everywhere in J0 , for every open and bounded V � U, (3.61)

since � is arbitrary. In virtue of the first equivalence in (3.45), it only remains to con-
sider in (3.61) an increasing sequence Vk � Uf gk of open and bounded sets with Vk !
U, e.g., Vk ¼ Uk for every k and to let k ! 1, in order to conclude with the claimed
energy estimate.
Step 5c
The (conjugate) symmetry around t ¼ 0, follows directly from the convergence in

(3.41) along with the fact that every vkl satisfies the same symmetry.

Let us note that the defocusing nature of the equation permitted a stronger version
of a local existence result: Instead of the standard statement “for every initial condition,
there exists a bounded interval…”, we established in Theorem 3.1 and Theorem 3.2
that “for any initial condition and any bounded interval J0…”. Hence the local-in time-
solutions can be extended to global ones as remarked in the proof of the follow-
ing result.
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Theorem 3.3. Let u be as in Theorem 3.1, or as in Theorem 3.2. If

i. i. n ¼ 1,
ii. n ¼ 2 and s ¼ 1, or
iii. U ¼ R

n (n ¼ 1, 2, 3),

then u is unique and global, for which the energy is conserved.

Proof. Since local-in-time solutions exist for any given bounded interval J0, their unique-
ness would imply their global-in-time existence.
As far as the uniqueness is concerned, we refer to [19], where for the case i: the

embedding Hm
0 ðUÞ ,! L1ðUÞ is employed. As for ii:, either the Trudinger or the follow-

ing version of the Gagliardo–Nirenberg interpolation inequality5 is employed:

kukL2sðUÞ � Cs
1
2krwuk1�

1
s

L2ðUÞkuk
1
s

LðUÞ , 8u 2 H1
0ðUÞ, 8s 2 1,1½ Þ, n ¼ 2:

Finally, for the case iii:, the result follows from the Strichartz (dispersive) estimates.
Moreover, one can utilize the above uniqueness result along with the backwards-in-

time existence of the solution, in order to eventually establish conservation of energy
for this solution. This crucial property can be proved as in [20, Proposition 8]. w

4. Regularity of solutions

In this section, we study the regularity of the solutions of Section 3. In particular, we
consider the problem (2.14) only for the cases where s is as in (1.7). We recall that a
solution of such a problem possesses certain fine properties, such as uniqueness, global
existence, and conservation of energy. We will establish that if the initial datum is infin-
itely smooth, then so is the solution.
Before we proceed to the statement and proof of the main results, we provide some

preliminary ones. First, we derive an estimate with the use of the following
Gagliardo–Nirenberg interpolation inequality

krjuk
L
2m
j R

nð Þ � Ckrmuk
j
m

L2 R
nð Þkuk

1� j
m

L1 R
nð Þ, 8 j ¼ 0, 1, :::,m, 8u 2 C1

c R
nð Þ, (4.1)

which allows us to handle certain types of non-linearities such as the ones
assumed herein.

Proposition 4.1. Let m 2 N and f 2 Cmð 0,1Þ;RÞ½ . Then, for every u 2 C1
c ðRnÞ,

Xm
k¼1

krk f juj2
� �

u
� 	

kL2 R
nð Þ � C

Xm
k¼1

krkukL2 R
nð Þ

 ! Xm
k¼0

kf ðkÞkL1 0, kuk2L1 Rnð Þð Þð Þkuk
2k
L1 R

nð Þ

 !
:

(4.2)

5For an elegant proof of the form of the constant in this inequality we refer to Lemma 2 in [26] and the
references therein.
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Assuming further that f 6¼ const with f ð0Þ ¼ 0, the above estimate becomes

Xm
k¼1

krk
w f juj2
� �

u
� 	

kL2ðUÞ � C
Xm
k¼1

krk
wukL2ðUÞ

 ! Xm
k¼1

kf ðkÞkL1 0, kuk2L1 Rnð Þð Þð Þkuk
2k
L1ðUÞ

 !
,

for every u 2 C1
c ðUÞ, along with the obvious generalization for f ðkÞð0Þ ¼ 0,

with k ¼ 1, :::,m� 1:

Proof. Let u 2 C1
c ðRnÞ and a 2 N

n
0 with 1 � jaj � m be arbitrary. From the Leibniz

rule and the multivariate Fa�a di Bruno formula (see [7, 9]), we have that6

Da f juj2
� �

u
� 	

¼ f juj2
� �

Dauþ
X

a1j j þ a2j j ¼ jaj,
a1j j � 1

Da1 f juj2
� �� 	

Da2u ¼

¼ f juj2
� �

Dauþ
X

a1j j þ a2j j ¼ jaj,
a1j j � 1

X
1�jbj� a1j j

Ma1, jbj juj2
� �

Djbjf juj2
� �

Da2u :¼ I1 þ I2,

where

Ma1, jbj juj2
� �

:¼ a1!
Xa1j j

s¼1

X
ps a1, jbjð Þ

Ys
j¼1

1

cj! dj!
� � cjj j Ddj juj2

� �cj ,
with cj 2 N, dj 2 N

n
0 ,

ps a1, jbjð Þ :¼ c1, :::, cs, d1, :::, dsð Þ j 0 � d1 � ::: � ds,
Xs
j¼1

cj ¼ jbj,
Xs
j¼1

cjdj ¼ a1

( )

and l � � for l, � 2 N
n
0 as in [7].

