COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS Taylor & Francis
https://doi.org/10.1080/03605302.2020.1839762 Taylor & Francis Group

‘ W) Check for updates

Regularity of nonvanishing - at infinity or at the boundary
— solutions of the defocusing nonlinear
Shrodinger equation

Nikolaos Gialelis?, Nikos I. Karachalios®, and loannis G. Stratis®

?Department of Mathematics, National and Kapodistrian University of Athens, Athens, Greece;
PDepartment of Mathematics, University of the Aegean, Karlovassi, Greece

ABSTRACT ARTICLE HISTORY
Considering the defocusing nonlinear Schrodinger equation (NLSE) Received 4 November 2019
in generic (bounded or unbounded) open sets U C R" for n=1, 2, Accepted 10 October 2020
and 3, we prove the regularity of weak, non-vanishing solutions at
infinity or at the boundary of U. Our approach is based on suitably
defined extension operators, along with a priori estimates for regular d : )

5 q 3 efocusmg extension
functions, under certain assumptions on .the smoothness of. the operator; nonlinear
boundary. The results cover physically significant classes of solutions, Schrodinger equation
as dark-solitons and compacton waveforms, when the notion of such (NLSE); non-vanishing
solutions is extended in higher-dimensional set-ups. solutions; regular solutions.

KEYWORDS
A priori estimates;

AMS SUBJECT
CLASSIFICATION
MSC: 35Q55; 35C08;
35D30; 35B65

1. Introduction

The defocusing nonlinear Schrodinger equation (NLSE)

Ov

v
is one of the universal mathematical models for wave propagation in nonlinear disper-
sive media. It appears in a plethora of physical contexts ranging from nonlinear optics
and plasma physics, to the description of Bose-Einstein condensates (BEC), and has
attracted extensive efforts from the physical [22] and mathematical viewpoint [2, 5, 6,
10, 13, 25, 30, 31]. This interest is due to its fascinating complex phenomenology
associated with the existence of localized waveforms supported on the top of a stable
continuous background. In 1D set-ups, one of the most famous such waveforms is
the dark-soliton: when 7 =1 (cubic 1D defocusing NLSE), the simplest expression of the
dark-soliton solution has the form

Av + |v|21v =0,7 €N, (1.1)
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_ it X
v(t,x) =e tanh\/i. (1.2)
In 2D and 3D set-ups, the aforementioned solutions have highly nontrivial generaliza-
tions (if compared with the 1D case), described by the so-called vortices in 2D and vor-
tex rings in 3D, with a particular relevance to the emergence of complex spatiotemporal
structures in fluid mechanics and the physics of BECs.

The aim of this article is to discuss global-in-time existence and regularity properties
of such solutions for defocusing NLSE (1.1) in higher-dimensional settings. First, we
comment on some key works on the problem which motivated the present explorations,
and then, we discuss the novelties and extensions presented herein. The principal works
considering the existence of soliton-like solutions on the top of a finite background for
the NLSE equation on R, are [33-35]. The natural phase spaces proved to be the so-
called Zhidkov spaces X™(R), with m being a natural number (their definition is stated
in the next section). In particular, Zhidkov spaces properly capture the description of
non-decaying solitonic structures satisfying non-vanishing boundary conditions. They
may cover the existence of solutions whose density |u|* but not the solution itself is
localized on the backround, such as “density dips” corresponding to solutions u with a
kink-like topological structure, as the dark solitons. Obviously, the behaviour of such
waveforms cannot be described by the standard Sobolev spaces H*(R), or even by their
affine counterparts. The above fundamental papers established the local well-posedeness
of the NLSE in X" (R). Representative references for the extensions of the problem on
R”, are the contributions [15-17] and [21]. In [15] it is proved that the Cauchy prob-
lem for the NLSE is locally well-posed in X"(R") for m > n/2. Furthermore, the justifi-
cation of the natural conservation laws for n < 2, implies global existence in X'(R"),
and additionally, justifies the stability results for dark solitons given in [24]. The energy
conservation for any dimension n > 2, for initial conditions uy € X" (R"),m > n/2,
was first established in [21], extending accordingly, the global well-posedeness in
X?(R?). For extensions in higher dimensions n < 3 (and for a general class of nonli-
nearities) [16], the problem is restricted to the non-vanishing boundary condition for
the density, thus the problem is discussed in affine Sobolev spaces. The global well-pos-
edeness of the Gross-Pitaevskii (GPE) equation in uy + H'(R"), n=2, 3, for non-van-
ishing initial conditions u, at infinity, is proved in [17].

A first difference between our explorations in this article and the existing results so
far, is that the problem will be considered in an arbitrary open set of R”, n=1, 2, and
3. For instance, we shall seek solutions expressed in the form

v(t, x) = €7 w(t,x), with w(t,x) = u(t,x) + {(x), (1.3)

for p > 0 as well as

{‘L‘EN, if n= 1,2, (1.4)

T=1, if n=3.

Then, we consider (1.1) for x € U CR",n = 1,2,3, where U is open, and t € J, C R,
an open interval containing f, = 0. In (1.3), we assume that u:Jo x U — C and (:
U — C are sufficiently smooth. Substituting the ansatz (1.3) in (1.1), we actually seek
solutions of the problem
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i%‘A(u—i—C) + (lu+ 7 = p*)(u+0 =0, in J; x U,

u=uy, in {t=0}xU, (1.5)
. || =00 . _
u=0, in JyxOU, and u — 0, in Jo x U,

where J§ = Jo \ {0}.
Note that the last condition in (1.5) covers the following cases:

1. U =TR". In this case, we shall require that u(t,x) vanishes as |x| — 0o, so that
accordingly v(f, x) shares the same decaying behavior with {(x) on a constant
background of intensity p > 0. This case corresponds to solutions decaying as
|x| — oo, on the top of a non-vanishing background, and generalizes the notion
of dark-solitons in the higher-dimensional setting (see e.g., [15, 16, 21]).

2. U CR", unbounded. In this case u=0 on Jy x OU, with u(t,x) — 0 as |x| —
ocoin Jo x U.

3. U bounded. In this case u=0 on J, x OU.

The last two cases are of physical significance: motivated by the class of compacton
solutions of the NLSE, [28, 29], seeking solutions of the form (1.3) in a generic U, gen-
eralizes the notion of non-vanishing compactons in higher-dimensional settings. Recall
that a compact wave is a solitary wave with a compact support, outside which it van-
ishes identically. A robust' compact wave is called a compacton. There is great variety
of dark compactons, for example in 1D, such as cuspons (cusp-alike density dips), com-
pact kinks (kinkons), or dark compactons (smooth density dips), see [27] for a descrip-
tion. To highlight further the role of the terms appearing in the NLSE of the problem
(1.5), let us note the following: substitution of the first expression v(t,x) = e 'w(t, x)
gives the following GPE type equation for w

i%—v:—Aw—l— (jw)* = p*)w =0, (1.6)
see e.g., [17] for p = 1. Then, in the case of the 1D cubic NLSE (n = 1,7 = 1), the dark
soliton solution (1.2) corresponds to p = 1. Thus, the constant p represents the ampli-
tude of the finite background in the multi-dimensional setting, as mentioned above.
The term —p**(u + () in (1.5) appears after inserting the expression (1.3) for w in (1.6).

In the above-generalized set-up for the domains U, the main results of [16] are
extended in [19], by weakening the regularity assumptions on (. Furthermore, moti-
vated by the variety of dark compactons with respect to their regularity, a first study for
the Hz—regularity of solutions of the problem (1.5) when n = 1, was considered in [20].

In this article, we extend the latter regularity result for both cases of the spatial
domains discussed above, in the following cases of nonlinearity exponents and spatial
dimensions:

'A robust wave is an orbitally stable solitary wave that almost preserves its shape (in an appropriate norm) after
interacting with another solitary wave or, more generally, with another (arbitrary) localized disturbance, [29].
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T€EN, if n=1,
{‘E_ 1, if n=2. (1.7)

The classical approach for the weak solvability, which allows for the derivation of esti-
mates for the energy of the solutions, is based on the “regularized nonlinearity” tech-
nique, presented in [5]. Here, we introduce an alternative approach, which not only
permits the derivation of such estimates, but it is also applied to derive the aforemen-
tioned regularity results. In more detail, this approach can be described in the following
two key points:

1. Local-in time weak solutions and their extension to global. First, we use an energy
method to establish local-in time existence of weak solutions for the problem
(1.5); see also [5, Chapter 3] for the standard Cauchy problem for the NLS equa-
tion in the general domain. However, as underlined above, the energy method is
drastically modified so that to extend the local existence results in the general
domains U including RN, and not only in RN which is the case of [15, 16]:
Instead of the “regularized nonlinearity” technique, the Galerkin approximations
are combined with an approximative domain expansion scheme for the original
domain U. This is achieved by introducing suitable extension/restriction opera-
tors and cutoff functions. The existence of global in time solutions is associated
with the uniqueness of local-in time ones for arbitrary time intervals shown
above (see also [5, Theorem 3.3.9] for a related argument). For the case of gen-
eral bounded or unbounded domains, we are applying suitable versions of either
the Sobolev (n=1), or the Trudinger/Gagliardo-Nirenberg (n=2, [26]) inequal-
ities in order to establish uniqueness for arbitrary time intervals J, as above, and
thus, their continuation for all ¢+ € R. In the case where U=R", n=1, 2, 3,
Strichartz (dispersive) estimates are replacing the above inequalities, as in the
proof of [19, Proposition 11].

2. Regularity of solutions. We derive suitable estimates of the extension operators
defined on sets with adequately smooth boundaries along with certain a priori
estimates for regular functions in order to estimate the high-order weak deriva-
tives of the nonlinearity. These estimates are proved by a combination of multi-
variate Fad di Bruno formula and Gagliardo-Nirenberg type inequalities. These
estimates are used to extend the regularity results in the case of bounded sets
and in the case of the whole of R", generalizing the results of [21], which cover
only the case U =R". An additional feature is that in the case of bounded
domains we provide information on the dependence of the elliptic regularity esti-
mates from boundary characteristics. It should also be remarked that while all
regular solutions are proved to be unique and global, the regularity proofs are
independent of uniqueness.

In summary, the above results extend the existence of non-vanishing, global-in time
solutions, for the case of bounded or unbounded multidimensional domains, covering a
wide class of physically relevant waveforms, while they associate their regularity, shown
so far only for U = R", with the properties of their boundary. The proposed approach,
being fairly generic, can be potentially applied to other relevant higher-dimensional
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NLS or GPE counterparts as the sublinear NLS [37], or models incorporating dissipative
effects [18, 22]. The energy method approach could also be extended for establishing
the existence and regularity of non-vanishing solutions beyond NLS equations; we refer
to [37] for compacton solutions of the complex sublinear Klein—-Gordon equation.

This article is organized as follows: In Section 2, after the proof of some auxiliary
results relevant to the properties of operators defined by the nonlinear term, we weakly
formulate the problem (1.5). For this purpose, we assume that { belongs to a Zhidkov
space, and impose suitable restrictions on {, in order to control its behavior at infinity,
or on the boundary of U. The conclusions of Subsection 2.3 are useful for the extension
of the local existence result in bounded sets (see Theorem 3.1), also in unbounded ones
(see Theorem 3.2). These theorems are the main results of Section 3 and are used in
conjunction with Sobolev or Trudinger-type or dispersive-type estimates, to establish
uniqueness and global-in time existence. The questions about regularity are answered in
Section 4. Therein, we derive the estimates of the extension operators (Theorem A.1)
and combine them with a priori estimates for regular functions (see Proposition A.9) as
mentioned above. This way, we estimate the derivatives of the nonlinearity (see
Corollary 4.2 for n =1 and Corollary 4.3 for n = 2), employing the multivariate Fad di
Bruno formula and Gagliardo-Nirenberg type inequalities. The regularity result in
bounded sets is proved in Theorem 4.1 and Corollary 4.4, while for the whole of R" in
Theorem 4.2.

Throughout the article, we systematically employ suitable extensions of some known
results which are included (for the sake of brevity without proof) in Appendix A.

Some notation.

