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a b s t r a c t

During an epidemic, such as the COVID-19 pandemic, policy-makers are faced with the
decision of implementing effective, yet socioeconomically costly intervention strategies,
such as school and workplace closure, physical distancing, etc. In this study, we propose a
rigorous definition of epidemiological strategies. In addition, we develop a scheme for
comparing certain epidemiological strategies, with the goal of providing policy-makers
with a tool for their systematic comparison. Then, we put the suggested scheme to the
test by employing an age-based epidemiological compartment model introduced in
Bitsouni et al. (2024), coupled with data from the literature, in order to compare the
effectiveness of age-based and horizontal interventions. In general, our findings suggest
that these two are comparable, mainly at a low or medium level of intensity.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The recent COVID-19 pandemic brought to the fore the disastrous for the economy consequences of horizontal lockdowns.
Economically costly horizontal measures during the COVID-19 pandemic have been the closure of workplaces and schools,
the cancellation of public events and general stay-at-home restrictions (see Brodeur et al. (2021), Chen et al. (2021), Deb et al.
(2021), Mathieu et al. (2020) and many references therein).

This fact highlights the need for a more sophisticated managing of epidemiological crises. In this context, many countries,
especially after the spasmodic first response, have looked for more flexible intervention policies. Multiple combinations of
interventions were deployed by policy-makers in order to combat the spread of SARS-CoV-2 and minimize their impact on
the economy (Asahi et al., 2021; Karatayev et al., 2020; Perra, 2021).
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Finding ways to intervene in the natural progression of disease spreading, has been a hot topic in the scientific community.
Models have been proposed, for a wide range of diseases, investigating various non-pharmaceutical interventions (Adegbite
et al., 2023; Amaku et al., 2021; Bhadauria et al., 2023; Brethouwer et al., 2021; Demers et al., 2023; Saha et al., 2022; Vatcheva
et al., 2021; Verma et al., 2020; Zakary et al., 2017), vaccination (Abell et al., 2023; Anupong et al., 2023; Gan et al., 2024;
Owusu-Dampare & Bouchnita, 2023; Pat�on et al., 2023; Thongtha & Modnak, 2022) and treatment (B�eraud et al., 2022;
Zaman et al., 2009) strategies, as well as various combinations of the aforementioned interventions (Apenteng et al., 2020;
Lamba et al., 2024). Despite the success of the foregoing studies, the lack of a mathematically rigorous definition of epide-
miological strategies is apparent.

Moreover, age-based interventions have been discussed as a theoretical alternative to horizontal lockdowns. However,
they have also raised ethical concerns with regard to ageism (Motorniak et al., 2023; Spaccatini et al., 2022; Van Rens &
Oswald, 2020).

To our knowledge, the investigation of age-based interventions has been limited in terms of modeling. The authors of
Acemoglu et al. (2021) proposed a multigroup SIR model, with the intent of studying age-based lockdowns. In Kirwin et al.
(2021), the authors study the prioritization of vaccination to selected target groups.

In the present study, we:

e give a rigorous definition of the notion of epidemiological strategies
e propose a framework for systematically comparing certain epidemiological strategies
e utilize the aforementioned scheme to compare the effectiveness of age-based interventions when compared to horizontal

lockdowns, in the case of the SARS-CoV-2 pandemic.

This study is organized as follows. In x2, we introduce the notion of an (epidemiological) strategy, along with its potential
gradations, and we present a framework for comparing the effectiveness of certain strategies. In x3, we contrast the impact of
a horizontal lockdown with varying levels of intensity, with certain age-based countermeasures that have a similar epide-
miological effect, but less of an influence on society and, consequently, the economy. In x4, we conclude with a summary and
discussion of the results.

2. A framework for comparing the effectiveness of different strategies

Let us divide a population into two classes, the infectious, I , and the non-infectious, I c. Each of these classes can be
divided to further sub-compartments, e.g., A2I and B2I c.

The transmission rate from compartment B to compartment A is defined as

bB/A :¼ cB$6B/A

N
; (1)

where cB is the average number of close contacts of an individual belonging in B with other individuals, 6B/A is the prob-
ability of a contact to be effective in turning an individual of compartment B to an individual of compartment A, and

N :¼ I þ I c

is the total number of the population. The removal rate from compartment A to compartment B is defined as

gA/B :¼ 1
PA/B

; (2)

where PA/B is the average period an individual spends on compartment A before moving into compartment B. A diagram for
the above definitions is shown in Fig. 1.

These parameters, probably among others depending on the model (for instance, the model employed later on in the
present study comprises two types of transmission rates and two types of removal rates, among nine other parameters), are
Fig. 1. Flows between the classes of infectious, I , and non-infectious, I c , individuals of a population.
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involved into the formulation of an epidemiological model that describes an epidemiological problem under study. However,
these parameters are special, because interventions by external factors acting for the control of the studied epidemiological
phenomenon (e.g., policy makers), can be described as changes in their values.