I1 can be estimated easily. Indeed,

kI1kL2 R
nð Þ � kDaukL2 R

nð Þkf kL1 0, kuk2L1 Rnð Þð Þð Þ:

As far as I2 is concerned, we have

kI2kL2 R
nð Þ � C

X
a1j j þ a2j j ¼ jaj,

a1j j � 1

Xa1j j

l¼1

kf ðlÞkL1 0, kuk2L1 Rnð Þð Þð Þ
Xa1j j

s¼1

X
ps a1, lð Þ

I20 ,

where

I02 :¼
����Ys

j¼1

Ddj juj2
� �cjDa2u

����
L2 R

nð Þ
¼
����Y

c1

i1¼1

Dd1 juj2
� �

:::
Ycs
is¼1

Dds juj2
� �

Da2u

����
L2 R

nð Þ
:

From H€older’s inequality for pj, ij ¼ jaj
djj j , for ij ¼ 1, :::, cj, j ¼ 1, :::, s and psþ1 ¼ jaj

a2j j , we get

I02 �
Yc1
i1¼1

kDd1 juj2k
L

2jaj
d1j j Rnð Þ

:::
Ycs
is¼1

kDds juj2k
L
2jaj
dsj j Rnð Þ

kDa2uk
L

2jaj
a2j j Rnð Þ

:

From the Leibniz rule, we have

6If n ¼ 1, then Db ¼ Djbj, for every multi-index b.
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Ddj juj2 ¼
X

d1, jj jþ d2, jj j¼ djj j
Dd1, ju Dd2, j�u,

thus, once again, from H€older’s inequality for p1 ¼ djj j
d1, jj j and p2 ¼ djj j

d2, jj j , we get

kDdj juj2k
L

2jaj
djj j

R
nð Þ
�

X
d1, jj jþ d2, jj j¼ djj j

kDd1, juk
L

2jaj
d1, jj j

R
nð Þ
kDd2, juk

L

2jaj
d2, jj j

R
nð Þ
:

Hence, applying (4.1), we deduce that

kDdj juj2k
L

2jaj
djj j

R
nð Þ
� Ckrjajuk

djj j
jaj
L2 R

nð Þkuk
2� djj j

jaj
L1 R

nð Þ:

Again from (4.1), we get

kDa2uk
L

2jaj
a2j j Rnð Þ

� Ckrjajuk
a2j j
jaj
L2 R

nð Þkuk
1� a2j j

jaj
L1 R

nð Þ:

Therefore,

I02 � CkrjajukL2 R
nð Þkuk2lL1 R

nð Þ,

and so

kI2kL2 R
nð Þ � CkrjajukL2 R

nð Þ
X

1�jbj�jaj

Xjbj
l¼1

kf ðlÞkL1 0, kuk2L1 Rnð Þð Þð Þkuk
2l
L1 R

nð Þ:

If n < 2m, we directly deduce that the above results hold for every u 2 Hm
0 ðUÞ and

every arbitrary U, by employing the E0ðU,RnÞ operator and the scaling-invariant
Sobolev embedding Hm

0 ðUÞ ,! L1ðUÞ:
Now, in virtue of Theorem A.1, we extend Proposition 4.1 for functions in non-zero-

trace Sobolev spaces.

Corollary 4.1. Let U with @U 2 Lip1ðe,K, LÞ,m 2 N with n < 2m, f 2 Cmð 0,1Þ;RÞ½
and u 2 HmðUÞ. Then ðf ðjuj2ÞuÞ 2 HmðUÞ, satisfying the inequality

Xm
k¼1

krk
w f juj2
� �

u
� 	

kL2ðUÞ � C K, Lð Þ
Xm
k¼0

1
em�k

krk
wukL2ðUÞ

 !

�
Xm
k¼0

kf ðkÞkL1 0,CðKÞkuk2L1ðUÞð Þð Þkuk
2k
L1ðUÞ

 !
:

(4.3)

Proof. By considering the extended function, we see that (4.2) gets the form
Xm
k¼1

krk f juj2
� �

u
� 	

kL2ðUÞ �
Xm
k¼1

����rk f E U ,R
nð Þð Þuj j2

� 	
E U ,R

nð Þð Þu
� 	����

L2 R
nð Þ

� C
Xm
k¼1

k rk � E U ,R
nð Þð Þ� �

ukL2 R
nð Þ

 !

�
Xm
k¼0

kf ðkÞkL1 0, k E U ,Rnð Þð Þuk2L1 Rnð Þð Þð Þk E U ,R
nð Þð Þuk2kL1 R

nð Þ

 !
:
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From the bounds given in Theorem A.1 we obtain

Xm
k¼1

k rk � E U ,R
nð Þð Þ� �

ukL2 R
nð Þ � C K, Lð Þ

Xm
k¼0

1
em�k

krkukL2ðUÞ

 !
:

Moreover, in view of Corollary A.2, we have that u 2 L1ðUÞ: Therefore, again from the
aforementioned bounds, we get

k E U ,R
nð Þð ÞukL1 R

nð Þ � CðKÞkukL1ðUÞ:

Thereby, the claimed result follows. w

For the next result, we notice that if U 2 R with @U 2 Lipmðe,K, LÞ for some m 2 N,
then in fact @U 2 Lip1ðe,K, 0Þ, and vice versa.

Corollary 4.2. Let U � R with jUj < 1 as well as @U 2 Lip1ðe,K, 0Þ,m 2 N n f1g, f 2
Cmð 0,1Þ;RÞ, u 2 HmðUÞ½ and f 2 XmðUÞ. Then ðf ð uþ fj j2Þðuþ fÞÞ 2 HmðUÞ, satisfy-
ing the inequalityXm

k¼1

krk
w f uþ fj j2
� �

uþ fð Þ
� 	

kL2ðUÞ � C
1
em

max 1, jUj12
n o

,K, kukH1ðUÞ, kfkXmðUÞ

� �

� 1þ
Xm
k¼2

krk
wukL2ðUÞ

 !
:

(4.4)

If, in addition, u 2 HmðUÞ \H1
0ðUÞ, as well as

Dj
wu

� � 2 H1
0ðUÞ, 8j ¼ 0, :::,

�
m
2

�
� 1,

then we have
Xm
k¼1

krk
w f uþ fj j2
� �

uþ fð Þ
� 	

kL2ðUÞ � C
1
em

max 1, jUj12
n o

,K, kukH1ðUÞ, kfkXmðUÞ

� �

� 1þ
X

2jþ 1 � m

j 2 N,

k rw � Dj
w

� �
ukL2ðUÞ þ

X
2j � m

j 2 N,

kDj
wukL2ðUÞ

0
@

1
A:

(4.5)

Proof. We have that f 2 HmðUÞ, since jUj < 1, hence ðuþ fÞ 2 HmðUÞ: Employing
(4.3), we get

Xm
k¼1

krk
w f uþ fj j2
� �

uþ fð Þ
� 	

kL2ðUÞ � CðKÞ
Xm
k¼0

1
em�k

krk
w uþ fð ÞkL2ðUÞ

 !