We denote by C any generic positive constant, as well as, any increasing function C :
[0,00]" — (0,00], for some m € N. The presence of the subscript -, to a differential
operator for “space”-variables indicates that we consider the operator with the weak
(i.e., distributional) sense, while its absence indicates differentiations in the classical
sense. In what follows, U, U, j € N, are arbitrary open subsets of R". Also, X(U)
stands for a space of functions defined on U. If u € X(U;C) and also every derivative —
in some sense S - of the kth order (k € Ny), i.e., every D%u, with o € Nj and |a| =k,
exists, then VKu stands for the vector having as components those derivatives.
Following the notation of, e.g., [12] and [32], if u:]J x U — C, with u(t,-) € X for
each t € J, then we associate with u the mapping u:J — X, defined by [u(t)](x) :=
u(t,x), for every x € U and t € J. For the weak derivative (when it exists) of the
“time”-variable of a function-space-valued function u, we simply write u’.

2. Properties of operators and energy functionals - weak formulation of
the problem

As in [16], the problem (1.5) is naturally formulated in the class of Zhidkov spaces: for
every m € N,X™(U) will stand for the Zhidkov space over U, which is the Banach
space

X"(U) = {u € L*(U) | Viue 1*(U), for k= 1,...,m},

endowed with the norm
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||“||Xm(U) = ||u||L°°(U) + Z ||V5”||L2(U)

1<k<m

We remark that, in this article, we will consider the spaces X" over any open set U C
R", n=1, 2, 3, and not only in R". The standard example of a function which is an
element of these spaces is tanhx; it belongs in N%°_ X" (R). We note that these spaces
considered over R were first introduced in [3 ]. Their generalizations in R",n > 1
(along with the suitable modifications), were first introduced in [15, 17, 36] and [16].

2.1. Basic continuity properties of operators

We proceed first by recalling some useful versions of the Gagliardo-Nirenberg inequal-
ities, and, then by describing Lipschitz continuity properties of the nonlinear operators
involved in the problem (1.5). The former is stated in the following lemma.

Lemma 2.1. If

(0, 00), if n= 1,2,

AS 4 .
(0, ), otherwise,
n—2
then
[[ta]| 2y < ClI Vs ;;*H;n ||L2 *“ , Yu € C*(R"),
or else
[l ez < CIIVWMIIL’“ [|u IILz , Vu € Hy(U). 2.1)

Proof. This is a version of the Gagliardo-Nirenberg interpolation inequality (see, e.g.,
Theorem 1.3.7 in [5]). O

The first continuity property for operators refers to the power-law nonlinearity con-
sidered as a mapping on L?(U)-spaces, for suitable exponents p.

Lemma 2.2. If a € [0,00), then

Iul"u = [v[*v

2 < C(llu
L1+1(U)

%wz(U) + ||V

o) Il Yo € L(0)

(2.2)

Proof. It is a direct application of the elementary inequality
llz1%21 — |22]722| < Cylz1r — 2| (|21|? + |22]7), V 21,2, € C, Vq € [0,00), (2.3)
the Hélder inequality for p; = a4 1 and p, = “£1, and the elementary inequality
21 + 2|7 < Cy(lz1]? + |22]%), V 21,22 € C, Vq € [0,00). (2.4)

|
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The next two propositions establish the well definiteness and continuity properties of
the nonlinear term

gl . 0) = (fu+ L = ) (+ ),

of the NLS (1.5), when considered as a nonlinear operator g : X — ), with &, ) being
suitable functional spaces for our purposes. For brevity, in most of the cases, we will
simply write g(u) for the above nonlinear term. We assume that p and 7 are as in (1.4),
and that { € L>(U,).

Proposition 2.1. Let u,v € Hy(U).

1. Ifn=1, then

lg(w) ~ gWllizwy < (Il Wl 1y )18 = Viw)— @9)
2. Ifn=2, then
le(w) =gl < C(1lulln oy ¥ 0 1€l ) o6
% (Il = Aoy + e = Vi) |
and
lg(w) W)l < C(1lulln oy 1V 0 1€l ) .
x (Jl = Vil + It = vllagey ). |
3. Ifn=3, then
&) = 803003120y < (Il Ml oy 18l ) % o
% (I = Aoy + e =Vl ) |
and
lg(0) = 803003120y < (Il Ml o 18l ) % 09

x (Il = vl ) + e = Vo) )

Proof. Let n = 1,2. Using the inequality (2.3), we get
J, lotw —gPax < €] (ul"™ + = vPas+ (ML ) + 1) s =l

For n = 1, we employ the scaling invariant embedding Hy(U) < L*(U) to derive (2.5).
For n =2, we get (2.6) by applying Holder’s inequality (p; = p, = 2) and the scaling
invariant embedding H; (U) < L?(U), for ¥ € [2,00). Then, the inequality (2.7) follows
from (2.6) and (2.1). For n = 3, we note first that

gu) —g(v):=h+1L,

where
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I, = |u|*a — [v[’¥ and L,
= 20(Juf = W) + @ =) + QP = p*) (w—v) + T (u—v).
By using (2.2), we deduce that I, € Li(U), satisfying the inequality
101300, < S (el IVl o ) e = Al

For the term I,, we apply again Holder’s inequality (p; = p» = 2) and the scaling invari-
ant embedding H}(U) — L?(U) for ¥ € [2,6], to get that

[ VP < C(Melon) | = v 5 1) o = o <
U U

< C(H“”H‘(U)’ ”VHH](U)’ ||C||Loc<U)> (||“ - V||i4(u) + Ju— V||i2<u)>~

Hence, (2.8) follows by a combination of the above inequalities for I; and I,. The proof of
(2.9) is a consequence of (2.8) combined with the Gagliardo-Nirenberg inequality (2.1). O

A useful corollary of Proposition 2.1, following in particular from (2.8), is the
inequality

HORTI < € (Il o 170 1€ )

JL3(U)) +12(1:22(U) (2.10)
X (H” =Vl gL4(u)) T llu— V||LP2(];L2(U)))’
which holds for every u,v € H}(U) and p1,p, € [1,00], when n = 3.
Proposition 2.2. Let u,v € H}(U), and assume that (|{| — p) € L*(U).
1. Ifn= 1,2, then
gy < (Il 1€l 16 = Pl ). @1
2. Ifn=3, then

186018 0y 200y < SNl Il I1E] = llpy)- 212

Proof. First, we prove that g(0) = (|¢|* — p**){ € L*(U). Indeed, by using the identity

a"'— b =(a—-b) @' +a" b+ ... +ab" 2+ "), (2.13)
we get
180} < C(Nelm o 11EL = pllzen)-
Then, the claimed inequalities follow from Proposition 2.1. O

Summarizing the above results, for p and 7 as in (1.4) and { € L*(U) with (|{] —
p) € L*(U), we deduce that
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12(U), if n= 1,2
I3

(U) +I2(U), ifn=3 —H(U).

g:1}(0) - {

2.2. Definition of weak solutions and energy functionals

We proceed to the definition of weak solutions and associated energy functionals. We
start by further assuming that { € X'(U), and by defining the form N, -] : Hy(U) x
Hy(U) — C, as

Nu,v) = (A(u+0),v) + (g(u),v), V u,v € Hy(U).

Then, the problem (1.5) is weakly formulated as follows: for every uy € H}(U), a weak
solution of the problem (1.5) is a function

u e L®(Jo; Hy(U)) n W (Jo; H(U)),
satisfying the formula

{ (in',v) + Nu,v] = 0, for every v € Hy(U), a.e. in Jo,

a(0) = . (2.14)

From (2.11), (2.12) and Holder’s inequality, we get the following estimate for N[u,v] :
A7) < (o N NE1 = Pl )l ¥ v € D). (215)

For the above weak solutions, we shall consider the respective energy functional
E:H)(U) — [0,00],

1
E(sp () == EHVw(' + Ol + G p1.0).
In the definition of E, the functional G : H}(U) — [0, 00] is given by
G(;p0.0) :=J V(|- + ;s p, 1)dx,
U

where V : [0,00) — [0,00) is defined as

1 2‘r+2_l 2T 2+

2742
- _t 2.16
20+ 2 2P p (2.16)

Vi(x;p,7):
(x:.p27) 20+2

It is straightforward to check that for every constant C; > 27 + 2, we have

CPZT %
L CV(x), Vo> | ——— . 2.17

The functional G satisfies several estimates given in the following proposition.

Proposition 2.3. Let u,v € H}(U).
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1. Ifn=1 2 then

G(u) = G(v)| < C(H“HH](U)’ Wl 0y Nl oy M11ET = pHLZ(U)) X

(2.18)
x[lu — V”LZ(U)‘
2. Ifn =3 then
|G(u) — G(v)| < C(H”HH‘(U}’ HVHHl(U)’ C“LOC‘(U)’ <1 = p”LZ(U)) X
(2.19)
% (Il = Vs + e = ey )
G(u) = G(v)| < C<||”||H1(U)’ [Vl 0y Ny N1ET = p”LZ(U)) X
. (2.20)
% (e = vl o) + = o )
as well as
6(u) < (Il 0y 1w 1E] = Pl ) @)

Proof. For every fixed x € U we use the mean value theorem to write
V([u(x) + ()] = V(v(x) + L))
= J |su(x) + (1 — s)v(x) + C(x)|21Re[(su(x) + (1 = s)v(x) + {(x)) (u(x) — ¥(x))]ds—

0

- J R (su(x) + (1 = $)v(x) + {(x)) (8(x) — 9(x))]ds =

0

= Re (J (|su(x) + (1= $)v(x) + L0 = PZT) (su(x) + (1 = s)v(x) + {(x)) (w(x) — v(x))ds).

0

Hence, we have that for all x € U,

V(lu+) = V(v +D)

1

= Re (J <|su +(1—s)v+ C|2T - p21> (su+ 1 —=sv+0)(u— v)ds) .

0

Using the identity (2.13), we expand the power-like terms in the right-hand side, get-
ting

1

V(utL) = vllv+d) = Re(J (Isu + (1 =+ - pz)(su + (1 —s)v+ @ —v)x

0
X (Jsu+(1—s)v+ C|2(T71) + p*lsu+ (1 —s)v+ C|2(H) +..+

+ 2 D su+ (1= s)v+ {f + pz“‘”V”) '

2 .
, we derive the

Setting w = su + (1 —s)v, and further expanding the term |w 4 (
inequalities
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[(fw+ P = p?) (w + O = [(Iwf + 2Re(Ew) + I = p?) (w + 0] <
< (118l ) (wl® + 1wl + 1121 = pl) (Il + 1) <
< C118leqon ) (- [l =+ Iwl + 1121 = )
< C(I1elleqon ) (i + 1121 = 1),
and

[+ 2P P+ PO e P L 7

<C’|w+C| =Y +1‘

sqwf*+mw*+4sc@mmmwa”+O.

Then, we have that

AN

[(Iw+ ¢ = p2) w4 O [lw 4+ P 2w+ L 4t 02D P g2
< C(11elleqon ) (W 41121 = o) <

< C(1lmq) (P 4 (= 7 P ] = ).

The latter, implies the estimate for V
V(2D = V(I + L)1 < C(elmoy) (" o 1] = pl) s — v
In turn, the functional G satisfies

16(8) = G < O(ICllw) | (P P+ 11 = pDlu = v

To conclude with the claimed estimates, we work similarly as in Propositions 2.1 and
2.2. For n = 1,2, we employ Holder’s inequality for p; = p, = 2 and the scaling invari-
ant embedding H}(U) — L**?(U) to get (2.18). For n =3 and T =1, we get (2.19),
again from Hoélder’s inequality applied once for p; = % and p, = 4, then for p; = p, =
2, and by using the scaling invariant embedding H}(U) < L*(U). The estimate (2.20)
follows from (2.19), along with (2.1).

For the proof of (2.21), it suffices to show that

G(0) < C(1IEll~s 118 = Pllizw))-

To this end, we first observe that

1 2e41) L oopen T 2(1+1)
G < V = _ -
(0) >~ JU (lCl)dX JUz(T 1) |C| 2/) |C| 2(T 1) p dx,

and next, we employ the identity

A —atn+ )b + b = (a— )@ +2a" b+ ...+ (n— 1ab" 2 + nb"Y),

to obtain the desired estimate. 0O
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From Proposition 2.3, it follows that indeed, the functionals E,G : Hj(U) — [0,00)
are well defined.