Now, enumerating all the different transmission and removal rates of a particular model, i.e., b1;…; bn1
and g1;…; gn2

,
respectively, we can write

b ¼ ðbiÞn1
i¼1 and g ¼ ðgiÞn2

i¼1:

Throughout the present section we assume a well-posed global (with respect to time) epidemiological compartmental
problem,

P ¼ P ðM Þ;

which is described by a (differential/difference equations, agent-based, etc.) model,

M ¼ M ðx; ðbðxÞ;gðxÞ Þ; dðxÞ Þ;

where

x ¼ ðxiÞmi¼12X4Rm

is the vector of the independent variables,

ðb;gÞ2F
�X ;Ptr;r4Rn1 � Rn2

� ¼ �
f : X/Ptr;r

�
is the vector-valued function of the parameters of interest of M and
d2F
�X ;Pother4Rn3

�
is the vector-valued function of the rest of parameters of M .
2.1. Strategies and substrategies

We begin by introducing the concept of a strategy of P , which is of pivotal importance for the following analysis. In the
epidemiology framework, a strategy can be considered as the mathematical description of a set of epidemiological in-
terventions made by potential external factors, such as policy makers, experts etc., in order to restrict the epidemiological
phenomenon. These interventions consist of first fixing a reference value, ðb0;g0Þ2F

�X ;Ptr;r
�
, for the parameters chosen, and

then scaling each element of the set in terms of the fixed value.

Defintion 1. (strategy & strategic scale of an element). Let ðb0;g0Þ2F
�X ;Ptr;r

�
.

1. A set S ¼ Sðb0;g0Þ4F
�X ;Ptr;r

�
is called strategy (of P ) with respect to ðb0;g0Þ iff

cy2Sdr ¼ rð $ ; ðb0;g0Þ; y Þ2F
�X ;Rn1þn2

�
s:t: y ¼ r1ðb0;g0Þ;

where 1 stands for the Hadamard product.
2. Let
i. S ¼ Sðb0;g0Þ be a respective strategy and
ii. y 2 S.

A function r2F
�X ;Rn1þn2

�
as in 1. is called strategic scale of y.

We observe that every subset of a strategy is a strategy itself, as it is referred in the following result, the elementary proof
of which is omitted.

Proposition 1. Let

1. ðb0;g0Þ2F
�X ;Ptr;r

�
,

2. S ¼ Sðb0;g0Þ be a respective strategy and
3. S0 4 S.

Then S0 is a strategy with respect to ðb0;g0Þ.
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In view of Proposition 1, we give the definition of a substrategy of a given strategy. In the epidemiology framework, a
substrategy can be considered as the mathematical description of a subset of a given set of epidemiological interventions.

Defintion 2. (substrategy). Let

i. ðb0;g0Þ2F
�X ;Ptr;r

�
,

ii. S ¼ Sðb0;g0Þ be a respective strategy and
iii. S0 4 S.

We call S0 a substrategy of S.

In fact, we can define a substrategy by setting limitations to the choice of a strategic scale of each of its elements. Below, we
name certain such examples.

Defintion 3. (horizontal and xi-based strategy). Let

i. ðb0;g0Þ2F
�X ;Ptr;r

�
,

ii. S ¼ Sðb0;g0Þ be a respective strategy and
iii. S0 4 S.

We name the following substrategies.

1. Let i2f1;…;mg. S0 is called horizontal with respect to xi iff

rðx; ðb0;g0Þ; y Þ ¼ rðx1;…; xi�1; xiþ1;…; xm; ðb0;g0Þ; y Þ; cx2X ; cy2S0;
i.e., cy 2 S0 a respective strategic scale is independent of xi, otherwise we call it xi-based.

2. S0 is called horizontal, iff it is horizontal with respect to xi, ci2f1;…;mg.
In the epidemiology framework, a xi-based substrategy can be considered as the mathematical description of a subset of

epidemiological interventions, which targets a certain group of a population partitioned with respect to xi variable.
We also observe that every union of strategies is a strategy itself, as it is referred in the following elementary result.

Proposition 2. Let

1. ðb0;g0Þ2F
�X ;Ptr;r

�
and

2. fSj ¼ Sjðb0;g0Þgj2J be a family of respective strategies.

Then
S

j2J
Sj is a strategy with respect to ðb0;g0Þ.

In view of Proposition 2, we give the following definition.

Defintion 4. (the largest strategy). Let

1. ðb0;g0Þ2F
�X ;Ptr;r

�
and

2. S be the family of all the respective strategies.

We call

Ŝ ¼ Ŝðb0;g0Þ ¼
[
S2S

S

the largest strategy with respect to ðb0;g0Þ.
Of course, whatever result holds for the largest strategy also holds for an abstract strategy, like the following direct one.