�
Xm
k¼0

kf ðkÞkL1 0,CðKÞkuþfk2L1ðUÞð Þð Þkuþ fk2kL1ðUÞ

 !
:
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For the term inside the first parenthesis we haveXm
k¼0

1
em�k

krk
w uþ fð ÞkL2ðUÞ

�
Xm
k¼0

1
em�k

krk
wukL2ðUÞ þ

Xm
k¼0

1
em�k

krk
wfkL2ðUÞ

� max 1,
1
em

� �Xm
k¼0

krk
wukL2ðUÞ þ

1
em

kfkL2ðUÞ þmax 1,
1
em

� �Xm
k¼1

krk
wfkL2ðUÞ

� Cmax 1,
1
em

� � Xm
k¼2

krk
wukL2ðUÞ þ kukH1ðUÞ

 !
þ 1

em
jUj12kfkXmðUÞ

þ Cmax 1,
1
em

� �
kfkXmðUÞ

� Cmax 1,
1
em

� � Xm
k¼2

krk
wukL2ðUÞ þ kukH1ðUÞ

 !

þ 1
em

max 1, jUj12
n o

kfkXmðUÞ þ Cmax 1,
1
em

� �
kfkXmðUÞ

� Cmax 1,
1
em

max 1, jUj12
n o� � Xm

k¼2

krk
wukL2ðUÞ þ kukH1ðUÞ þ kfkXmðUÞ

 !

� Cmax 1,
1
em

max 1, jUj12
n o� �

max 1, kukH1ðUÞ þ kfkXmðUÞ
n o Xm

k¼2

krk
wukL2ðUÞ þ 1

 !

¼ C
1
em

max 1, jUj12
n o

, kukH1ðUÞ, kfkXmðUÞ

� � Xm
k¼2

krk
wukL2ðUÞ þ 1

 !
:

As for the term inside the second parenthesis, we have that

kukL1ðUÞ � C
1
e
,K

� �
kukH1ðUÞ,

from the scaling dependent embedding H1ðUÞ ,! L1ðUÞ (see Corollary A.2), which
impliesXm

k¼0

kf ðkÞkL1 0,CðKÞkuþfk2L1ðUÞð Þð Þkuþ fk2kL1ðUÞ � C
1
e
,K, kukH1ðUÞ, kfkXmðUÞ

� �
:

Directly from (4.4) and the bound in Proposition A.9, we get (4.5). w

Lastly, the following version of the Brezis–Gallou€et–Wainger inequality

kukL1 R
2ð Þ � C kukH1 R

2ð Þ
� �

1þ ln 1þ kr2ukL2 R
2ð Þ

� 	� 	1
2

� �
, 8u 2 C1

c R
2ð Þ, (4.6)

which can be proved by a straightforward adaptation of [4, Lemma 2], is essential in
order to establish the following useful auxiliary inequalities.
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Lemma 4.1. Let U � R
2 with @U 2 Lip1ðe,K, LÞ and m 2 N n f1g. Then

kukL1ðUÞ � C
1
e
,K, L, kukH1ðUÞ

� �
1þ ln 1þ

Xm
k¼2

krk
wukL2ðUÞ

 ! !1
2

0
@

1
A, 8u 2 HmðUÞ:

(4.7)

Proof. Let u 2 HmðUÞ be arbitrary. Since m � 2, then u 2 L1ðUÞ: Considering the
extended function, (4.6) becomes

kukL1ðUÞ � C
1
e
,K, L, kukH1ðUÞ

� �
1þ ln 1þ kr2

wukL2ðUÞ
� 	� 	1

2

� �
,

whereby (4.7) follows. w

Corollary 4.3. Let U � R
2 with jUj < 1 as well as @U 2 Lip1ðe,K, LÞ,m 2 N n f1g, u 2

HmðUÞ and f 2 XmðUÞ. Then ð uþ fj j2ðuþ fÞÞ 2 HmðUÞ, satisfying
Xm
k¼1

krk
w uþ fj j2 uþ fð Þ
� �

kL2ðUÞ � C
1
em

max 1, jUj12
n o

,K, L, kukH1ðUÞ, kfkXmðUÞ

� �

� 1þ
Xm
k¼2

krk
wukL2ðUÞ

 !
1þ ln 1þ

Xm
k¼2

krk
wukL2ðUÞ

 !2
0
@

1
A

0
@

1
A:

(4.8)

If, in addition, @U 2 Lipmðe,K, LÞ, u 2 HmðUÞ \ H1
0ðUÞ, as well as

Dj
wu

� � 2 H1
0ðUÞ, 8j ¼ 0, :::,

�
m
2

�
� 1,

then we haveXm
k¼1

krk
wðjuþ fj2ðuþ fÞÞkL2ðUÞ � C

�
1
em

maxf1, jUj12g,K, L, kukH1ðUÞ, kfkXmðUÞ

�

�
 
1þ

X
2jþ 1 � m

j 2 N,

kðrw � Dj
wÞukL2ðUÞ þ

X
2j � m

j 2 N,

kDj
wukL2ðUÞ

!

�
 
1þ ln

 
1þ

X
2jþ 1 � m

j 2 N,

kðrw � Dj
wÞuk2L2ðUÞ þ

X
2j � m

j 2 N,

kDj
wuk2L2ðUÞ

!!
:

(4.9)

Proof. We have that f 2 HmðUÞ, since jUj < 1: Hence, ðuþ fÞ 2 HmðUÞ: Employing
(4.3), we get

Xm
k¼1

krk
w uþ fj j2 uþ fð Þ
� �

kL2ðUÞ � C K, Lð Þ
Xm
k¼0

1
em�k

krk
w uþ fð ÞkL2ðUÞ

 !
kuþ fk2L1ðUÞ:
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In order to estimate the term inside the parenthesis, we work exactly as in Corollary 4.2
and we deduce thatXm

k¼1

krk
w uþ fj j2 uþ fð Þ
� �

kL2ðUÞ � C
1
em

max 1, jUj12
n o

,K, L, kukH1ðUÞ, kfkXmðUÞ

� �

� 1þ
Xm
k¼2

krk
wukL2ðUÞ

 !
kuþ fk2L1ðUÞ:

For the last term, we employ (4.7) to get

kuþ fk2L1ðUÞ � C kuk2L1ðUÞ þ kfk2L1ðUÞ
� 	

� C kfkXmðUÞ
� 	

1þ kuk2L1ðUÞ
� 	

� C
1
e
,K, L, kukH1ðUÞ, kfkXmðUÞ

� �
1þ ln 1þ

Xm
k¼2

krk
wukL2ðUÞ

 ! !