Remark 2.1. An alternative proof for Proposition 2.3 can be given by verifying that g is
the Gateaux derivative of G.

2.3. Properties of non-linear operators on domain restrictions

Here, we make a note concerning the definition of operators and functionals discussed
previously, on restrictions of functions considered on subsets of the original domain.
For the definition, notation, and properties of these restrictions we refer to Appendix A
and its Subsections A.1, A.3, and A4.

The scaling invariant Sobolev embeddings are essential for the definition of the oper-
ator g, as well as the functionals E, G on Hé(U), for every U. Hence, in virtue of
Corollary A.1, by defining these operators and functionals for every u € Hj(U) for
some arbitrary U, we can also consider them defined for every ((R(U,V))u) € H'(V)
for every open V C U (note that we have ((R(U, V))u) € H'(V) for every open V C U
from Proposition A.1). This means that we do not need to impose any regularity
assumptions on JV in order to consider the scaling dependent Sobolev embeddings of
Corollary A.2. However, this is not true for the bounds derived by using (2.1), for
which we need to employ the results on restriction operators stated in Theorem A.1.

Thus, we get, for every U and every u,v € H}(U), that

L*(V) if n= 1,2
. 1 A 5 5 C
go(R(U,V)) : Hy(U) — {Li(V) LIAV), ifn=3, for every open V C U,

(2.22)
and
0 (R(U,V)),Go (R(U,V)) :Hy(U) — [0,00), for every open VC U,  (2.23)
are well defined, and satisfy
(g o (R(U.V))) () = (g o (R(U.V))) () (V)| 2y <
< C(llullin vy iy 1€l oy ) % (224)
X [(R(U.V))u — (R(U V)Vl vy if n=1,
(g o (R(U.V))) () = (g o (R(U.V))) () (V)| 2y <
< c(uunHl iy 1o ) %
< (IR ~ (RO VDY) + ROV = (RUVDWisqry ) i n=2,
(2.25)
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I(g  (R(U.V)) () = (g o RV @D 313 20y
< C(lellnwp IVl 1o ) %

% (IR V) = (RUV Wiy + IRV = RVl ) i =3,

(2.26)
as well as
(G o (R(U, V) () = (Go (R(U, V))()] <
< C (1l WMl oy 18l 1121 = Plliaqoy ) % 227)
< [(R(U.V)u = (R(UV)Y]pyy i n= 1,2
and
(G o (R(U, V) () = (Go (R(U, V) ()] <

< (Ml oy ¥l 1€l 1] = ol ) %
< (IR, V))u = (R(UV)Wisqr + [(R(U. V) = (ROU VWl ) if 1 =3,
(2.28)

for every open V C U.

3. Weak solutions

In this section, we prove the existence of weak solutions for the problem (1.5), by suit-
ably implementing the Faedo-Galerkin method. Before we proceed, we state and prove
some preliminary lemmata.

Lemma 3.1. For every f € H™'(U) there exists {jj}]nzo C L*(U) such that

(f,v) = J vfy + i (aiv)ﬁdx, Vv € Hy(U),

U j=1
and, in particular, we have

(v.f) = (f,v), Vv e Hé(U), Vf € L*(U).

Proof. The first result follows from a direct application of the complex version of
Riesz-Fréchet representation theorem (see, e.g., Proposition 11.27 in [3]). The second is
a direct consequence of the first one. O

Lemma 3.2. Let ] be bounded, X be a Banach space and X, be a Banach space with the
Radon-Nikodym property with respect to the Lebesgue measure in (J, %(])).

L Let {w}, CL*(J;X1) and u:] — Xy with w(t) — u(t) in Xy, for ae t€]. If
[ well .2, < C uniformly for every k, then w € L*(J; X1) with [[u|;~;.x,) < C
where C is the same in both inequalities.
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2. Let {u}, U{u} C L®(J; X3) with wp % u in L™(J; X3 If [0l (ap) < C uni-
Jormly for every k, then ||u||;«(;.x;) < C, where C is the same in both inequalities.

Proof. For Point 1., we derive that [lu(t)|y, < C, for ae. t €], from the (sequentially)
weak lower semi-continuity of the norm, hence the result follows. As for Point 2, let
v € X be such that |[v]|,, <1 and set v:] — X, the constant function with v(t) := v,
for all t € J. We have

s+-h
J (ug, v)dt < Ch, for a.e. s €J° and every sufficiently small h > 0.

N

Considering the limit uy — *u in L*(J; A7), dividing both parts by h and then letting
h\, 0, we get, from the Lebesgue differentiation theorem, that (u(s),v) < C, for a.e.
s € J°. Since v arbitrary, the proof is complete. O

Lemma 3.3. Let zp € C" and z : Jy — C" be the unique, maximal solution of the initial-
value problem

{Z/(t) = iF(z(t)), Vt€J;
z(0) = zp ’

for an appropriate function F (e.g., locally Lipschitz). If zg € R" and F(z) = F(z), then ],

is symmetric around 0 and also z(t) = z(—t), for all t € J;.

Proof. We define —Jp:={t€R | —t € Jo} and also y: —Jo — C" with y(t) := z(—t),
for all t € — Jp. Since zp € R"” and F(z) = F(z), we can easily see that y solves the
above problem (in —J;). Hence —Jy C Jo, since z is the maximal solution. Therefore, J,
is symmetric around 0. We can now define the function x : Jy — C" as x(t) := z(—t),
for all t € J; and we deduce that x also solves the problem (in J;). Hence, z(—t) =
x(t) = z(¢t), for all t € J,, since z is unique. O

Lemma 3.4. Let m € N,p € [1,00], Uy, Uy, ¢ € CX(Uy) and u € WP (Uy). If we set
¢:=(R(ULU NU,))¢ and v := (R(U,, Uy N UL))u,
then

(pv) € W(T’p(Ul N U,), with ||€0V||Wm»p(U1mU2) < C<||¢||C{3”(U1)>||u||W%P(UZ)'

Proof. We assume that U; N U, # (), otherwise we have nothing to show (see also Point
3. before Definition A.3). In view of Proposition A.7, we derive that

(pv) € WP(U1 N Uy), with [[ @V yymp(u,nv,) < C(HQDHC{;"(UMUZ))HVHW'”)P(UIFTUZ)’

hence

*That is, ue — *u in o(L®(J; &%),L'(J; X3)). Note that L>(J; X3) = (L'(J; X,))" (see, e.g. Theorem 1, Section 1,
Chapter IV in [8]).
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||(/’VHW%P(U10U2) < C<||¢||Cg*(U1)) ||u||W"‘>P(U2)‘

Now, we consider {u}, C C°(Us), such that ux — u in W™?(U,) and in an analogous
manner we set

vk = (R(Uy, Uy N VL) )ug, Vk.
Evidently,
(pvk) € C"(U, N Uy).
In particular, we can easily deduce that
(evr) € CH (UL N Uy).
Applying (A.3), we derive that

|pvi — Q’WHW"»P(UmUZ) = ||€0(Vk - V)HW'"’P(UMUZ) < Cljvk - V”W%P(UmUZ) <
< Cllux — “||Wm,p(U2) —0

and the desired result follows from the definition of W(')11 P -spaces. 0O

Theorem 3.1. If U is bounded, then for every uy € Hy(U) and every bounded interval J,
there exists a solution of (2.14), such that

||u||L°C(]O;H1(U)) + Hu/”Lm(]O;H*l(U)) < C(HMOHHI(U)’ ||C||X1(U)’ ¢ — p||L2(U)’ |]0|> (3.1)
and also
E(u) < E(uo) everywhere in Jo. (3.2)

Moreover, if uy and ( are real-valued, then the above solution satisfies u(t) = u(—t), for
every t € Jo with |t| < dist(0,9)p).

Proof. Here, we use the notation
C = C(lluollanwys Il M) = Plzer
and

C 1= C(loll oy 1wy 111 = Plizos ol

Now, based on

1. the fact that U € {Up} (see Subsection A.8.3) and also H}(U;R)— — L*(U;R)
(see Proposition A.6),

2. the Fredholm theory and

3. the fact that the field C can be regarded as a vector space over the field R,

we deduce that the complete set of eigenfunctions for the operator —A,, restricted to
Hy(U;R), is an orthogonal basis of both Hj(U;C) and L*(U;C). Let {wi};° C
Hj(U;R) be the aforementioned basis, appropriately normalized so that {w;};° is an
orthonormal basis of L?(U; C). We then employ the standard Faedo-Galerkin method.



16 @ N. GIALELIS ET AL.

Step 1o
For every m € N, we define d,, € C*(J,,; C"), with d,(t) := (d¥ (t));_,, to be the
unique maximal solution of the initial-value problem

{dm’(t)—Fm( m(t), Vt €5,

dm(0) = ((Weuo))i, (= ((uo, wk))i_y>in view of Lemma 3.1),

where F,, € C*(R*";C") with

Fr(2) == iN

m
Zzlwl, wk], for every z := (zl);il € C", for every k= 1,...,m

=1

We note that the smoothness of F,, follows by directly applying (N times, for arbitrary
N € N) the common Leibniz integral rule. Now, we define u,, € C*(Jy,; H}(U;C)),
with

k=1

In view of Lemma 3.1, it is easy to verify that

(iy, wi) + N [um, wi] = 0 everywhere in Jo,, for every k= 1,...,m. (3.3)
Step 1
By using the Bessel-Parseval identity, we get that
u,,(0) — uy in L*(U) and 0 (0) |20 < Nl 2 (w)- (3.4)

Furthermore, we can argue as in [12, Step 3. Theorem 2, Section 6.5], to deduce
Vo, (0) — V1o in L*(U) and [V (@ (0) |20y < Vwtdol|120)- (3.5)
Now, these limiting relations have two immediate consequences: First, the bounds in
(3.4) and (3.5) imply that ||u,(0)|[zn () < [[tho]lp(v)> hence, in view of (2.21), we derive
E(u,,(0)) < C. (3.6)
Second, the convergences in (3.4) and (3.5) imply that w,(0) — uy in H'(U).

Moreover, from (2.18), (2.20), and the convergence in (3.4), we get G(u,,(0)) — G(uy).
Combining the last two convergences, we conclude to

E(u,(0)) — E(u). (3.7)

Step 2o
We multiply the variational equation in (3.3) by d* /(¢), sum over k= 1,..,m, and
taking the real parts of both sides, to get

%E(um) =0, that is E(u,) = E(u,,(0)) everywhere in Jp, . (3.8)

Hence, from (3.6) we have that

E(u,) < C everywhere in J; , uniformly for every m € N. (3.9)



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS (&) 17

I:herefore, from the fact that G is positive-valued, we deduce that ||V,,(u,, + {)|| rw) <
C, which implies

vaum”LZ(U) <C. (3.10)

In order to derive a bound for the L*>-norm which is independent of |U|, we follow a
different route, instead of applying the Poincaré inequality. We note that

G(u,) < C, V¥meN, (3.11)

which follows from (3.9). Moreover, in view of (2.17), we fix some C; > 27 + 2 and we
have that

£ < C1V(x), for every x > C,, for some C, > p%. (3.12)
Setting
Q(t) :={x € U | [un(t) +{| > max{C,,1}} C U, Vt€R,

we get, from (3.12) and (3.11) (and the fact that 4 > 0), that

J [ + (fdx < G, ¥m € N, Vs € (—00,2( + 1)]. (3.13)
Q(t)

Then, we multiply the variational Eq. (3.3) by d% (), sum over k = 1,...,m, and keep-
ing imaginary parts on both sides, and thus, in view of Lemma 3.1, we get

1d

rT w3y — Im(Vl, Vi) = Im((Ju + £ = p7) (8 + O, 1) = 0.