Proposition 3. Let ðb0;g0Þ2F
�X ;Ptr;r

�
. If

0
B@0;…;0|fflfflfflffl{zfflfflfflffl}

# n1þn2

1
CA;ðb0ðXÞ;g0ðXÞ Þ; (3)

then
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cy2Ŝ d! strategic scale of y:
Under the light of Proposition 3, the next notion is well-defined.

Defintion 5. (strategic scale of a strategy). Let

1. ðb0;g0Þ2F
�X ;Ptr;r

�
satisfy (3) and

2. S ¼ Sðb0;g0Þ be a respective strategy.

We call the function

SHy1rð $ ; ðb0;g0Þ; y Þ2F
�X ;Rn1þn2

�
the strategic scale of S.

We can then easily deduce the following result.

Proposition 4. Let

i. ðb0;g0Þ2F
�X ;Ptr;r

�
satisfy (3),

ii. S ¼ Sðb0;g0Þ be a respective strategy,
iii. Pj, cj2f1;2g be mathematical statements with respect to the strategic scale of S such that P10P2 and
iv. Sj 4 S, cj2f1;2;3g, be substrategies of S such that

Sj ¼ fy2S jPiðrð $ ; ðb0;g0Þ; y Þ Þ g; cj2f1;2g & S3 ¼ fy2S j :P1ðrð $ ; ðb0;g0Þ; y Þ Þ g:

Then
1. S1 4 S2 and
2. S3 ¼ S y S1.

For example, for a given ðb0;g0Þ2F
�X ;Ptr;r

�
that satisfies (3) and a given i2f1;…;mg, the horizontal with respect to xi

substrategy of Ŝ ¼ Ŝðb0;g0Þ is the set-theoretic complement with respect to Ŝ of the xi-based substrategy of Ŝ. The scope of the
present paper can be now stated as the comparison of the above substrategies for xi being the age of an individual of a
population.

2.2. Comparison of strategies

Here we introduce a scheme for the comparison of strategies, for which we need some preliminary notions, such as the
basic reproductive number and the graded strategies.

2.2.1. R0: The measure of comparison
An important epidemiological notion studied and used extensively in the epidemiological literature is the basic repro-

ductive number, R0, which is defined as the average number of infectious cases directly generated by one such case in a
population where all individuals are susceptible to an infection. For every mathematical model, that describes a problem
under study, corresponds a respective R0, which can be calculated with several ways, such as with the next-generation
method or the existence of the endemic equilibrium (Diekmann & Heesterbeek, 2000).

In general, R0 depends on both the independent variables and the parameters of a model, therefore it is considered as a
function defined as

R0 : X � FðX ;Ptr; rÞ � FðX ;PotherÞ/ð0;∞Þ
ðx; ðb;gÞ; d Þ1R0ðx; ðb;gÞ; d Þ:

Only for the sake of brevity and compactness of the exposition, in the present paper we assume that it is independent of x,

that is

R0 : FðX ;Ptr; rÞ � FðX ;PotherÞ/ð0;∞Þ
ððb;gÞ; d Þ1R0ððb;gÞ; d Þ:
In the proposed scheme, we check how one strategy measures against another of a special kind, via the calculation of the
respective values of R0. That special kind of strategies is described below.
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2.2.2. Gradable and graded strategies
The notion of the graded strategies is the crux of the proposed scheme. But before its introduction, we first need the

following one.

Defintion 6. (gradable strategy). Let

1. ðb0;g0Þ2F
�X ;Ptr;r

�
satisfy (3) and

2. S ¼ Sðb0;g0Þ be a respective strategy.

We call S gradable iff cd2FðX ;PotherÞ the function R0jSð $; dÞ is injective.
Since R0ðS; dÞ4ð0;∞Þ,cd2FðX ;PotherÞ, we can arrange any family of pairwise distinct elements of such a set in a strictly

ascending order when S is gradable, hence the following notion is well-defined.

Defintion 7. (graded strategy). Let

1. ðb0;g0Þ2F
�X ;Ptr;r

�
satisfy (3),

2. S ¼ Sðb0;g0Þ be a respective gradable strategy,
3. d2FðX ;PotherÞ and
4. fyigki¼14S be a family of pairwise distinct elements of S, such that

R0ðy1; dÞ <…<R0ðyk; dÞ :
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼:G1

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼:Gk

We call the pair
�
S;G ¼ ðGiÞki¼1

�
a graded strategy, while G is called a gradation of S and each of the G1,…, Gk is called a grade of G.

We note that the gradation of a graded strategy is a matter of choice. In what follows, for the sake of simplicity, we write S
instead of ðS;GÞ for a graded strategy.

2.2.3. Comparison table and coverage
With the above toolbox at hand, we propose a scheme for the comparison of two strategies, only when one of them is

graded. In addition, the scheme allows us to include many substrategies of the other strategy. Below, we present the steps
required for the utilization of the proposed scheme, which is governed by the construction of the respective comparison table
and analyzed in terms of epidemiological and social coverage.