� C
1
e
,K, L, kukH1ðUÞ, kfkXmðUÞ

� �
1þ ln 1þ

Xm
k¼2

krk
wukL2ðUÞ

 !2
0
@

1
A

0
@

1
A:

Now, directly from (4.8) and the bound in Proposition A.9, we get (4.9). w

We are ready to proceed to the statement and the proof of the main results of
this section.

Theorem 4.1. Let n ¼ 1, 2, U be bounded, s be as in (1.7), u0 2 H1
0ðUÞ and u be the

(unique and global) solution of (2.14) that Theorem 3.1 provides. If

1. @U 2 \1
m¼1 Lip

mðe,K, LmÞ,
2. f 2 \1

m¼1 X
mðUÞ and

3. u0 2 \1
m¼2 H

mðUÞ \H1
0ðUÞ, with ðDju0Þ 2 H1

0ðUÞ for every j 2 N0,

then u 2 L1locðR;\1
m¼2H

mðUÞ \H1
0ðUÞÞ \W1,1

loc ðR;\1
m¼0H

mðUÞÞ, satisfying
kukL1 J0;HmðUÞð Þ þ ku0kL1 J0;Hm�2ðUÞð Þ

� C
1
em

max 1, jUj12
n o

,K, Lm, ku0kHmðUÞ, kfkXmþ2ðUÞ, kjfj � qkL2ðUÞ, J0j j
� �

,
(4.10)

for every m 2 N n f1g and every J0.

Proof. It suffices to show (4.10). Let m 2 N n f1g and J0 be arbitrary. We set

~C :¼ C
1
em

max 1, jUj12
n o

,K, Lm, ku0kHmðUÞ, kfkXmþ2ðUÞ, kjfj � qkL2ðUÞ, J0j j
� �

:

Step 1
Let ukf g1k¼1 be the Faedo-Galerkin approximations, as in the proof of Theorem 3.1.

We recall that for every wl there exists kl > 0, such that �Dwwl ¼ klwl in H�1ðUÞ: In
virtue of Theorem A.3, �Dwwl ¼ klwl everywhere in U (and not just almost every-
where). Therefore, ð�1ÞjDj

wwl ¼ kjlwl everywhere in U, for every j 2 N, that is
Dj
wðukð0ÞÞ 2 span wlf gkl¼1, for every j 2 N0, and so
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ukf g1k¼1 � C1
R, \1

m¼2
HmðUÞ \H1

0ðUÞ
� �

,

as well as

Dj ukð0Þð Þ,ukð0Þ
� �

¼ Dj ukð0Þð Þ, u0
� �

, 8j 2 N0: (4.11)

Moreover, we have

Di ukð0Þð Þ,Dj ukð0Þð Þ
� �

¼ ukð0Þð Þ,Diþj ukð0Þð Þ
� �

, 8i, j 2 N0, (4.12)

as it follows directly from the common integration by parts formula. Now, we claim
that

X
j 2 N,

2jþ 1 � m

k r � Djð Þ ukð0Þð ÞkL2ðUÞ þ
X
j 2 N,
2j � m

kDj ukð0Þð ÞkL2ðUÞ � C
1
e
,K, Lm

� �
ku0kHmðUÞ:

In view of Proposition A.9, it suffices to show thatX
j 2 N,

2jþ 1 � m

k r � Djð Þ ukð0Þð ÞkL2ðUÞ þ
X
j 2 N,

2j � m

kDj ukð0Þð ÞkL2ðUÞ

� C
X
j 2 N0,

2jþ 1 � m

k r � Djð Þu0kL2ðUÞ þ
X
j 2 N,

2j � m

kDju0kL2ðUÞ
0
@

1
A:

Indeed, from

1. (4.11),
2. (4.12),
3. the common integration by parts formula,

we obtain, for every j 2 N, that

kDj ukð0Þð Þk2L2ðUÞ ¼ Dj ukð0Þð Þ,Dj ukð0Þð Þ
� �

¼1: ukð0Þ,D2j ukð0Þð Þ
� �

¼2: u0,D
2j ukð0Þð Þ

� �
¼1: Dju0,D

j ukð0Þð Þ
� �

� 1
2
kDj ukð0Þð Þk2L2ðUÞ þ

1
2
kDju0k2L2ðUÞ,

as well as

k r � Djð Þ ukð0Þð Þk2L2ðUÞ ¼ r � Djð Þ ukð0Þð Þ, r � Djð Þ ukð0Þð Þ
� �

¼3: � Dj ukð0Þð Þ,Djþ1 ukð0Þð Þ
� �

¼1: � ukð0Þ,D2jþ1 ukð0Þð Þ
� �

¼2: � u0,D
2jþ1 ukð0Þð Þ

� �
¼
3:

1: r � Djð Þu0, r � Djð Þ ukð0Þð Þ
� �

� 1
2
k r � Djð Þ ukð0Þð Þk2L2ðUÞ þ

1
2
k r � Djð Þu0k2L2ðUÞ:

Step 2
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We multiply the variational Eq. (3.3) by

dlkðtÞk2jl , for every j 2 N such that 2j � m,

�dlkðtÞk2jþ1
l , for every j 2 N such that 2jþ 1 � m,

(

sum on l ¼ 1, :::, k, integrate by parts keeping imaginary parts of both sides to find

1
2
d
dt

kDjukk2L2ðUÞ � Im Djþ1f,Djuk
� �

� Im Dj uk þ fj j2s
� �

uk þ fð Þ
� �

,Djuk
� �

¼ 0,

for every j 2 N with 2j � m, and

1
2
d
dt

k r � Djð Þukk2L2ðUÞ � Im r � Djþ1ð Þf, r � Djð Þuk
� �

�
�Im r � Djð Þ uk þ fj j2s

� �
uk þ fð Þ

� �
, r � Djð Þuk

� �
¼ 0,

for every j 2 N with 2jþ 1 � m: We sum the above equations for every j, integrate
with respect to t, employ Young’s and H€older’s inequalities, as well as (4.5) and (4.9),
along with the estimate for the H1-norm of each uk given in the proof of Theorem 3.1.
With such a procedure, we derive the estimates