For the middle term, we apply Holder’s inequality (p; = p, =2) and use the bound
(3.10), while for the third term we expand in view of (2.13), to deduce that

t
J (J |um|21+ldx>ds
o \Ju

In order to estimate the spatial integral, we write

|um|27:+1dx _ |um|2|um|2‘r—ldx+ |um|21+ldx
U Q(1)°nU

Q(t)

[wl72(0) < é<|t| + ) Vt € R, Vm € N. (3.14)

<

‘um|2|um|2‘571dx

J{erlummax{cz,mznmw} (3.15)

+ CJ |C|2T+1 + |um + C|2‘E+ldx
Q(1)

(3.13) 2 - ~ 5
< ClIEl ) umllzz ) + € < CA A+ [lunllz2 )

Let J, be arbitrary. From (3.14) and (3.15), we derive that

t
J ||um||iz<U)dS ), YVt € E, Vm € N.
0

[l < C, (1 +
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Hence, by the Gronwall’s inequality,
W [l e g2y < Cj,» for every m € N. (3.16)
From (3.10) and (3.16) we conclude to
[l = g vy < Crpo Y € N (3.17)

Step 2

We fix an arbitrary v € Hy(U) with [[v[|jn) <1 and write v =Pv®(Z — P)v,
where P is the projection on span{w}?" . Since u, € span{wi};" and N[hg] is lin-
ear on g, from the variational equation in (3.3) we get that

(iuy,,v) = =Nu,, Pv).
Applying (2.15) and (3.17) we derive
|(iw,,, v)| < Cy,.
Therefore
e 10y = N0l 10y < Crpo ¥m €N (3.18)

Step 3
We fix an arbitrary bounded J,. From (3.17), (3.18), point i) of Theorem 1.3.14 in [5]°
and point 1 of Lemma 3.2, there exist a subsequence {u,,}° C {u,}}" | and a function

u=uwy, € L% (Jo; Hy(U)) N W (Jo; H ' (U)),
such that
u,, — u in Hy(U) everywhere in J, and also ol e () < C. (3.19)
Step 3f
H'(U) is separable since H}(U) is separable, hence by the Dunford-Pettis theorem
(see, e.g., Theorem 1, Section 3, Chapter I in [8]) we have L>(Jo;H '(U)) =
(L'(Jo; Hy(U)))" (see, e.g., Theorem 1, Section 1, Chapter IV in [8]). In virtue of the
above, from (3.18), the Banach-Alaoglu-Bourbaki theorem (see, e.g., Theorem 3.16 in

[3]) and Point 2 of Lemma 3.2, there exist a subsequence of {uml}lﬁ1 (not relabelled)
and a function

he L™ (Jo; H'(V)),
such that
w,, b in L (Jo; H(U))with [[h]| 10y < C- (3.20)
Let € C>(J;) and v € H}(U) be arbitrary. From

1. the linearity of the functional,
2. the convergence in (3.20),

3We note that in [5], the normed space (Hy, (U), || - llen ) is considered instead of H}(U). However, it becomes clear
from its proof that the aforementioned result is also valid in our case.
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Lemma 1.1, Chapter III in [32],

the definition of the weak derivative,
Lemma 3.1,

the dominated convergence theorem and
the convergence in (3.19),

NI

we obtain

J (h, vwdtéj <h,¢v>dtélnm J}O (s Yv)dt £ limJ (uy, vVpdt

—00 —
o o 00 looU

2 lim J (W, v) Ydt 2 _ lim J (W v>x//d1,‘i — llim J (W V) W' dt
Jo Jo —J)

I—00 l—o0

e | pm oyt -] e | wova

Jo Jo

= J (w,v) ydt = J (', v)ydt,
hence h = v/, since Y and v are arbitrary.
Step 4
Since  H)(U)— —L*(U)—H '(U), from (3.17), (3.17) and the
Aubin-Lions-Simon Lemma [23, Theorem 8.62], there exist a subsequence of {um,}loil
(still not relabelled) and y € C(Jo; L*(U)), such that

u,, — v in C(Jo; L*(U)). (3.21)

From the convergence in (3.19), we deduce that y = u. This fact has two direct conse-
quences: First, u satisfies the initial condition, i.e.,

u(o) = Uy,
(as it follows from (3.21) for t = 0 combined with u,,(0) — g in L*(U) from Step 1p).

Second, from (2.5), (2.7), (2.9), (2.18), (2.20), as well as (3.17), the bound in (3.19) and
(3.21), we get

g(um) — g(w) in C(Jo; Y»(V)), (3.22)
and also
G(uy,) — G(u) uniformly in To- (3.23)

Step 5

We will show that u satisfies the variational equation in (2.14). Let now y € C(J5)
and fix N € N. We choose m; such that N < m; and v € span{wk}lk\;l. By the linearity
of the inner product and (3.3), we get that

L (it 9) — (At + 0 09) + (@), Yv)dt = 0.
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From the convergence in (3.20) we get

J (iny,', yv)dt — J (in’,yv)dt,

o Jo

while from the convergence in (3.19) we have
(Ayv,uy,) — (A,v,u), everywhere in Jy,

since the functional (A,v,-) : Hy(U) — C is linear and bounded, thus

(Ayv,uy,) — (A,v,u) everywhere in Jp.

Thus, we deduce that

(A, v) = (Ayv, uy) — (Ayv,u) = (A,u,v) everywhere in Jo,
and so
(A (W, + 0, v) — (A, (u+ (), Yv) everywhere in J,.

Applying next the dominated convergence theorem, we get

J (A (o + O )t — | (Ay(u+0), yw)dt.

) Jo

From Holder’s inequality (p; = p, = 2) and (3.22), we also deduce
J et e = | (ot pae

Jo

Since y is arbitrary, u satisfies the variational equation for every v € span{wk}zk\’:l. We
then get the desired result from a density argument, since N is arbitrary.

Step 6

We proceed to the proof of (3.2). Let € > 0 be arbitrary. From (3.7) and the equation
in (3.8), we deduce that there exists my = my(c), such that

E(uy,) < E(uo) + 6 everywhere in R, for every m > mj. (3.24)

Moreover, from the convergence in (3.19) along with the fact the operator V, :
WUP(U) — LP(U) is linear and continuous for every p € [1,00] and every U, as well as
the equivalence of continuity and weak continuity of linear functionals [3, Theorem
3.10], we deduce that V,u,, — V,u in L>(U), everywhere in J,. Hence, from the weak
lower semi-continuity of the L*>-norm, we get

IV + Ol < liln:(i)lclf Vo (W, + O)ll vy everywhere in Jo. (3.25)

Combining (3.23) and (3.25) we deduce that
E(u) < lilminfE(uml) everywhere in J,. (3.26)

From (3.26) and (3.24), we have
E(u) < E(uo) 4 € everywhere in Jo

which proves the claimed (3.2), since € is arbitrary.
Step 7
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Finally,

1. if { is real-valued, then F,,(z) = F,,(z), for every z € C" and
2. if uy is real-valued, then d,(0) € R™.

Hence, under these two assumptions, we apply Lemma 3.3 to get that d,(t) =
d,(—t) and so @, (t) = u,,(—t), for every t € R and every m € N, which is equivalent
to u,,(t) = W, (—t), for every t € R and every m € N. Now, the (conjugate) symmetry
u(t) = u(—t), for every t € J, with |t| < dist(0,0]Jy), follows from the aforementioned
symmetry, along with the convergence in (3.19) or (3.21).

Theorem 3.2. Theorem 3.1 is also valid for every unbounded U.

Proof. In Step 1 we construct an approximation sequence for the initial data, and in
Step 2 we consider an approximation sequence of problems considered in an expanding
sequence of bounded sets that eventually cover the whole unbounded set. In Step 3, we
take the limit of the aforementioned approximation sequence of solutions, and then, in
Step 4, we verify that this limit is indeed a solution of the variational equation; the key
for the proof of this step is the application of Proposition A.3. In the last Step 5, we
verify the initial condition, the energy estimate, and the symmetry of the solution. As in
the proof of Theorem 3.1, we write

Co 1= C(llwollnwp 1l 12T = Pz ol )

Step 1o
We fix an arbitrary xy € U and we set

Bk = B(X(),k), Vk € N.

In view of Proposition A.8, we consider a sequence {¢;}, C C*(R";[0,1]), such that
1. supp(¢i) C Bys1, for every k,
2. ¢ =1 in By, for every k, and
3. IVéillpx(wn < C, uniformly for every k.

We then set
@ = (R(R", By2)) i Vk.
Evidently, ¢ € C°(Bk2;[0,1]) for every k, with
1. supp(@i) C Bxy1, for every k,

2. @ =1 in By, for every k, and
3. IVellix,,,) < C uniformly for every k.
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Moreover, we set

U =B NU, v = (R(Bk+2, Uk+2)) @ Vo, := (R(U, Uk+2))u0 and
Uug, = vivo,, for every k.

In view of Lemma 3.4, we have that

ug, € Hy(Uky2), with ol v,y < Clluollgp ()> uniformly for every k. (3.27)

Step 15
We set
ugo, := (Eo(Ugya, U))ug,, k.

In virtue of Proposition A.2 along with (3.27), we deduce that

uoo, € Hy(U), with ||u00k||H1(U) = H“Ok”Hl(UM) < CH”OHHI(U) (3.28)
uniformly for every k
Now, we claim that
Uy, — to in H'(U). (3.29)

Indeed, from

1. (R(U, Uy))ugo, = (R(U, Ux))uy, for every k,
2. (R(U, U¢ N Ukir))Juoo, = ((R(Bir2, Ug N Ug1)) i) (R(U, Ug N Ug1) uo),  for

every k,
3. (R(U,Ug,, NU))ug, =0, for every k and
4. (A.3),

we have that

1.
|00, — ”OHHI(U = (R(U UIS n U))(uook - uO)HHl(U,fﬁU)

=1 (((R(Br2 UE N Uer)) ) = 1) (R(U.UE N Vi) o) s v
+I(R(U.UE, N U))“0||H1(U° ,NU)
43 |(R(U Uy mUk+1))u0||H1(U°r‘|Uk+1) + ||( (U k+1 mU))uOHHl(U,fHﬂU)

(R( k+1mU))uo||H1(Uc mu)_’o as k — oo.

Step 1y
We will show that

E(Mook) — E(uo). (330)

Indeed, from (2.18) and (2.20), along with (3.29), we deduce the limit G(ug,) — G(uo).
Additionally, ~ directly from  (3.29), we get that |V (oo, + O)l2v) —
IV (to + O)lp2y)> and thus, (3.30) follows.

Step 2a

Let J, be arbitrary and bounded. For every k, we consider (2.14) in U, instead of
U, and uy, as the initial condition instead of u,. Let
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w € L (Jo; Hy(Uk12)) N W (Jo; H (Uky2))

be the corresponding solution that Theorem 3.1 provides. For every k we have that

||uk||L‘x<]o;Hl(Uk+2)) + ||“§<||L%(10;H*1<Uk+z>) <

(3.31)
< C (1wl oo 1l 0o 1060 = )il Vol )
where
(e = (R(U, Ug2))E and ([C] = p)y := (R(U, Ugs2)) (L] = p)
and
E(uy) < E(uo,) < E(uoo,) everywhere in Jo. (3.32)

We also have that u(t) = ug(—t), for every t € J, with |¢t| < dist(0,9)p), if uy (hence
up,) and { ({;) are real-valued. From the bound in (3.27), along with the increasing
property of C and the fact that the bound in (3.31) is independent of U, the estimate
(3.31) can be written in the form

Huk||pc(]0;H1(Uk“)) + Hu;(||Lm(IO;H,1(Uk+2)) < Cy,, uniformly for every k. (3.33)

Step 28

In view of Lemma 3.4 and (3.33), we have that

(vieug) € Hy(Uks2), with vkl v,y < Cllokllp o) < Cj,» uniformly for every k,

where vy is as in Step la. Hence, in view of Proposition A.2, we define

Vi € L™ (]o;Hé(U)) as v 1= (Eo(Uks2, U))(vruy), for every k,

. (3.34)
with [|Vie|l < p.n (v)) < Cp,» uniformly for every k.
Moreover, in view of Lemma 3.4 we have that
(k((R(U, Ugs2))v)) € Hy(Up2), with
[Ve((R(U. Uk2))) 10,5y < ClIVllinuy> for every v € Hy(U),
uniformly for every k.
Hence, employing (3.33), for every k we define
fi € L% (Jos H'(U)) by (fiv) == (', i ((R(U, Ugi2))¥))
for every v € Hy(U), for every k, with €kl o (1)) < C,» (3.35)
uniformly for every k.
We now claim that
vi € L™ (Jo; Hy(U)) N L™ (Jo; HH(U)), with v = f, for every k. (3.36)

Indeed, let v € H}(U) be arbitrary. Employing

1. Lemma 1.1, Chapter III in [32],
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2. Lemma 3.1, and
3. the fact that vy is real-valued for every k,

we derive

(£ v) = (w, e((R(U, Ugsa))¥)) = (g vi((R(U. U2))9))

2 (o e (R(U, Ui )v)) 2 (J we vi((R(U, Uk+2))v)dx>

Ug+2

- (JU((EO(U](+2) U () de) = ((Eo(Urs2, U)) (vewe), v)’

Z ((Eo(Ugsa, U))(viug).v) = (vi. v)".
Therefore, from the arbitrariness of v, along with [32, Lemma 1.1, Chapter III], we
get (3.36).