Construction of the comparison table

1. Placing of the grades G1,…, Gk of the gradation G ¼ ðGiÞki¼1 of a given graded strategy S1, in increasing order, to the top row:
2. Placing the under study substrategies
�
S2i

�[
i¼1 of a second strategy S2 to the left of the table, with the intent of comparing

them against the first graded strategy.
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3. Populating the comparison table with +, where
Next, we present two ways to read the comparison table for extracting useful information.
Social overview of the comparison table: epidemiological coverage. Herewe compare S2 to S1. In particular, for every fixed

substrategy of S2 (social overview), we check how good of an alternative it is, compared to S1 (epidemiological coverage).

4/. Calculating the epidemiological coverage of the gradation G of S1 by each substrategy of S2, by calculating the average
number of ✓ in each row.
5/. Calculating the total coverage of the gradation G of S1 by the whole S2, through the average value of all epidemiological
coverages.
The takeaway of the above analysis is that if the total (epidemiological) coverage of G by the (respective sub-)strategy S2
(S2i

, for i2f1;…; [g) is satisfying, then S2 ðS2i
Þ could be considered as an alternative to S1. We note that the quantification of

the term “satisfying” is subjective.
Epidemiological overview of the comparison table: social coverage. Here we compare S1 to S2. In particular, for every

fixed grade of G (epidemiological overview), we check how much of that grade S2 is (social coverage).

4Y. Calculating the social coverage of S2 by each grade of G of S1, by calculating the average number of ✓ in each column.
1307
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5Y. Calculating the total coverage of S2 by the whole G of S1, through the average value of all social coverages.

Total overview of the comparison table. Here, we combine the social and the epidemiological overview of the comparison
table.

6. Merging of the social and epidemiological overviews.

3. Horizontal lockdowns versus age-based interventions

In this section, we investigate whether age-based interventions can offer a replacement to horizontal lockdowns for the
case of SARS-CoV-2, following the framework presented in x2, and using the model studied in Bitsouni et al. (2024), which is
presented in Appendix A. In x3.1, we categorize the parameters into d, b and g, and pick our choice of strategic scales, r; both
ðb;gÞ and r serve for the definition of the strategies under investigation. Additionally, we distribute the total population of P
(4) into five cohorts, based on age, q, of each individual. In x3.3, we define the graded strategy of horizontal lockdowns and the
strategy of age-based restrictions. Finally, in x3.4, we compare the aforementioned strategies.

3.1. Choice of general strategy

The independent variables that appear in P (4) are t and q, thus
1308
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x ¼ ðt; qÞ:

In order to define the strategies under investigation, we need to categorize the parameters appeared inP (4) into (b0, g0) and
d, and consequently choose an appropriate strategic scale as discussed in x2.1.

The parameters which affect the strategies under investigation are bA, bI and gI. Therefore, we have that

ðb0;g0Þ ¼ ðbA; bI ;gIÞ;

whereas

d ¼ ðm; p; e; z; k; q; x;c;gAÞ;

with the parameter values being as in Table 1.
We note that regardless of the seemingly important role of asymptomaticity (see Appendix A) for the spread of the disease,

the performance of the means of detection, such as the rapid antigen tests (Ag-RDTs), for the case of asymptomatic infectious
individuals still remains ambiguous (Centers for Disease Control and Prevention, 2020; Pollock& Lancaster, 2020; SAGE 56th
meeting on COVID-19, 2020; Soni et al., 2023). In the light of the abovewe prefer not to incorporate suchmeans to our general
strategy, hence we exclude gA from (b0, g0). Moreover, we note that (3) holds.

We are now ready to construct our choice of general strategy along with its strategic scales, following the next steps.

1. We consider an interval L4Rþ
0 such that 02 L, to be the average lifespan of an individual of the population under study,

hence q 2 L. Of course, sup L < ∞.
2. We discretize L by considering a respective partition DL :¼ �

dj
�n
j¼0, for a fixed n2N, i.e.,

0 ¼ d0 < d1 <…< dn ¼ sup L
and we define the subintervals

Lj :¼
	
dj�1; dj

�
; cj2f1;…; ng:

3. We set

LW :¼
[

Lj; cW2Pðf1;…; ng Þ;

j2W

where P stands for the power set, as well as we define
Table 1
A list of parameters of M , along with their value, units, and value source. For their derivation, see Appendix B.