A � ~C 1þ
ðt
0
Ads












 !
, for every t 2 J0, if n ¼ 1,

and also

A � ~C 1þ
ðt
0
A 1þ ln 1þ Að Þð Þds












 !
, for every t 2 J0, if n ¼ 2,

where

A :¼
X
j 2 N,

2jþ 1 � m

k r � Djð Þukk2L2ðUÞ þ
X
j 2 N,
2j � m

kDjukk2L2ðUÞ:

Consequently, A � ~C everywhere in J0, which, if combined with the estimate for the
H1-norm of each uk given in the proof of Theorem 3.1, gives us the bound

kukkL1 J0;HmðUÞð Þ � ~C, 8k 2 N:

This is due to the fact that every uk satisfies the necessary compatibility conditions for
the validity of Proposition A.9. Now, working in an analogous manner as in Step 3b of
the proof of Theorem 3.1, we deduce that u 2 L1ðJ0;HmðUÞÞ with

kukL1 J0;HmðUÞð Þ � ~C:

Moreover, directly from the differential equation, we deduce that u0 2 L1ðJ0;Hm�2ðUÞÞ with
ku0kL1 J0;Hm�2ðUÞð Þ � ~C:
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Employing the same arguments as in the proof of Theorem 4.1, after the differentiation
of the approximating equations with respect to the temporal variable7, we can show by
induction, its following generalization (the proof is omitted for the sake of brevity).

Corollary 4.4. Let n ¼ 1, 2, U be bounded, s be as in (1.7), u0 2 H1
0ðUÞ and u be the

(unique and global) solution of (2.14) that Theorem 3.1 provides. If

1. 1. @U 2 \1
m¼1 Lip

mðe,K, LmÞ,
2. 2. f 2 \1

m¼1 X
mðUÞ and

3. 3. u0 2 \1
m¼2 H

mðUÞ \H1
0ðUÞ, with ðDju0Þ 2 H1

0ðUÞ for every j 2 N0,

then u 2 \1
j¼0 W

j,1
loc ðR;\1

m¼2H
mðUÞÞ, with

kuðjÞkL1 J0;HmðUÞð Þ � C
1
em

max 1, jUj12
n o

,K, Lm, ku0kHmðUÞ, kfkXmþ2ðUÞ, kjfj � qkL2ðUÞ, J0j j
� �

,

(4.13)

for every j 2 N0, every m 2 N n f1g and every J0.

We conclude, by showing the corresponding regularity result for the case
where U ¼ R

n, n ¼ 1, 2:

Theorem 4.2. Let n ¼ 1, 2, s be as in (1.7), u0 2 H1ðRnÞ and u be the (unique and glo-
bal) solution of (2.14) that Theorem 3.2 provides. If

1. f 2 \1
m¼1 X

mðRnÞ and
2. u0 2 \1

m¼2 H
mðRnÞ,

then u 2 \1
j¼0 W

j,1
loc ðR;\1

m¼1H
mðRnÞÞ, with

kuðjÞkL1 J0;Hm R
nð Þð Þ � C ku0kHm R

nð Þ, kfkXmþ2 R
nð Þ, kjfj � qkL2 R

nð Þ, J0j j� �
, (4.14)

for every j 2 N0, every m 2 N n f1g and every J0.

Proof. We set again

~C :¼ C ku0kHm R
nð Þ, kfkXmþ2 R

nð Þ, kjfj � qkL2 R
nð Þ, J0j j� �

:

Let ukf g1k¼1 be the sequence of solutions, as in the proof of Theorem 3.2. Since

B1 2 \1
m¼1

Lipm e,K, Lmð Þ,

then, in view of Proposition A.4, we deduce that

Uk  Bk 2 \1
m¼1

Lipm k e,K, Lmð Þ, 8k 2 N:

7As we have already noticed in Step 1a of the proof of Theorem 3.1, the Faedo-Galerkin approximations are infinitely
smooth with respect to t.
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Hence, ukf g1k¼1 � \1
k¼0 W

k,1
loc ðR;\1

m¼1H
mðUkþ2Þ \H1

0ðUkþ2ÞÞ, with

kuðjÞk kL1 J0;Hm Ukþ2ð Þð Þ

� C
1

kþ 2ð Þeð Þm max 1, Ukþ2j j12
n o

,K, Lm, ku0kHm R
nð Þ, kfkXmþ2 R

nð Þ, kjfj � qkL2 R
nð Þ, J0j j

� �
,

for every j 2 N0, every m 2 N n f1g and every J0. Since

1

kþ 2ð Þeð Þmmax 1, Ukþ2j j12
n o

¼ Ukþ2j j12
kþ 2ð Þeð Þm � C kþ 2ð Þn2�m � C uniformly for every k 2 N,

we have that

kuðjÞk kL1 J0;Hm Ukþ2ð Þð Þ � ~C,

for every j, m and J0 as above. The same bounds are true for the respective norms of
vðjÞk : Now, working as in Step 3b of the proof of Theorem 3.1, we deduce that uðjÞ 2
L1ðJ0;HmðRnÞÞ with

kuðjÞkL1 J0;Hm R
nð Þð Þ � ~C:

Remark 4.1. The usual regularity results for unbounded sets appearing in the literature
(see, e.g., Chapter 10 in [3]) also concern sets with bounded boundaries, such as exterior
domains, and not only the whole Euclidean space. Such results can be obtained for the
classical version of our problem, i.e., for f, q  0, by using the techniques presented
herein. However, it is not possible to consider ek ¼ ðkþ 2Þe ! 1 in Theorem 4.2 for the
case of a bounded boundary.

Remark 4.2. We can also deal with the regular problem in the half-line, by simply consid-
ering the odd or the even extension for both u0 and f, depending on the behaviour of
these functions at the boundary. This approach is analogous to the use of the sine or
cosine Fourier transform for solving problems in the half-line. See also [14], where the
Fokas transform method is employed, as well as [11], where the Laplace transform
method and the Bourgain Xs, b method are combined.
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Appendix A

In this appendix, we present certain useful, known and new, definitions, and results.