Step 2y
For every open and bounded V C U, there exists ky € N, such that V C Uy, for

every k > ky. Now, for every fixed such V, we define*
vk = (R(Uksa, V))ux) € L% (Jo; HY(V)), for every k > kv,
. - . (3.37)
with [[vy, [l p.n (v)) < Cj» uniformly for every such k.
The bound above follows directly from the bound in (3.33). Moreover, in view of
Definition A.2 and the bound in (3.33), we claim that
Vyk € LOO(]O;HI(V)) ﬂLOO(]O;Hfl(V)), with v}, , = (R(Ugs2, V) (uy), (3.38)

for every k > kv, thus [V} ill;<(.1-1(v))> uniformly for every such k.

Indeed, let v € H} (V) be arbitrary. From

1. Definition A.2,
2. Lemma 1.1, Chapter III in [32] and
3. Lemma 3.1,

we derive, for every k > ky, that

(R(Uksas V) (i), v) Z(uy, (E6(V, Ugia) ) Z (g (E9(V. Upe) )Y’

é (Uk, (go(V, Uk+2))v)l = (J Uy ((SO(V, UkJrz))V)dX)

Ug+2

= <JV((R(UH2, V))w) vdx)l = (R(Uks2.V))ug.v)’

2 (R(Ukz V) u )’ = (wwiev)

“*We highlight that we don't claim that vy, € L (Jo; Hy(V)) for every k > ky.
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Thus, (3.38) follows from the arbitrariness of v along with [32, Lemma 1.1, Chapter III].
Additionally, we have

Avy ik = (R(Uksa, V) 0 Ay)ug, Vk > ky. (3.39)

To prove (3.39), we consider an arbitrary v € Hy(V), and from

1. Definition A.2,
2. (A.2),

3. (A.1), and

4.

the definition in (3.37),

we get, for every k > ky, that
(R(Uks2s V) © Ay)uge v) =(Ayti, (Eo(V, Uki)))
| (Two €V, U
Uki2

|Vl (Eo(V, Ukia)) © Vi )v)dx

= _JV(((R(Uk+2> V)) o Vy)ux) - V,,vdx
- V((VW 0 (R(Us2, V)))ux) - Vy,vdx

—| VwVvik - Vyvdx = (Ayvy i, v).
v

Then, the claimed (3.39) follows from the arbitrariness of v. Finally, in view of (2.22)
and the definition in (3.37), g(vv,k) is well defined for every k > ky. Hence, we directly
get

g(vv.k) = (R(Uk42, V) o g)uk, Vk > ky. (3.40)

Step 3o

In virtue of the bounds in (3.34) and (3.35) (along with (3.36)), we argue exactly as
in Step 3 of the proof of Theorem 3.1, in order to derive that there exist {uy}° C
{we 2, and a function

u =, € L (Jo; Hy(U)) N W (Jo; H(U)),

such that
Vi, = (E0(Uk12, U)) (Viug) — u in Hé(NU) everywhere in J, (3.41)
with HuHLOC(]O;Hl(U)) < Cp .
as well as
v/ % u' in L (Jo; H'(U)) and also W] o g1 (1)) < Cj,- (3.42)
Step 3f8

Let V. C U be a fixed, arbitrary, open, and bounded set. In virtue of the bounds in
(3.37) and (3.38), again we work exactly as in Step 3 of the proof of Theorem 3.1, but
with one exception. That is, we employ a slightly modified version of [5, point i),
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Theorem 1.3.14], being valid if one would replace H'(V) by H}(V), as we do herein.
Hence, we may get a subsequence of {ukl};ﬁl, (not relabelled), and we assume that k; >
ky, for every I € N, where ky is as in Step 2y. We also get a function
uy =uy,;, € L% (Jo; H' (V) N Wh* (Jo; H'(V)),
such that
vyl = (R(Ug42, V))uy, — uy in H'(V) everywhere in Jo, (3.43)
vy — ), in L% (J H (V). (3.44)
Step 3y
We claim that
(R(U,V))u=uy and (R(U,V))u' = ul, (3.45)
for every open and bounded V C U. ’

For the proof, we note first that for every V as above, there exists Iy € N, such that
V C Uy, for every I > ly. Now, to justify the first equivalence in (3.45) we consider an
arbitrary ¢ € C°(V). Then using

1. the convergence in (3.41),

2.V C Uy for every [ € N by the definition of the sequence {uy}°

3. (R(Uk2,V))vi, =1 for every I > Iy, since (R(Ug+2, Uy))vk, =1 by the defin-
ition of v, for every I € N, as well as V C Uy, for every I > Iy, and

4. (3.43),

we may deduce that

jV«R(U, V)u) ddx = j u (E0(V, U))p)dx

U

L lim Jka, (Eo(V,U))p)dx = lim JV((R(U, V))vi,) ¢dx

I—00

= lim JV<((R(U, V) o (Eo(Ukas U)))(Vklllk,)> ¢pdx
= lim JV(((R(U, V))o (EO(UkI+2,U)))(vkluk,)) ¢dx

IZIVIHDQ

2 lim JV((R(Uk,+2, V) (viuk)) pdx

lzlvl%oc

% lim J (R(Uys2, V))w,) ddx = lim JVV,kl pdx
\%4 \%4

lzlvlﬂx lZle‘)oc
4.
:j uy ¢Qdx,

14

everywhere in Jj, and the result follows from the arbitrariness of ¢. For the second
equivalence of (3.45), let y € C°(J;) and v € H}(V) be arbitrary. From

1. Definition A.2,
2. the linearity of the functional,
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the convergence in (3.42),

Lemma 1.1, Chapter III in [32],

the definition of the weak derivative,

Lemma 3.1,

V' C Uy, for every I € N by the definition of the sequence {uy}° ,
(R(Uk42, V))vi, = 1 for every | > Iy, and

(3.44),

O 0NN

we have

L (R(U, V), vwdtéj (', (Eo(V, U)Wt

Jo

2 [ wtev. v

= lim <vk1/,l//((50(V: U))V»dt

l—o0 o

=lim | (v, (&o(V, U))v)ydt

I—o0 To

~ lim J] (s v (R(U, Ug12)) © (E0(V, U)) ) vt

2 jim (ukl vkl((R(U Uk+2)) © (Eo(V, U)))v)'t//dt

I—o0

2 11m L w, Vi, (R(U, Ugs2)) © (Eo(V, U)) ) v)y/dt

= hrn L w, Vi, (R(U, Up12)) © (Eo(V, U)))v) y/dt

l—00

=— limJ (J w, Vi, ((R(U, Ugs2)) © (Eo(V, U)))x‘/)dx) W' dt
Jo \ J Ug+2

I—00

= —timy e [ (Jy (R(Uksar V)) (v ) ' i

Z _lim LO (JV((R(UM, V))(vk,uk,))vdx) W'dt

Izlvlﬂwc

£ _ lim J <JV((R(Ukl+2, V))ukl)fzdx) W'dt

= — lim (Vv k> )l// dt% — lim J (vvykl,v)l,b'dt
> g, > g,

=— lim | (Vv )z// dtE — lim J (vy V)Y dt
> )y, >y )y,

=— lim (VV. k> )l// dtE — lim J (Vy i V)Y dt
[ Jo =1y Jo

2 lim J (Vv kp )1ﬁdt* lim J (vy i, v)ydt

> g, =17 Jg,

Z lim J <vv,kl',tﬁv>dt:‘J
Jo

[ Jo

<uv',zpv>dtéj (uy’, V).

Jo
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Thus, the claimed equivalence follows, since  and v are arbitrary. We also claim that

((R(U,V)) o Ay)u = Ayuy, for every open and bounded V C U. (3.46)
Indeed, let v € H} (V) be arbitrary. From

1. Definition A.2,

2. (A.2),

3. (A.1), and

4. the first equivalence in (3.45),

we get
(RU V) o Awv) L (A, (E(V,U)W) = = [, Vit - (W, 0 (E(V, U)))v)dx
Y wu <<< o(V,U)) 0 V,,)v)dx
= —[,((( V))oVyu) - V,vdx
S\ o< (U, V)))id) - Ve
4i jV WllV VWVd :<Auv, >

Then, the claimed equivalence (3.46) follows from the arbitrariness of v. Finally, we
have

((R(U,V)) o g)u = g(uy), for every open and bounded V C U. (3.47)

For the equivalence (3.47), we only need to notice that in view of the first equivalence
in (3.45), along with (2.22), g(uy) is well defined.

Step 4o

Since every u, satisfies the variational equation in Uy,.,, we have that

(iwg, — Aw (g + L) + 8(uk) vi) = 0, Vv, € Hy(Ug12), VIEN.
Hence, for every open and bounded V' C U we have

(R(Ugs2, V) (iuk/ — Ay (ug + ) + g(ukl)), V) =0, Vv € H\(V), VI €N.

In virtue of the equivalence in (3.38), as well as the equivalences (3.39) and (3.40)
(along with the definition of the sequence {uk,};’il), the above equation becomes

(ivvr = Aw(Vv i +Lv) +€(Vvok)v) =0, Vv € Hy(V), VIEN, (3.48)
where {y := (R(U, V))(.
Step 4p

Directly from (3.44) we have
J (ivy, s yv)dt — J (iny/, yv)dt, Y € CZ(J5), Vv € Hy(V). (3.49)
Jo Jo

Moreover, in view of (3.43), we argue exactly as in Step 5 of the proof of Theorem 3.1
to obtain

J] (A (¥y.s, + L) bt — J (A + ), g, (3.50)

Jo
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for every i and v as above. Additionally, in virtue of the bound (3.34) for k; instead of
k, along with the scaling invariant compact embeddings (see Proposition A.5)

H)(U) < < (R(U, V))(L2(U)) and HY(U) = < (R(U, V))(L*(1V)) (n= 1,2,3)
we deduce that there exists a subsequence of {vy}™ (not relabelled) and a function
z € X(Jo; L*(V)), such that

(R(U, V) (vi(t)) = z(t) in L*(V) and (R(U, V))(vi(t)) — z(t) in L*(V),  (3.51)
for every t € J,. Since

vy = (R(U,V))vi, YI> 1y, (3.52)
where [y, is as in Step 3y, we deduce, from (3.43), that
Z=uy. (3.53)
In virtue of (3.51), (3.52), (3.53), along with (2.24), (2.25), and (2.26), we derive that
&(Vv,k) — g(uv) in {g((\‘//)),—l- L2(v), i? Z z 3’1’2 everywhere in Jy.

Hence, the dominated convergence theorem implies the limit

J (g(vvk) Yv)dt — J (g(uy), yv)dt, Y € C*(J5), Vv e Hy(V). (3.54)

0 0

Gathering (3.49), (3.50), and (3.54), we get from (3.48) that
(iuy’ — Ay (ay + Ly) + g(uy),v) =0, Vv € Hy(V). (3.55)

Step 4y
In virtue of the second equivalence in (3.45), as well as the equivalences (3.46) and
(3.47), we get from (3.55) that

HY(V)

(R(U, V) (iu' — Ay (u+ ) + g(u)) 0.

Since V C U is arbitrary open and bounded, we deduce from Proposition A.3 that u
satisfies the variational equation in U.

Step 5a

As far as the initial condition is concerned, we first note that

vi(0) — uo in H'(U). (3.56)
Indeed, we have

Vk(O) = (Eo(Uk_»,_z, U))(Vkll()k), Vk.