Parameters Value Units Source

N0 80$106 individuals Estimated from Mathieu et al. (2020)
m 4.38356$10�5 day �1 Estimated from Mathieu et al. (2020)
bA Fig. 13 individual�1$day �1 Estimated from Del Valle et al. (2007)
bI Fig. 13 individual�1$day�1 Estimated from Del Valle et al. (2007)
p 10e3 day�1 Estimated from Mathieu et al. (2020)
e 0.7 e Estimated from Grant et al. (2022)

z 1
14 day�1 Estimated from Chau et al. (2022)

k Equation 6 day�1 Estimated from Kang et al. (2022), Wu et al. (2022)
q Fig. 14 e Estimated from Sah et al. (2021)
x 0.5 e Estimated from He et al. (2021), Buitrago-Garcia et al. (2022)
c Equation 7 day�1 Estimated from He et al. (2021), Buitrago-Garcia et al. (2022)

gA
1
8 day�1 Estimated from Byrne et al. (2020)

gI
1
14 day�1 Estimated from Byrne et al. (2020)
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rW ð $ ; aÞ : L/½0;1�

q1rW ðq; aÞ :¼
8<
:

1 q;LW

a q2LW ;

cðW ; aÞ2Pðf1;…;ng Þ � ½0; 1Þ

and

gW ð $ ; bÞ : L/½1;∞�

q1gW ðq; bÞ :¼

8><
>:

1 q;LW

1
b

q2LW ;

cðW ; bÞ2Pðf1;…;ng Þ � ½0;1Þ;

where the choice of ða; bÞ2½0;1Þ2 is left to be explained.
We note that in the extreme cases of W2f∅; f1;…;ng g we have L∅ ¼ ∅ and Lf1;…;ng ¼ L, as well as

ðr∅ð $ ; aÞ; g∅ð $ ; bÞÞ ¼ ð1;1Þ; cða; bÞ2½0;1Þ2

and
�
rf1;…;ngð $ ; aÞ; gf1;…;ngð $ ; bÞ

�
¼



a;
1
b

�
; cða; bÞ2½0;1Þ2:

Hence, the above functions are independent of q iff W2f∅; f1;…;ng g, as well as they are equal to 1 iff W ¼ ∅.
4. We define the strategic scales to be

rWb;Wg
ð $ ; a;bÞ :¼

�
rWb

ð $ ; aÞ; rWb
ð $ ; aÞ; gWg

ð $ ; bÞ
�
; c

�
Wb;Wg; a; b

�
2ðPðf1;…;ng Þ Þ2 � ½0;1Þ2:
5. The general strategy of interest S has the form

S :¼
n
ðb;gÞ ¼ rWb;Wg

ð $ ; a; bÞ1ðb0;g0Þ
��� �Wb;Wg; a;b

�
2ðPðf1;…;ng Þ Þ2 � ½0;1Þ2

o
:

Regarding a2½0;1�, in the light of (1), the effect of every rWb
ð $; aÞ to b can be interpreted as having the average number of

close contacts of an (asymptomatic or symptomatic) infectious individual belonging to LWb
reduced by 1 � a, i.e.

ðcA; cIÞjLWb
1a$ðcA; cIÞjLWb
Regarding b2ð0;1�, in the light of (2), the effect of every gWg
ð $; bÞ to g can be interpreted as having the average period an

individual belonging to LWb
spends on compartment I before moving into compartment R reduced by 1 � b, i.e.

PI/RjLWb
1b$PI/RjLWb
3.2. Choice of distribution of the population into age cohorts

We now specify the distribution of the whole population into cohorts with respect to the age of each individual, hence
with respect to its occupational and social activity.

We divide the population into five (5) cohorts, thus n ¼ 5, as seen in Fig. 2, whereL ¼ ½0;90Þ years and DL ¼ f0;6;18;24;
65;90g years (both non-scaled). The 1st cohort is made of toddlers and preschoolers, the 2nd is made of school students, the
3rd is primarily made of university students, the 4th is primarily made of the working class, and the 5th is primarily made of
pensioners.
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Fig. 2. The partition of the non-scaled lifespan and the respective distribution of the whole population into cohorts. The partition was made by taking into
account the social profile connecting individuals in each cohort, such as going to school, working, or being pensioners.

V. Bitsouni, N. Gialelis and V. Tsilidis Infectious Disease Modelling 9 (2024) 1301e1328
As an example of the strategic scale within the context of the cohorts presented in Fig. 2, the reduction of the number of
contacts of the 1st and 3rd cohort by 80% and not performing tests on any cohort is modeled by the strategic scale

rf1;3g;∅



$ ;

1
5
; $

�
¼



rf1;3g



$ ;

1
5

�
; g∅ð $ ; $ Þ

�
;

where
rf1;3g



q;
1
5

�
¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

1
5; if q2L1

1; if q2L2

1
5; if q2L3

1; if q2L4

1; if q2L5;

and
g∅ðq; $ Þ ¼ 1; cq2L:
3.3. Choice of substrategies of general strategy

In this section, we define the two strategies under investigation. Furthermore, we utilize the strategic scale introduced in
x3.1 to model each strategy.