A.1 Restriction and extension operators on open subsets of Rn

Definition A.1. For every U1 � U2, we write

R U2,U1ð Þ : X U2ð Þ ! X U1ð Þ
for the following (linear) restriction operator

R U2,U1ð Þð Þu½ 	ðxÞ :¼ uðxÞ, 8x 2 U1, 8u 2 X U2ð Þ
and also

E0 U1,U2ð Þ : X U1ð Þ ! X U2ð Þ
for the (linear) extension operator
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E0 U1,U2ð Þð Þu½ 	ðxÞ :¼ uðxÞ, if x 2 U1

0, if x 2 U2 n U1,
8u 2 X U1ð Þ:

�

We further define the set of restricted functions from XðU2Þ to XðU1Þ
R U2,U1ð Þð Þ X U2ð Þð Þ :¼ R U2,U1ð Þð Þu j u 2 X U2ð Þ �

,

and the set of extended functions (by zero) from XðU1Þ to XðU2Þ
E0 U1,U2ð Þð Þ X U1ð Þð Þ :¼ E0 U1,U2ð Þð Þu j u 2 X U1ð Þ �

:

Proposition A.1. Let m 2 N0, p 2 1,1½ 	 and U1 � U2 be arbitrary. Then RðU2,U1Þ maps iso-
metrically Wm, pðU2Þ into (but not onto) Wm, pðU1Þ, and

ðDa
w � ðRðU2,U1ÞÞÞu ¼ ððRðU2,U1ÞÞ � Da

wÞu, a:e:inU1, for every a 2 N
n
0 with 0 � jaj � m,

(A.1)

for every u 2 Wm, pðU2Þ. Hence, Wm, pðU2Þ ,!ðRðU2,U1ÞÞðWm, pðU2ÞÞ, if we consider the space on
the right-hand side as a normed space equipped with its natural norm.

Proposition A.2. Let m 2 N0, p 2 1,1½ 	 and U1 � U2 be arbitrary. Then E0ðU1,U2Þ maps iso-
metrically Wm, p

0 ðU1Þ into (not onto) Wm, p
0 ðU2Þ, and

ðDa
w � ðE0ðU1,U2ÞÞÞu ¼ ððE0ðU1,U2ÞÞ � Da

wÞu, a:e:inU2, for every a 2 N
n
0 with 0 � jaj � m,

(A.2)

for every u 2 Wm, p
0 ðU1Þ. Hence, Wm, p

0 ðU1Þ ,!ðE0ðU1,U2ÞÞðWm, p
0 ðU1ÞÞ, if we consider the space on

the right-hand side as a normed space equipped with its natural norm.

Definition A.2. For every m 2 N0, p 2 1,1½ 	 and U1 � U2, we define

R U2,U1ð Þ : W�m, p U2ð Þ ! W�m, p U1ð Þ
by

h R U2,U1ð Þð Þf , ui :¼ hf , E0 U1,U2ð Þð Þui, 8u 2 H1
0 U2ð Þ, 8f 2 W�m, p U2ð Þ:

Evidently,

k R U2,U1ð Þð Þf kW�m, p U1ð Þ � kf kW�m, p U1ð Þ, 8f 2 W�m, p U2ð Þ,
hence, W�m, pðU2Þ ,!ðRðU2,U1ÞÞðW�m, pðU2ÞÞ, if we consider the space on the right-hand side
as a normed space equipped with its natural norm.

Proposition A.3. Let m 2 N0, p 2 1,1Þ½ , U and f1, f2 2 W�m, pðUÞ. If
R U,Vð Þð Þf1  R U,Vð Þð Þf2, for every open V �� U with @V being Lipschitz continuous,

then f1  f2:

A.2 Uniformly m-Lipschitz boundaries

In this subsection, we recall and generalize some basic results relevant to open sets of Rn with
Lipschitz boundaries. We will generalize the known definition [23, Definition 13.11]), recalling
the following:
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1. y ¼ UðxÞ 2 R
n are local coordinates (in this case, x 2 R

n are the background coordinates)
when U is a rigid motion, i.e., an affine transformation of the form UðxÞ ¼ x0 þ ax, where
x0 2 R

n and a 2 R
n�n being orthogonal,

2. f ð[i2I UiÞ ¼ [i2I f ðUiÞ and f ð\i2I UiÞ ¼ \i2I f ðUiÞ, for every bijective f,
3. every function f : ; ! R is just a real constant and
4. x0 stands for the ðn� 1Þ-dimensional vector obtained by removing the n-th component of a

given n-dimensional vector x, i.e., x ¼ ðx0, xnÞ 2 R
n�1 � R:

The generalization of the aforementioned definition is as follows.

Definition A.3. Let m 2 N, e 2 ð0,1	,K 2 N, L 2 0,1Þ½ and U be an open set. We say that
@U is uniformly m-Lipschitz with constants e, K, L and we write @U 2 Lipmðe,K, LÞ if there
exists a locally finite countable open cover Ukf gk of @U, such that

1. if x 2 @U, then Bðx, eÞ � Uk for some k 2 N,
2. every collection of K þ 1 of Uk’s has empty intersection and
3. for every k there exist local coordinates yk ¼ UkðxÞ and a function ck : R

n�1 ! R, such that
4. rj�1ck is (globally) Lipschitz continuous, for every j ¼ 1, :::,m and every k, with

maxj¼1, :::,m Lip rj�1ck
� � �

� L, uniformly for every k,

and

i. UkðUk \ UÞð ¼ UkðUkÞ \ UkðUÞÞ ¼ UkðUkÞ \ yk 2 R
n j ynk > ckðy0kÞ

 �
:

The following result is crucial for Section 4.

Proposition A.4. If U is such that @U 2 Lipmðe,K, LÞ, as well as if U is a transformation of the
form UðxÞ :¼ x0 þ kx, where x0 2 R

n and k > 1, then @ðUðUÞÞ 2 Lipmðke,K, LÞ also.
For the uniformly 1-Lipschitz boundaries we also have the following well-known result (see, e.g.,

Theorem 13.17 in [23]), concerning the Stein total extension operator (see Paragraph 5.17 in [1]
for the definition of these operators).