Thus, we get (3.56) by working exactly as in Step 1f. Therefore, by combining (3.56)
with the convergence in (3.41) for t = 0, we deduce that u(0) = u,.

Step 5p

We will show that

E(u) < E(uo) everywhere in Jo.
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Indeed, we have from Theorem 3.1 that
E(uy) < E(ug,) everywhere in Jo-
Hence, from (3.32) and the fact that E is positive, we deduce
E(vv,k) < E(uoo) everywhere in J;, for every open V C Uy, for every k.

Let now € > 0 be arbitrary. In virtue of (3.30), we have that there exists ko = ko(e),
such that

E(vv,k) < E(uo) + € everywhere in Jo, for every open V C Uj,,,

for every k > k. (3.57)
From (3.51), (3.52), (3.53), along with (2.27) and (2.28), we derive that
G(Vv,K) — G(uy), for every open and bounded V C U. (3.58)

Moreover, from (3.43) along with the (sequentially) weak lower semi-continuity of the
H'-norm, we deduce that

ey [y < lilrEilolf [Vvi |l vy everywhere in Jo.

In virtue of the first convergence in (3.51) (along with (3.52) and (3.53)), the above
inequality reads as

[Vwav 2y < lilminf IVwvvi |l p2(v) everywhere in Jo, for every V as above. (3.59)

In addition, it is straightforward to check from (3.43) that

Re(vy, k() — Re(vy,{) everywhere in J;, for every open and bounded V C U.
(3.60)

Let now k; for | < Iy instead of k in (3.57). From (3.58), (3.59), and (3.60), we get
E(uy) < E(uo) + € everywhere in Jo, for every open and bounded V C U,
or else,
E(uy) < E(ug) everywhere in Jy, for every open and bounded V C U, (3.61)

since € is arbitrary. In virtue of the first equivalence in (3.45), it only remains to con-
sider in (3.61) an increasing sequence {Vi C U}, of open and bounded sets with Vj —
U, eg., Vi = Uy for every k and to let k — oo, in order to conclude with the claimed
energy estimate.

Step 5y

The (conjugate) symmetry around t =0, follows directly from the convergence in
(3.41) along with the fact that every vy, satisfies the same symmetry.

Let us note that the defocusing nature of the equation permitted a stronger version
of a local existence result: Instead of the standard statement “for every initial condition,
there exists a bounded interval...”, we established in Theorem 3.1 and Theorem 3.2
that “for any initial condition and any bounded interval J,...”. Hence the local-in time-
solutions can be extended to global ones as remarked in the proof of the follow-
ing result.
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Theorem 3.3. Let u be as in Theorem 3.1, or as in Theorem 3.2. If

i L.n=1,
ii. n=2andt=1, or
iii. U=R"(n= 1,2,3),

then u is unique and global, for which the energy is conserved.

Proof. Since local-in-time solutions exist for any given bounded interval J,, their unique-
ness would imply their global-in-time existence.

As far as the uniqueness is concerned, we refer to [19], where for the case i. the
embedding H{'(U) — L>(U) is employed. As for ii., either the Trudinger or the follow-
ing version of the Gagliardo-Nirenberg interpolation inequality’ is employed:

1 -1 i
[ull () < CPI V]| 2y [l Vi € H,(U), V1 €[l,00), n=2.

Finally, for the case iii., the result follows from the Strichartz (dispersive) estimates.
Moreover, one can utilize the above uniqueness result along with the backwards-in-

time existence of the solution, in order to eventually establish conservation of energy

for this solution. This crucial property can be proved as in [20, Proposition 8]. O

4, Regularity of solutions

In this section, we study the regularity of the solutions of Section 3. In particular, we
consider the problem (2.14) only for the cases where 7 is as in (1.7). We recall that a
solution of such a problem possesses certain fine properties, such as uniqueness, global
existence, and conservation of energy. We will establish that if the initial datum is infin-
itely smooth, then so is the solution.

Before we proceed to the statement and proof of the main results, we provide some
preliminary ones. First, we derive an estimate with the use of the following
Gagliardo-Nirenberg interpolation inequality

J

- Vij= 0,1,...,m, Yuc C*R"), (4.1)

1

j 2m m
IVl < €IV ey

n

which allows us to handle certain types of non-linearities such as the ones
assumed herein.

Proposition 4.1. Let m € N and f € C"([0,00);R). Then, for every u € C°(R"),

S IVE(F () ey < C(Z ||v’<u||Lz(Rn)> (Z I i o)) ||”||12j§c(R“)>'
k=1 k=1 k=0

(4.2)

For an elegant proof of the form of the constant in this inequality we refer to Lemma 2 in [26] and the
references therein.



32 @ N. GIALELIS ET AL.

Assuming further that f # const with f(0) = 0, the above estimate becomes
. k
SR 0l = (351980 ) (S oo i )
-1

for every u€ C*(U), along with the obvious generalization for f*(0)=0,
withk= 1,...,m—1.

Proof. Let u € C*(R") and o« € Nj with 1 < |a] < m be arbitrary. From the Leibniz
rule and the multivariate Faa di Bruno formula (see [7, 9]), we have that®

Dr(f(u)a) =)o ST (st o=

o | + 2] = o],
Jou] > 1

S(CRLTENND SR ST R L TR A
Jou] + Joa| = Jo, 1< B[ <]ou]
Jor| > 1

where

|9(1| s 1

My, 1y (Juf*) = ! > H—J (DV[uf?)”,

S ot =l (ol
with y; € N, §; € Nf,

ps(al’ |ﬁ|) = {(Vp-w)’sﬁl,.--, 5s) | 0 =< 51 <. =< 53, Z'VJ - |ﬂ|, Z’y]éj = OCI}
j=1 j=1

and u < v for v € Nj as in [7].
I; can be estimated easily. Indeed,

||II||L2 ®) < ||D““||L2 (R") Hf”po((o [l ey ) )

As far as I, is concerned, we have

[ | Jou |
)
o € 5 S a3 2
o] + oa| = o], s=1 po(ou, 1)
lai] > 1
where
s _ . 71 X Vs X
L= T] (D¥[uf?)"D"u = | T] @*uf*)... ] (©*ul’) D*u
j=1 L2(R") i=1 i=1 L2(R")
From Holder’s inequality for p;, i = ﬁ, ori;=1,. ,yj,j =1,..,sand p;1; = |L‘|, we get
I < H||D(’1 ul? || zm H||D" ul? || o ||D°‘ ul| o
ii=1 is=1 ‘72|(R")

From the Leibniz rule, we have

81f n = 1, then Df = DIFI, for every multi-index f.
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DY ul* = > Du D™,
|30z,
thus, once again, from Holder’s inequality for p; = |L || and p, = ||Z’J||, we get
ID?|ul*) 2y < Y0 IUD™ul s D™
ol Jous|+]on] =15 vl ey L2l e

Hence, applying (4.1), we deduce that

()]

5. 2 o
DY < CIVH il el
LITHR)

|”’f|

L® R”)

Again from (4.1), we get

‘xz I“Z‘
ID%ull 2 < IV ull g 1l oy
L‘xz‘(Rn)
Therefore,
( 21
I, < ClIV™ ]| 2 gy 1] 3 )
and so

[l

||12||L2(R")SCHV‘“'”HLZ(R” Z ZHf ||Loc (00 et e ))H”Hmw

1<|BI<]o| =1

If n<2m, we directly deduce that the above results hold for every u € Hj'(U) and
every arbitrary U, by employing the &,(U,R") operator and the scaling-invariant
Sobolev embedding H}'(U) — L>*(U).

Now, in virtue of Theorem A.1, we extend Proposition 4.1 for functions in non-zero-
trace Sobolev spaces.

Corollary 4.1. Let U with dU € Lip'(s,K,L),m € N with n < 2m,f € C"([0,00);R)
and u € H™(U). Then (f(|[u*)u) € H"(U), satisfying the inequality

vak( P)u) ) < c<m><28m—lk||v’;u||y<m>

k=0

- k 2k
g (;Im M= (o cO0M o)) 14115 0) )

(4.3)

Proof. By considering the extended function, we see that (4.2) gets the form

m

ZHvk< P [y < >
k=1
: C<Zm:||(vk ° (5(U>R")))uly<w>>

* <;'V(k)””‘((o,<5<U,R">>uixmn)))”(g(U’R"))ui’imw))

V(1w B ) (. R)u)

L2(R")



34 @ N. GIALELIS ET AL.

From the bounds given in Theorem A.1 we obtain
m m 1
oI 0D e < 00 (3 e 9 )
k=1 k=0

Moreover, in view of Corollary A.2, we have that u € L>°(U). Therefore, again from the
aforementioned bounds, we get

IECUR™))ull gy < CE) 4]0
Thereby, the claimed result follows. O

For the next result, we notice that if U € R with QU € Lip™(¢, K, L) for some m € N,
then in fact U € Lip'(&, K,0), and vice versa.

Corollary 4.2. Let U C R with |U| < oo as well as OU € Lip'(¢,K,0),m € N\ {1},f €
C"([0,00);R), u € H"(U) and { € X"™(U). Then (f(|u+ |*)(u+ () € H"(U), satisfy-
ing the inequality

S I (4 )+ ) <c< max{1, |U|}K,||u|H1<U>,||chm(U))
k=1

X (1 + ZHVf\/uHLZ(U)) .
k=2
(4.4)

If, in addition, u € H™(U) N Hy(U), as well as

m
2

(&,4) € Hy(U), V= 0{ J 1
then we have
S (6P ) < €m0l W
) (1+ ST (Ve o A ullpy + S 4 ull ) (4.5)

2j+1<m 2j<m
jeEN, jEN,

Proof. We have that { € H"(U), since |U| < oo, hence (u+ () € H"(U). Employing
(4.3), we get

ST (7 )+ ) oy < CK) (Z LIV W+ Dl )
k=1

k=0

y k 2k
X (;Lﬂ >||Lw((0,C(K)||u+Cioc(U)))HM‘i‘CHLm(U)).
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For the term inside the first parenthesis we have

m

1
ng—_kHVIfV(HﬂLC)HLZ(U)
=0
L |
SZWHV ull v +Z e ,(||VkC||L2
=0

1 m
{ m}vakuan L Wl +max{ }vakcny

k=0
(levkully + ||“||H1(U)> + £_m|U|§||C||xm(U)

+ Cmax{
1
< Cmax{ —m} (ZHV"L{HU + lullpp )
1 1
o ma{ L 10 ey + Emax{ 1 2 A Kl
1 1 =
< Cmax{l, p max{l, |U|2}} (Z”VIL“HLZ(U) + ||U||H1(U) + ||C|Xm(U)>
k=2
1 1 -
< Cmax{l, o max{l, |U|5}}max{l, Hu||H1(U) + ||C||Xm<U>} (Z”VI;HHU(U) + 1)
k=2
= C( max{l |U|7}, ||u||H1(U), ||C||Xm(U)> <Z||VI;”||L2(U) + 1)'
k=2

As for the term inside the second parenthesis, we have that

1
oy < €2 ) el

from the scaling dependent embedding H'(U) < L*(U) (see Corollary A.2), which
implies

i 1
D Wi (ot 14+ vy < c( K, ||u||H1<U>,||C||Xm<U>).
k=0

Directly from (4.4) and the bound in Proposition A.9, we get (4.5). O

Lastly, the following version of the Brezis-Gallouét-Wainger inequality

ll ey < C(l ) (1 + (1 (14 ||v2u||Lz<Rz>))E), vueCr(®), @6

which can be proved by a straightforward adaptation of [4, Lemma 2], is essential in
order to establish the following useful auxiliary inequalities.
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Lemma 4.1. Let U C R? with U € Lip'(e,K,L) and m € N\ {1}. Then

[l e vy < C( K, L, |”||H1(U)> 1+ <ln <1 + > ||V§”||L2(U)>> » Yu € H™(U).
=

(4.7)

Proof. Let u € H™(U) be arbitrary. Since m > 2, then u € L*°(U). Considering the
extended function, (4.6) becomes

iy < (LKLl ) (14 (0 (14 192000)) )

whereby (4.7) follows. O

Corollary 4.3. Let U C R? with |U| < oo as well as OU € Lip!(e,K,L),m € N\ {1},u €
H™(U) and { € X™(U). Then (Ju+ {*(u+ ) € H"(U), satisfying