3.3.1. Horizontal lockdowns substrategy
It is straightforward to check that the largest horizontal with respect to age substrategy of S is

n�
b;gÞ ¼ rWb;Wg

ð $ ; a; bÞ1ðb0;g0Þ
��� �Wb;Wg; a; b

�
2ðPðf1;…;5g Þ Þ2 � ½0;1Þ2 such that

�
Wb;Wg

�
2f∅; f1;…;5g g2

o
;

which implies that every substrategy of the above strategy is horizontal with respect to age.
Thus, a choice of horizontal lockdowns substrategy can be made by considering S1 4 S as

S1 ¼
n
ðb;gÞ ¼ rf1;…;5g;∅ð $ ; a; $ Þ1ðb0;g0Þ

��� a2½0;1Þ
o
:

The intensity (that is the amount of contact reduction for every individual) can be varied but uniformly, that is,
a2½0;1Þ and Wb ¼ f1;…;ng;
respectively, in order to capture different scenarios. We also assume that no tests are performed in any of the five cohorts, i.e.
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Wg ¼ ∅:
Now, S1 is gradable, since from (5) we get that

R0ðb;g; dÞ ¼ a$R0ðb0;g0; dÞ;cðb;gÞ2S1:

In particular, R0 is strictly increasing with respect to a, as it is depicted in Table 2.
To get a better understanding of how a2½0;1Þ translates into the real life intensity of a stay-at-home restriction policy, we

firstly notice that when Wb ¼ ∅ (or else a / 1�), we have that no stay-at-home restrictions are in effect. In that case, our
model predicts an R0 of 2.854 (or else R0/2:854�), which is in line with various systematic reviews found in scientific
literature, such as 2.87 (95% CI: 2.39e3.44) in Billah et al. (2020) and 2.69 (95% CI: 2.40e2.98) in Ahammed et al. (2021), which
solidifies the validity of our model in predicting the R0 of SARS-CoV-2 pandemic. Furthermore, we see that the tight lock-
down Italy enforced in early 2020 resulted in an 82% reduction in mobility (Vinceti et al., 2022), which would correspond to a
being approximately equal to 0.2. During the same time frame in Germany, the authors of Schlosser et al. (2020), report about
a 50% drop in the average number of contacts, which corresponds to a ¼ 0.5. Finally, in Zhou et al. (2020) the authors show
that even a 20% reduction in mobility proved a goodway of delaying the spread of the infection, which would correspond to a
being approximately equal to 0.8.

Based on the aforementioned cases, we construct three different scenarios based on the intensity of the mobility
restrictions:

� the low intensity scenario, L, where the average number of contacts is reduced by 20% and R0L ¼ 2:283,
� the medium intensity scenario, M, where the average number of contacts is reduced by 50% and R0M ¼ 1:427 and
� the high intensity scenario, H, where the average number of contacts is reduced by 80% and R0H ¼ 0:571.

The above scenarios constitute a gradation G of S1 with

G1 ¼ R0H; G2 ¼ R0M and G3 ¼ R0L:

Such a gradation is summarized in Table 3.

3.3.2. Aged-based substrategies
The largest aged-based substrategy of S, S2 4 S, is

S2 ¼
n�

b;gÞ¼ rWb;Wg
ð$ ;a;bÞ1ðb0;g0Þ

����Wb;Wg;a;b
�
2ðPðf1;…;5gÞÞ2�½0;1Þ2 such that

�
Wb;Wg

�
;f∅;f1;…;5gg2

o
;

Table 2
The value of R0 decreases linearly as the intensity of the stay-at-home restrictions
increases, i.e. as a decreases.

a Contact reduction R0

0 100% 0
0.1 90% 0.285
0.2 80% 0.571
0.3 70% 0.856
0.4 60% 1.141
0.5 50% 1.427
0.6 40% 1.712
0.7 30% 1.998
0.8 20% 2.283
0.9 10% 2.569

Table 3
Summary of the three horizontal lockdowns’ intensity scenarios, Low ðLÞ, Medium ðMÞ and High ðHÞ, which constitute a gradation of S1.

Gradation Intensity level Contact reduction R0

G1 80% 0.571
G2 50% 1.427
G3 20% 2.283
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Table 4
The sixteen age-based substrategies

�
S2i

�16
i¼1 of S2 which are chosen for the comparison to S1.