Theorem A.1. Let U with @U 2 Lip1ðe,K, LÞ. Then there exists a linear extension operator

E U,Rnð Þ : Wm, pðUÞ ! Wm, p
R

nð Þ, 8m 2 N0, 8p 2 1,1½ 	,
such that, for every m 2 N0, every p 2 1,1½ 	 and every u 2 Wm, pðUÞ, we have

k E U ,R
nð Þð ÞukLp R

nð Þ � CðKÞkukLpðUÞ and

k rk
w � E U ,R

nð Þð Þ� �
ukLp R

nð Þ � C K, Lð Þ
Xk
j¼0

1
ek�j

krj
wukLpðUÞ, for every k ¼ 1, :::,m, if m 6¼ 0:

Hence, we can write that Wm, pðUÞ ,!ðEðU,RnÞÞðWm, pðUÞÞ, if we consider a notation similar to
that of Theorem A.1. The space on the right-hand side is a normed space equipped with its nat-
ural norm.

A.3 The continuous Sobolev embeddings

In this subsection, we comment on the classical Sobolev embeddings in terms of the restriction
and extension operators discussed in Subsection A.1. Recalling the standard Sobolev embedding
Theorems [3, Corollary 9.13], we present two consequences.
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Corollary A.1. Let m 2 N, p 2 1,1Þ½ For every open V � U we have that (see Definition A.1)

Wm, p
0 ðUÞ ,! R U,Vð Þð Þ LqðUÞð Þ, for every q 2 p,

np
n�mp

� �
, if n > mp,

Wm, p
0 ðUÞ ,! R U,Vð Þð Þ LqðUÞð Þ, for every q 2 p,1½ Þ, if n ¼ mp,

Wm, p
0 ðUÞ ,! R U,Vð Þð Þ L1ðUÞð Þ, if n < mp:

In particular, for the case n < mp we have

Wm, p
0 ðUÞ ,! R U,Vð Þð Þ Cbm�n

pc, cð�UÞ
� 	

\ R U,Vð Þð Þ Cbm�n
pc�1, 1ð�UÞ

� 	
,

for
c ¼ m� n

p
�
�
m� n

p

�
, if m� n

p

� �
2 =N

8c 2 0, 1ð Þ, if m� n
p

� �
2 N,

8>>><
>>>:

where the right-hand space is considered as a normed space equipped with its natural norm.
All of the above embeddings are scaling invariant, that is, the constants of the respective

inequalities are uniform, i.e., independent of U. The embeddings are also independent of the
choice of V.

Corollary A.2. Let m 2 N, p 2 1,1Þ½ and U with @U 2 Lip1ðe,K, LÞ. For every open V � U we
have that

Wm, pðUÞ ,! R U,Vð Þð Þ LqðUÞð Þ, for every q 2 p,
np

n�mp

� �
, if n > mp,

Wm, pðUÞ ,! R U,Vð Þð Þ LqðUÞð Þ, for every q 2 p,1½ Þ, if n ¼ mp,
Wm, pðUÞ ,! R U,Vð Þð Þ L1ðUÞð Þ, if n < mp:

In particular, for the case n < mp we have

Wm, pðUÞ ,! R U,Vð Þð Þ Cbm�n
pc, cð�UÞ

� 	
\ R U,Vð Þð Þ Cbm�n

pc�1, 1ð�UÞ
� 	

,

for
c ¼ m� n

p
�
�
m� n

p

�
, if m� n

p

� �
2 =N

8c 2 0, 1ð Þ, if m� n
p

� �
2 N:

8>>><
>>>:

All of the above embeddings are scaling dependent, that is the constants of the respective
inequalities depend (increasingly) on 1

e , K and L, yet they are independent of the choice of V.

A.4 The compact Rellich–Kondrachov embeddings

Here, we provide useful versions of the well-known Rellich–Kondrachov compactness theorem in
terms of the restriction operators of Subsection A.1. For convenience, we consider only the case
m ¼ 1, since it is the only one used for the proofs of our main results.

Proposition A.5. Let m 2 N, p 2 1,1Þ:½ For every open V � U we have that

W1, p
0 ðUÞ ,! ,! R U,Vð Þð Þ LqðUÞð Þ, for every q 2 1,

np
n� p

� �
, if n > p and jVj < 1,

W1, p
0 ðUÞ ,! ,! R U,Vð Þð Þ LqðUÞð Þ, for every q 2 1,1½ Þ, if n ¼ p and jVj < 1,

W1, p
0 ðUÞ ,! ,! R U,Vð Þð Þ Cð�UÞ� �

, if n < p and V is bounded:

In any case, W1, p
0 ðUÞ ,! ,!ðRðU,VÞÞðLpðUÞÞ for every bounded V � U:
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All the above embeddings are scaling invariant, that is the constants of the respective inequal-
ities are uniform, i.e., independent of U. The embeddings are also independent of the choice
of V.

Proposition A.6. Let p 2 1,1Þ½ and U be an open set with @U 2 Lip1ðe,K, LÞ: For every open
V � U we have that

W1, pðUÞ ,! ,! R U,Vð Þð Þ LqðUÞð Þ, for every q 2 1,
np

n� p

� �
, if n > p and jVj < 1,

W1, pðUÞ ,! ,! R U,Vð Þð Þ LqðUÞð Þ, for every q 2 1,1½ Þ, if n ¼ p and jVj < 1,
W1, pðUÞ ,! ,! R U,Vð Þð Þ Cð�UÞ� �

, if n < p and V is bounded:

In any case, W1, pðUÞ ,! ,!ðRðU,VÞÞðLpðUÞÞ for every bounded V � U:
All of the above embeddings are scaling dependent, that is the constants of the respective

inequalities depend (increasingly) on 1
e , K and L, but they are independent of the choice of V.

A.5 The Leibniz formula

Here, we state a useful generalization of the Leibniz rule for the product of a smooth function
with a function which belongs to a Sobolev space [12, Theorem 1, Section 5.2]. Let us recall that
for every m 2 N0 and every U, Cm

B ðUÞ stands for the Banach space

Cm
B ðUÞ :¼ u 2 CmðUÞ j Dau is bounded everywhere in U, for every 0 � vjaj � m

 �
,

equipped with its natural norm (see, e.g., paragraph 1.27 in [1]).