SNV 4+ LR +c>>||Lz<U><c( max{1, |U|}K,L,||u\|H1(U),||é||xm<U>)
k=1

m m 2
x (1 + Z|vau”L2(U)) (1 + In (1 + <Z|Vﬁu||y<u)> ))
k=2 k=2

(4.8)
If, in addition, OU € Lip™(e,K,L),u € H™(U) N Hy(U), as well as

(N u) € H)(U), Vi= 0,..., FJ ~1,
then we have

1 1
ST L+ Dl < O{ gemax(L IVEL KLl Wl

k=1

x(l—l— S MVwo Nl + > 18,4l )

2j+1<m 2j<m
jeEN, jeEN,

x <1+ln <1+ > MVwo Nuliy + > I18,ulli >>

2j+1<m 2j<m
jEN, jEN,

(4.9)

Proof. We have that { € H"(U), since |U| < oo. Hence, (u+ () € H"(U). Employing
(4.3), we get

D VAl + P+ )l 2y < CIK L) (Z T IV + Ol >||u+C||ix<U>
k=1

k=0
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In order to estimate the term inside the parenthesis, we work exactly as in Corollary 4.2
and we deduce that

m 1 1
SOV -+ £+ ) ey < € gmas{ 11U el €

k=1
X (1 + ZlIVﬁMIIL«U)) I+ L7 -
k=2
For the last term, we employ (4.7) to get

e+ Loy < (Nl o) + 12l ) < C(Ilncen) (2 + Nl

1 m
< C(g’K»L 1l 0> ||C|xm(u)> (1 + In (1 + ZHVI«:VuHLZ(U)))
k=2

2
l m
< C(E)K’L’ |u||H1(U)’ |C|XV"(U)> 1+1In|1+ (Z”v]«:\/uHL?(U))
k=2
Now, directly from (4.8) and the bound in Proposition A.9, we get (4.9). O

We are ready to proceed to the statement and the proof of the main results of
this section.

Theorem 4.1. Let n = 1,2, U be bounded, t be as in (1.7), uy € Hy(U) and u be the
(unique and global) solution of (2.14) that Theorem 3.1 provides. If

1. 0U e NX_, Lip™ (e, K, L),

2. (e ¥, X™U) and '

3. up € N, H"(U) N Hy(U), with (Nug) € Hy(U) for every j € N,
then u € L. (R; NX_,H™(U) N HL(U)) N WL2(R; N H™(U)), satisfying

loc loc

@l g gocrm(uy) + 110 e gzt

1 1 (4.10)
< 0 gomax{ L 10 K. ol Il 16 = Pl ol )

for every m € N\ {1} and every ;.

Proof. 1t suffices to show (4.10). Let m € N\ {1} and J, be arbitrary. We set

u) ]0|> .
Step 1

Let {ux};2 be the Faedo-Galerkin approximations, as in the proof of Theorem 3.1.
We recall that for every w; there exists 4, > 0, such that —A,w; = 4w, in H!(U). In
virtue of Theorem A.3, fA'le = /iw; everywhere in U (and not just almost every-
Where). Therefore, (—1YA w; = )flwl everywhere in U, for every je N, that is
N (ur(0)) € span{wl}le, for every j € Ny, and so

~ 1 1
¢ c<8_mmax{1, (UE } Ko Lo ol s [0 mezop 121 = ol
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i, < (S ) 0o ),

as well as

(Aj(uk(O)),uk(O)) = (Aj<Uk(0>>,l/l0), Vj € No. (4.11)

Moreover, we have
(A (w(0)), M (0(0))) = ((w(0)), A" (w(0)), ¥irj € No, (4.12)
as it follows directly from the common integration by parts formula. Now, we claim

that

> IV MO+ 3 1N @O < O KoL ol

jEN, jEN,
2i+1<m 2j<m

In view of Proposition A.9, it suffices to show that

Y 1V o M)l + Y 18 (u(0) 2w

jeN, jEN,
2i+1<m 2j<m
<cf Y VoM ullpw) + Y [1Muollw ) -
j €N, jEN,
2+1<m 2i<m
Indeed, from
1. (4.11),
2. (4.12),

3. the common integration by parts formula,

we obtain, for every j € N, that
19 (0))F vy = (89 (ue(0)), A (4(0))) £ (e (0), A¥ (4 (0)))
= (0, A7 (0(0))) £ (Ao, N (i (0)))
< S IOy + 5 850l

as well as
1(V 0 M) ((0) 172y = ((V 0 &) (ui(0)), (V 0 &) (ui(0)))
— (N (u(0)), N (g (0))) = — (i (0), A (wi(0)))
= —(uo, A" (ux(0))) ;: ((V 0 AM)ug, (V o V) (uy(0)))

b

1 .
< [[(V o M) (wr(0) 170y + 3 1V 0 Mug|| 720

[\.)I»—A

Step 2
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We multiply the variational Eq. (3.3) by

df((t)/llzj, for every j € N such that 2j < m,
—di(t)/llzjﬂ, for every j € N such that 2j +1 < m,
sum on [ = 1,..., k, integrate by parts keeping imaginary parts of both sides to find
1d j j j ;
S 7 18wl — Im(&* M) — Im (& ((jue + L) (e + 0), M) =0,

for every j € N with 2j < m, and

%% ||(V o Aj)uknil(u) — Im((V o AjH)C, (Vo Aj)uk)—
—Im((V o &) ((Jux + £[**) (we + 0)), (V0 A)wy) =0,

for every j € N with 2j+1 <m. We sum the above equations for every j, integrate
with respect to f, employ Young’s and Holder’s inequalities, as well as (4.5) and (4.9),
along with the estimate for the H'-norm of each u; given in the proof of Theorem 3.1.
With such a procedure, we derive the estimates

t
§C<1+ JAds
0

JtA(1 + In(1+A))ds

0

), for every t € Jy, if n=1,

and also

A§C<1+ ), for every t € J, if n=2,

where

P2
A= Z ||(VOA] uk||Lz Z ||Ajuk||L2(U)
jEN, €N,
Zj+1<m S

Consequently, A < C everywhere in Jo, which, if combined with the estimate for the
H'-norm of each uy given in the proof of Theorem 3.1, gives us the bound

HukHLoc(]o;Hm(U)) < C, Vk € N.

This is due to the fact that every uy satisfies the necessary compatibility conditions for
the validity of Proposition A.9. Now, working in an analogous manner as in Step 3/ of
the proof of Theorem 3.1, we deduce that u € L*(Jo; H"(U)) with

el gsaam ) < €
Moreover, directly from the differential equation, we deduce that w' € L>(Jo; H"2(U)) with

Hu/HLO‘»(]O;H'"*Z(U)) <C.
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Employing the same arguments as in the proof of Theorem 4.1, after the differentiation
of the approximating equations with respect to the temporal variable’, we can show by
induction, its following generalization (the proof is omitted for the sake of brevity).

Corollary 4.4. Let n = 1,2, U be bounded, T be as in (1.7), uy € HY(U) and u be the
(unique and global) solution of (2.14) that Theorem 3.1 provides. If

1. 1.0U e Ny, Lip™(&, K, L),
2. 2.Le Ny X™U) and ‘
3. 3.up € N, H"(U) NHY(U), with (Nug) € H)(U) for every j € N,

loc

then u € NX, Wi (R; "o, H"(U)), with

. 1 1
nwmﬂwmwsc@wmduw%xwwwmmwmmwmwm—Mwwmo,

(4.13)
for every j € Ny, every m € N\ {1} and every J,.

We conclude, by showing the corresponding regularity result for the case
where U =R" ' n= 1,2.

Theorem 4.2. Let n = 1,2, t be as in (1.7), up € H'(R") and u be the (unique and glo-
bal) solution of (2.14) that Theorem 3.2 provides. If

1. (e Ny, X™R") and
2. uy € ﬂfnczz HW(RH),

then u € N, W2 (R; n2°_ H™(R")), with

loc

H“O>||Loo(fo;Hm(Rn)) < C(HuO”Hm(R")’ |€||Xm+2(R”)’ 11— p||L2(R”)’ |]0|)’ (4.14)

for every j € Ny, every m € N\ {1} and every J,,.
Proof. We set again
& = C(lluollgngany 1€l 1121 = ol ol)-
Let {ux};2  be the sequence of solutions, as in the proof of Theorem 3.2. Since
Bie N Lip™(& K, Ly),
m=1
then, in view of Proposition A.4, we deduce that

U, =B € Orleip’"(k &K, L), Vk € N.

’As we have already noticed in Step 1a of the proof of Theorem 3.1, the Faedo-Galerkin approximations are infinitely
smooth with respect to t.
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Hence, {u}?°, C Ny Wit (R; Me_ H™ (Ugs2) N HY (Uky2)), with

loc

()
[[uy ||L°°(Io;H'”(Uk+2))

1 1
< C(mmax{l, |Uk+2|2}>K’ Lo, ||u0||H"'(R")’ ||C||X'”+2(R")’ |||C| - pHU(R")’ |]0|>’

for every j € Ny, every m € N\ {1} and every J,. Since

1

1
|Uk2f? 2m .
(kN < C(k+2)* " < C uniformly f keN,
((k+2>8)m m < C( ) < C uniformly for every

max{ L [Upsft} = (k29"

we have that

||u19) ||L”°(]0§Hm(Uk+2>) <G

for every j, m and J, as above. The same bounds are true for the respective norms of
vlg). Now, working as in Step 3f of the proof of Theorem 3.1, we deduce that u') €
L>(Jo; H™(R")) with

[

L (Jo;H"(R")) =C.

Remark 4.1. The usual regularity results for unbounded sets appearing in the literature
(see, e.g., Chapter 10 in [3]) also concern sets with bounded boundaries, such as exterior
domains, and not only the whole Euclidean space. Such results can be obtained for the
classical version of our problem, i.e., for {,p =0, by using the techniques presented
herein. However, it is not possible to consider & = (k + 2)e — oo in Theorem 4.2 for the
case of a bounded boundary.

Remark 4.2. We can also deal with the regular problem in the half-line, by simply consid-
ering the odd or the even extension for both u, and {, depending on the behaviour of
these functions at the boundary. This approach is analogous to the use of the sine or
cosine Fourier transform for solving problems in the half-line. See also [14], where the
Fokas transform method is employed, as well as [11], where the Laplace transform
method and the Bourgain X*® method are combined.
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Appendix A

In this appendix, we present certain useful, known and new, definitions, and results.

A.1 Restriction and extension operators on open subsets of R"

Definition A.1. For every U; C U,, we write

R(Uz, Ul) . X(Uz) — X(Ul)

for the following (linear) restriction operator

[(R(Uy, Uh))ul(x) := u(x), Vx € Uy, Yu € X(U,)

and also

go(Ul, Uz) . X(Ul) i X(Uz)

for the (linear) extension operator
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[(E0(Un, Un))ul(x) = {”(x)’ XU o),

0, if xe U\ Uy,
We further define the set of restricted functions from X(U,) to X(U;)
(R(Uz UN)(X(U)) = {(R(Uy, U | u € X(U)},
and the set of extended functions (by zero) from X(U;) to X(U,)
(Eo(Un, Un)(X(U1)) := {(E0(Ur, Ua))u | u € X(Uh)}.
Proposition A.1. Let m € Ny,p € [1,00] and U, C U, be arbitrary. Then R(U,, Uy) maps iso-
metrically W™P(U,) into (but not onto) W™P(U,), and
(D% o (R(Us, Un)))u = ((R(Uy, Uy)) 0 D%)u, a.e.inUy, for every o € Ny with 0 < |a < m,
(A1)

for every u € W™P(U,). Hence, W™P(U,) — (R(U,, Uy))(W™P(U,)), if we consider the space on
the right-hand side as a normed space equipped with its natural norm.