i Age-based interventions Wb Wg

1
Contact reduction: 1st, 2nd, 3rd cohorts f1;2;3g f4;5g

Testing: 4th, 5th cohorts

2
Contact reduction: 4th, 5th cohorts f4;5g f1;2;3g

Testing: 1st, 2nd, 3rd cohorts

3
Contact reduction: 1st cohort f1g f4;5g

Testing: 4th, 5th cohorts

4
Contact reduction: 4th, 5th cohorts f4;5g f1g

Testing: 1st cohort

5
Contact reduction: 2nd cohort f2g f4;5g

Testing: 4th, 5th cohorts

6
Contact reduction: 4th, 5th cohorts f4;5g f2g

Testing: 2nd cohort

7
Contact reduction: 3rd cohort f3g f4;5g

Testing: 4th, 5th cohorts

8
Contact reduction: 4th, 5th cohorts f4;5g f3g

Testing: 3rd cohort

9
Contact reduction: 1st cohort f1g f2g

Testing: 2nd cohort

10
Contact reduction: 2nd cohort f2g f1g

Testing: 1st cohort

11
Contact reduction: 4th cohort f4g f5g

Testing: 5th cohort

12
Contact reduction: 5th cohort f5g f4g

Testing: 4th cohort

13
Contact reduction: 2nd cohort f2g f4g

Testing: 4th cohort

14
Contact reduction: 4th cohort f4g f2g

Testing: 2nd cohort

15
Contact reduction: 2nd cohort f2g f5g

Testing: 5th cohort

16
Contact reduction: 5th cohort f5g f2g

Testing: 2nd cohort
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which implies that every substrategy of S2 is aged-based hence it can potentially be compared to the graded S1. For our

simulations, we choose the substrategies
�
S2i

�16
i¼1 of S2 summarized in Table 4 for the comparison to S1.
3.4. Simulations and results

Here we employ the scheme introduced in x2.2 for the comparison between S1 of x3.3.1 and
�
S2i

�16
i¼1 of x3.3.2. The sim-

ulations were performed using Mathematica 13.1 (Wolfram Research Inc., 2022). In the end of this section, we summarize its
results with the comparison table.

3.4.1. Social overview of the results, S2 versus S1
Throughout our simulations, we let the ða; bÞ of each strategic scale to take values in the 2D interval ½0;1Þ2 and illustrate

the results in density plots, where in the x-axis and y-axis we have a$100% and b$PI/R ¼ b
gI
¼ b$14 days, respectively.

S21;2
versus S1. We begin by examiningwhether restrictions on the younger or the older cohorts play amore important role

in reducingR0. In Fig. 3a, we see that in order to achieve the sameR0 as the scenarioH, the contact reduction of the first three
cohorts needs to be at least 75% and the individuals of the last two cohorts need to be detected and removed at least before
the twelfth day. Additionally, since the absolute value of the gradient of the contour lines is high, the younger cohorts in-
fluence the dynamics ofR0 more when compared to the older cohorts. In Fig. 3b, we see that the scenarioH, can be replaced
by finding and removing from the community the people belonging in the first three cohorts at around the third day from
symptom onset, whereas the contact reduction of the older age cohorts is almost irrelevant. Furthermore, since the gradient
of the contour lines is almost zero, the younger cohorts play a far greater role in reducing R0 when compared to the older
cohorts, especially the more austere the restrictions are. Overall, Fig. 3 shows us that the younger cohorts are more influential
in the dynamics of R0, both when they are faced with social distancing restrictions, and with mandatory testing.

It is now clear that the younger cohorts play a far more important role in the dynamics of R0. We subsequently examine
whether similar results as those presented in Fig. 3 can be achieved, by restricting just one of the three younger cohorts
instead of all three of them together.

S23;4
versus S1. Fig. 4 illustrates restrictions on the 1st and the 4th e 5th cohorts. When social distancing on the 1st cohort

and testing on the 4th and 5th cohorts are enforced, scenarioM can only be achieved with the strongest possible restrictions
on the aforementioned cohorts, as we can see in Fig. 4a. When the restrictions on the cohorts are reversed, Fig. 4b shows that
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Fig. 3. Two density plots of the grouping of the three younger cohorts and the two older cohorts together. In both cases, all three of our horizontal lockdown
scenarios L;M and H, can be replaced by enforcing a wide range of intensity level restrictions to the different cohort groupings.
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scenario H can be achieved if the day that the symptomatic infectious individuals are detected and removed from the
community is around the second day, with the contact reduction of the 4th and 5th cohort being almost irrelevant just like
the case described by Fig. 3. There is, however, a one-day difference in the required detection day of asymptomatic individuals
between the scenarios presented in Fig. 3b and Fig. 4b for them to have the same effect on R0, as scenario H. In other words,
the procedure of detection and removal of asymptomatic individuals from the community needs to be one day faster when
only the 1st cohort is getting testedwhen compared to the grouping of the 1st, 2nd and 3rd cohorts, for them to have the same
results on R0 as scenario H.

S25;6
versus S1. Next, we examine the importance of the 2nd cohort to the dynamics ofR0, with the results being shown in

Fig. 5. Contrary to the simulation of Fig. 4a, when social distance is enforced on the 2nd cohort, the results of scenario M can
be achievedwith far less strict policies. In particular, as shown in Fig. 5a, for scenarioM to be achieved, the contacts of the 2nd
cohort need to be reduced by at least 80% and the symptomatic individuals of the 4th and 5th cohorts need to be detected and
removed from the community at least before around the fifth day. When the 2nd cohort is the one being tested, Fig. 5b shows
that scenarioM can be achieved by removing symptomatic individuals from the community at around the fifth day, with the
reduction in the average number of contacts of the 4th and 5th cohorts being almost irrelevant, much like the simulations
illustrated in Fig. 3b and Fig. 4b. Additionally, none of the simulations of Fig. 5 can act as a replacement measure to scenarioH.