Proposition A.7. Let m 2 N0, p 2 1,1½ 	. If / 2 \1
m¼0 C

m
B ðUÞ and u 2 Wm, pðUÞ, then we

have that

1. ð/uÞ 2 Wm, pðUÞ also, with
k/ukWm, pðUÞ � Cðk/kCm

B ðUÞÞkukWm, pðUÞ (A.3)

and
2.

Da
wð/uÞ ¼

X
b�a

ð a
b
ÞðDb/ÞðDa�b

w uÞ a:e: in U, for every a 2 N
n
0 with 0 � jaj � m: (A.4)

Its proof is quite similar to the proof of the original version cited above, noticing the fact
that ð/wÞ 2 C1

c ðUÞ for every w 2 C1
c ðUÞ:

A.6 Cut-off functions

Setting

Ud :¼ U [ [
x2@U

B x, dð Þ,

we can have the following basic, yet crucial, result.

Proposition A.8. Let U be an open set and d > 0. Then there exists / 2 C1
c ðRn; 0, 1½ 	Þ

such that

1. suppð/Þ � Ud ,
2. /  1 in �U and
3. krk/kL1ðRnÞ � Ck

dk
, for every k 2 N0 (C0 ¼ 1).
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A.7 Second-order, symmetric, uniformly elliptic operators

Definition A.4. For a ¼ ðaijÞni, j¼1 2 L1ðUÞ satisfying
a ¼ aT , i:e:, aij ¼ aji , a:e: in U (A.5)

and

n 
 a�n ¼ðA:5ÞReðn 
 a�nÞ � hjnj2, a:e: in U, for every n 2 C
n, for some h > 0, (A.6)

we write

Lw ¼ Lw a, hð Þ : u 2 LpðUÞ for some p 2 1,1½ 	 j rwu 2 L2ðUÞ
 �

! H�1ðUÞ
for the linear and bounded operator

hLwu, vi :¼
Ð
Urwv 
 arw�udx ¼ ÐUXn

i, j¼1

aij @
i
w�u

� �
@j
wv

� �
dx,

for every u 2 u 2 LpðUÞ, for some p 2 1,1½ 	 j rwu 2 L2ðUÞ �
, for every v 2 H1

0ðUÞ:
Moreover, we set

L : u 2 L1locðUÞ j rwu 2 L2ðUÞ �2 ! R

for the double-entry form

L u, v½ 	 :¼ Re
Ð
Urwv 
 arw�udx

� � ¼ Re
Ð
U

Xn
i, j¼1

aij @
i
w�u

� �
@j
wv

� �
dx

 !
,

for every u, v 2 u 2 L1locðUÞ j rwu 2 L2ðUÞ �
:

Additionally, if a 2 W1,1ðUÞ we define

Lw ¼ Lw a, hð Þ : u 2 L1locðUÞ j rj
wu 2 L2ðUÞ, for j ¼ 1, 2

 �! L2ðUÞ
for the linear operator

Lwu :¼ �divw aTrwuð Þ ¼
Xn
i, j¼1

@j
w aji @

i
wu

� �� 	
,

for every u 2 u 2 L1locðUÞ j rj
wu 2 L2ðUÞ, for j ¼ 1, 2

n o
:

A.8 Elliptic regularity theory for uniformly m-Lipschitz boundaries

A.8.1 Interior regularity

Theorem A.2. Let m 2 N n f1g, U be an open set and ðu, f Þ 2 H1ðUÞ � H�1ðUÞ be such that
Lwu ¼ f . If a 2 Wm�1,1ðUÞ and f 2 Hm�2ðUÞ, then u 2 HmðUdÞ for every d > 0, with

Xm
j¼2

krj
wukL2 Udð Þ � C

1

d� d0
,
1
h
, kakWm�1,1ðUÞ

� �
krwukL2ðUÞ þ kf kHm�2ðUÞ
� 	

, 8 0 < d0 < d:

A.8.2 Up to the boundary regularity

Theorem A.3. Let m 2 N n f1g, U with @U 2 Lipmðe,K, LÞ and ðu, f Þ 2 H1
0ðUÞ � H�1ðUÞ be

such that Lwu ¼ f . If a 2 Wm�1,1ðUÞ and f 2 Hm�2ðUÞ, then u 2 HmðUÞ \ H1
0ðUÞ, with
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Xm
j¼2

krj
wukL2ðUÞ � C

1
e
,K, L,

1
h
, kakWm�1,1ðUÞ

� �
krwukL2ðUÞ þ kf kHm�2ðUÞ
� 	

:

A.8.3 A priori estimates
We write

UPf g :¼ U satisfies the assumptions for the validity of the Poincare inequality for H1
0ðUÞ

 �
:

Theorem A.4. Let m 2 N,UP be as above with @UP 2 Lipmðe,K, LÞ and Lwða, hÞ with
a 2 Wm�1,1ðUPÞ. Then,

1. Lw induces an isomorphism from HmðUPÞ \H1
0ðUPÞ onto Hm�2ðUPÞ and

2. for m 6¼ 1 and every u 2 HmðUPÞ \H1
0ðUPÞ we haveXm

j¼2

krj
wukL2 UPð Þ � C

1
e
,K, L,

1
h
, kakWm�1,1 UPð Þ

� �
krwukL2 UPð Þ þ kLwukHm�2 UPð Þ
� 	

:

Proposition A.9. Let m 2 N n f1g,UP be as above with @UP 2 Lipmðe,K, LÞ,Lwða, hÞ with a 2
Wm�1,1ðUPÞ and u 2 HmðUPÞ \ H1

0ðUPÞ. If

Ljwu
� � 2 H1

0 UPð Þ, 8j ¼ 0, :::,

�
m
2

�
� 1 ðcompatibility conditionsÞ,

then we haveXm
j¼2

krj
wukL2 UPð Þ � C

1
e
,K, L,

1
h
, kakWm�1,1 UPð Þ

� �

�
X

2jþ1�mj2N0,
k rw � Ljw
� �

ukL2 UPð Þ þ
X

2j�mj2N,
kLjwukL2 UPð Þ

 !
:
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