Proposition A.2. Let m € Ny,p € [1,00] and U; C U, be arbitrary. Then Eo(Uy, Uy) maps iso-
metrically Wy"¥ (Uy) into (not onto) Wy (U,), and

(D% 0 (E(Ur, Un)))u = ((Eo(Un, Uy)) 0 D%))u, a.e.inU,, for every o € Nj with 0 < |of < m,
(A2)
for every u € Wy P (Uy). Hence, Wy (Uy) < (Eo(Uy, Uy))(Wo P (Uy)), if we consider the space on
the right-hand side as a normed space equipped with its natural norm.
Definition A.2. For every m € Ny, p € [1,00] and U; C U,, we define
R(Uz, Ul) : Wﬁm'P(Uz) — me,p(Ul)
by
<(R(U2, U1>)f, u) = <f, (EO(UI’ U2))Ll>, Yu € Hé(Uz), Vf € Wﬁm’P(Uz).
Evidently,
[(R(U2 U lw-mrwy) < Wfllw-mouy)> U € W™P(U2),

hence, W ™P(U,) — (R(U,, Uy))(W~"™P(U,)), if we consider the space on the right-hand side
as a normed space equipped with its natural norm.
Proposition A.3. Let m € Ny,p € [1,00), U and fi,f» € W ™P(U). If

(R(U,V)A = (R(U,V))fa, for every open V CC U with OV being Lipschitz continuous,

then fi = f,.

A.2 Uniformly m-Lipschitz boundaries

In this subsection, we recall and generalize some basic results relevant to open sets of R” with
Lipschitz boundaries. We will generalize the known definition [23, Definition 13.11]), recalling
the following:
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1. y=®(x) € R" are local coordinates (in this case, x € R” are the background coordinates)
when @ is a rigid motion, i.e., an affine transformation of the form ®(x) = xy + ax, where
X0 € R" and a € R™" being orthogonal,

2. f(Uiez U;) = Uier f(U;) and f(Niez Ui) = Niez f(U;), for every bijective f,

every function f : ) — R is just a real constant and

4. x' stands for the (n — 1)-dimensional vector obtained by removing the n-th component of a
given n-dimensional vector x, i.e., x = (¥, x,) € R" ' x R.

»

The generalization of the aforementioned definition is as follows.

Definition A.3. Let m € N,¢ € (0,00],K € N,L € [0,00) and U be an open set. We say that
OU is uniformly m-Lipschitz with constants ¢, K, L and we write QU € Lip™(¢,K, L) if there
exists a locally finite countable open cover {Uy}, of U, such that

1. if x € 9U, then B(x,¢) C Uy for some k € N,
2. every collection of K 4 1 of Uy’s has empty intersection and
3. for every k there exist local coordinates yx = ®y(x) and a function y; : R"! — R, such that
4. Vly. is (globally) Lipschitz continuous, for every j = 1,...,m and every k, with
maszl,wm{Lip(Vj*lyk)} < L, uniformly for every k,
and

i. (I)k(Uk N U)( = (Dk(Uk) n (Dk(U)) = (Dk(Uk) N {)’k e R" | Y > Vk%)}-

The following result is crucial for Section 4.

Proposition A.4. If U is such that OU € Lip™(¢,K, L), as well as if ® is a transformation of the
form @(x) := xo + Ax, where xo € R" and A > 1, then (®(U)) € Lip™(ie, K, L) also.

For the uniformly 1-Lipschitz boundaries we also have the following well-known result (see, e.g.,
Theorem 13.17 in [23]), concerning the Stein total extension operator (see Paragraph 5.17 in [1]
for the definition of these operators).

Theorem A.1. Let U with OU € Lip' (e, K, L). Then there exists a linear extension operator
E(U,R™) : W™P(U) — W™P(R"), ¥m € Ny, Vp € [1,),
such that, for every m € Ny, every p € [1,00] and every u € W™F(U), we have

EW.R")ullp(gr) < CK)|[ull () and
k
1 .
[ (VE o (E(U.R"))ullppgr) < C(K, L) E @”vjwunu(u)» for every k= 1,..,m, if m#0.
=0 ¢

Hence, we can write that W™P(U) — (E(U,R"))(W™P(U)), if we consider a notation similar to
that of Theorem A.1. The space on the right-hand side is a normed space equipped with its nat-
ural norm.

A.3 The continuous Sobolev embeddings

In this subsection, we comment on the classical Sobolev embeddings in terms of the restriction
and extension operators discussed in Subsection A.l. Recalling the standard Sobolev embedding
Theorems [3, Corollary 9.13], we present two consequences.
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Corollary A.1. Let m € N,p € [1,00) For every open V C U we have that (see Definition A.1)

WP (U) — (R(U, V))(L1(U)), for every q € [p,;o), if n=mp,
WP (U) — (R(U, V))(L*(U)), if n < mp.

In particular, for the case n < mp we have

Wy f(U) — (R(U, V))(L1(U)), for every q € [p, mep}, if n> mp,

Wt () < (R(U, V) (" H7(0) ) n (R(U, v) (¢ 51 (D)),

n n n
y=m——-——|m——|, if (m——-)€ /N
’ p L PJ ( P) /
Yy € (0,1), if (m—g)eN,

for

where the right-hand space is considered as a normed space equipped with its natural norm.

All of the above embeddings are scaling invariant, that is, the constants of the respective
inequalities are uniform, i.e., independent of U. The embeddings are also independent of the
choice of V.

Corollary A.2. Let m € N,p € [1,00) and U with dU € Lip!(e, K, L). For every open V C U we
have that

W™P(U) — (R(U, V))(L1(U)), for every q € [p, njiljnp}’ if n> mp,

W"P(U) — (R(U, V))(L1(U)), for every g € [p,00), if n= mp,
W™P(U) — (R(U, V))(L*®(U)), if n < mp.

In particular, for the case n < mp we have

wmr(U) = (R(U, V) (" #7(0)) 0 (R(u, V) (" H1 (D)),

n n n
y=m———|m—-——-1|, if ([m—-)e/N
’ P L pJ ( P) /

¥y € (0,1), if <m - I—’;) eN.

for

All of the above embeddings are scaling dependent, that is the constants of the respective
inequalities depend (increasingly) on 1, K and L, yet they are independent of the choice of V.

A.4 The compact Rellich-Kondrachov embeddings

Here, we provide useful versions of the well-known Rellich-Kondrachov compactness theorem in
terms of the restriction operators of Subsection A.1. For convenience, we consider only the case
m =1, since it is the only one used for the proofs of our main results.

Proposition A.5. Let m € N,p € [1,00). For every open V C U we have that
WP (U) = — (R(U, V))(L4(U)), for every q € [1, ip), if n>p and |V] < oo,
n—

WP (U) = — (R(U, V))(L4(U)), for_every g€ [l,00), if n=p and |V] < oo,
WP (U) = — (R(U, V))(C(U)), if n <p and V is bounded.

In any case, Wé’P(U) — — (R(U, V))(L?(U)) for every bounded V C U.
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All the above embeddings are scaling invariant, that is the constants of the respective inequal-
ities are uniform, ie., independent of U. The embeddings are also independent of the choice
of V.

Proposition A.6. Let p € [1,00) and U be an open set with QU € Lip'(¢, K, L). For every open
V C U we have that
WP (U) — — (R(U, V))(LI(U)), for every q € [1, ip), if n>p and |V] < o0,
"n—

WLP(U) — — (R(U, V))(L1(U)), for every q € [1,00), if n=p and |V| < oo,
WP (U) — — (R(U,V))(C(U)), if n <p and V is bounded.

In any case, Wh?(U) — — (R(U, V))(I?(U)) for every bounded V C U.
All of the above embeddings are scaling dependent, that is the constants of the respective
inequalities depend (increasingly) on 1, K and L, but they are independent of the choice of V.

A.5 The Leibniz formula

Here, we state a useful generalization of the Leibniz rule for the product of a smooth function
with a function which belongs to a Sobolev space [12, Theorem 1, Section 5.2]. Let us recall that
for every m € Ny and every U, CJ'(U) stands for the Banach space

Cy(U) :={u € C"(U) | D"u is bounded everywhere in U, for every 0 < v|a| < m},
equipped with its natural norm (see, e.g., paragraph 1.27 in [1]).
Proposition A.7. Let m € Ny,p € [1,00]. If ¢p € N, C(U) and u e W™P(U), then we
have that
1. (¢u) € W™P(U) also, with
||¢uHW'”>P(U) < C(Hﬁb”cg‘(U))||”||wmm(U) (A.3)

and

D (¢pu) = Z(Z)(D%S)(Df‘[ﬁu) a.e.in U, for every o € Nj with 0 <|of <m. (A4)

p<a

Its proof is quite similar to the proof of the original version cited above, noticing the fact
that (¢y) € C°(U) for every Y € C°(U).

A.6 Cut-off functions
Setting
U’:=UU U B(x,0),
xeoU
we can have the following basic, yet crucial, result.
Proposition A.8. Let U be an open set and o > 0. Then there exists ¢ € C°(R";[0,1])

such that

1. supp(¢) C U°,
2. ¢=1inU and
3. ||Vk¢||pc<w) < & for every k € Ny (Cp = 1).

_Ok
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A.7 Second-order, symmetric, uniformly elliptic operators

Definition A.4. For a = (ay);,_, € L**(U) satisfying

a= a_T,i.e.,aij =3, a.e. in U (A.5)
and
& al (42) Re(¢ - aé) > , a.e. in U, for every & € C", for some 0 > 0, (A.6)
we write
Ly, = L,(a,0): {ucIP(U) for some p € [1,00] | V,u € L*(U)} — H (V)

for the linear and bounded operator

(Lyu,v) == [,Vyv-aV,udx = fUZa,-j (3;&) (8’vlvv)dx,
ij=1
for every u € {u € LP(U), for some p € [I,00] | V,u € L}(U)}, for every v € H}(U).

Moreover, we set
L:{uell (U)| Vyue(U)}) =R
for the double-entry form
L[u, V] := Re([,;Vyv - aV,itdx) = Re (IUZaU (0u) (2, v)dx),
L]
for every u,v € {u €Ll (U) | V,ue L*(U)}.
Additionally, if a € W»*°(U) we define
Ly=L,(a,0): {uecL (U)]| ViuelI*U), for j= 1,2} — L*(U)
for the linear operator

Lyu = —div,,(a"V,u) = Z@’ (“J! )

i j=
for every u € {u €Ll (U) | ViueL*(U), for j= 1,2}.

A.8 Elliptic regularity theory for uniformly m-Lipschitz boundaries
A.8.1 Interior regularity

Theorem A.2. Let m € N\ {1}, U be an open set and (u,f) € H'(U) x H"(U) be such that
Lou=f. Ifac W 1%(U) and f € H"*(U), then u € H™(U;) for every § > 0, with

1
I

el ) (9l + o )o ¥ 0.< 8 <.

A.8.2 Up to the boundary regularity

Theorem A.3. Let m € N\ {1}, U with 9U € Lip™(s,K,L) and (u,f) € Hy(U) x H"}(U) be
such that L,u=f. Ifa € W' >%(U) and f € H"2(U), then u € H"(U) N Hy(U), with
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m : 1 1
Z [V ull 2y < C<E’K)L’ ik Ha”wmflnc(u)) (”kuHLZ(U) + Hf”H"’*Z(U))'
j=2

A.8.3 A priori estimates
We write

{Up} := {U satisfies the assumptions for the validity of the Poincare inequality for Hy(U)}.

Theorem A.4. Let me N, Up be as above with OUp € Lip”(&,K,L) and L, (a,0) with
a € W™L(Up). Then,

1. L, induces an isomorphism from H™(Up) N H}(Up) onto H™%(Up) and
2. for m # 1 and every u € H"(Up) N H(Up) we have

T 1 1
Z ||v]w”||L2(Up) < C<E>K) L 0’ Ha”wmfl)x(Up)) <||un||L2(Up) + HLw“”HWZ(UP))-
=2

Proposition A.9. Let m € N\ {1}, Up be as above with 0Up € Lip™(¢,K,L), L, (a,0) with a €
Wm=boo(Up) and u € H™(Up) N Hy(Up). If

(L,u) € Hy(Up), Vj= 0,..., {%J — 1 (compatibility conditions),

then we have

“ : 1 1
ZZHVJW’/‘”LZ(UP) < C(E’K’L’ 0’ ||“||Wm7h%(Up)>
=

( S Vo Dulpuy+ S ||Lf;vu||Lz<Up>>-

2j+1<mi<No> 2j<mi<th
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