S27;8
versus S1. Subsequently, we examine the contribution of the 3rd cohort to the dynamics ofR0, with Fig. 6 illustrating

the results. As we can see from Fig. 6, the 3rd cohort, in combination with the grouping of the 4th and 5th cohort, seems to
influence the reduction ofR0 far less when compared to the younger cohorts. The only horizontal lockdown scenario that can
be replaced with this combination of age-based interventions is scenario L. Additionally, even though the 1st and 2nd cohort
dominated the dynamics of R0 when the symptomatic individuals of those cohorts were getting tested, that is not the case
with the 3rd cohort, as can be seen from Fig. 6b. The same holds for the case when social distancing is enforced on the 3rd
cohort, since the absolute value of the gradient of the contour lines of Fig. 6a is about 2. Hence, out of the three younger
cohorts, the 3rd one has the weakest influence on the dynamics of R0.

S29;10
versus S1. The 1st and 2nd cohort seem to be the two cohorts that influence the dynamics ofR0 the most. Hence, we

quantify the results of targeting only the aforementioned cohorts in Fig. 7. As we can see from Fig. 7, all three horizontal
lockdown scenarios L;M and H can be replaced with a combination of measures targeted at the 1st and 2nd cohort. This
particular combination of age-based measures has similar dynamics as the scenarios presented in Fig. 3 which combine all of
our cohorts, and Fig. 4b which includes measures regarding three different cohorts. The vital role of the 1st and 2nd cohort is
now undeniable. In Fig. 7awe see, that scenarioH can be replacedwith the contacts of the 1st cohort being reduced by at least
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Fig. 4. Two density plots of the 1st cohort and the grouping of the two older cohorts together. When social distancing is enforced on the 1st cohort scenarioH can
only be achieved when the most austere restriction are enforced. On the other hand, when the symptomatic individuals of the 1st cohort are the ones getting
tested all three of our horizontal lockdown scenarios L;M and H, can be replaced by enforcing a wide range of intensity level restrictions to the 1st cohort and
the grouping of the 4th and 5th cohort. The detection-and-removal day of asymptomatic individuals needs to be one day faster when compared to the simulation
illustrated in Fig. 4b, for the same results as scenario H to apply.
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50% and the infectious individuals of the 2nd cohort being found and removed from the community at least before the 4th
day. When the restrictions are reversed, scenario H can be replaced when the symptomatic individuals of the 1st cohort are
detected and removed from the community at around the second day after symptom onset, as can be seen in Fig. 7b, with
minimal contribution from the 2nd cohort.

S211;12
versus S1. Up until now, we examined the two older cohorts, namely the 4th and 5th cohort, grouping them together

as a single cohort. In an attempt to study the result of the interactions of the aforementioned cohorts individually, we present
Fig. 8. As expected, from the inability of the grouping of the 4th and 5th cohort to dominate the dynamics of our previous
simulations, the simulations of Fig. 8 offer a poor reduction of R0. Neither in Fig. 8a nor Fig. 8b can horizontal lockdown
scenariosH andM be replaced by a combination of measures in the 4th and 5th cohort. Only scenario L can be replaced, and
that is with austere restrictions on the 5th cohort. In particular, scenario L can be achieved either when the reduction of the
average amount of contacts of the 4th cohort is 80% or when the symptomatic individuals of the 4th cohort are detected and
removed from the community at around 2.5 days after symptom onset. Finally, there is a clear domination of the 4th cohort in
this particular combination of age-based measures, with the measures enforced on the 5th cohort being irrelevant.

S213;14;15;16
versus S1. Lastly, we present the final combination ofmeasures in Fig. 9. This final set of restrictions acts as a viable

proposal to a real life situation with the economic impact of the measures in mind, since it targets the 2nd cohort, i.e., school
students, whose contact reduction, or in other words school closures, would minimally affect the economy. Additionally,
Fig. 9, allows us to examine the difference between the grouping of the two older cohorts and their individual contribution to
R0, in combination to another, younger, cohort. As can be seen in Fig. 9a, for horizontal lockdown scenarioM to be replaced,
the contact reduction of the 2nd cohort needs to be at least 85% and the infectious individuals of the 4th cohort need to be
found and removed from the community at least before the fourth day after symptom onset. Compared to Fig. 5a, there is a 5%
increase in the required contact reduction for scenario M to be replaced, as well as about a 1.5 day decrease between the
required detection-and-removal day for the symptomatic individuals of the 4th cohort and the grouping of the 4th and 5th
cohort. On the other hand, Fig. 9b is identical to Fig. 5b, meaning that the 5th cohort's contribution to the dynamics of R0 is
minimal. This is further proved in Fig. 9c and d, where we see that the 2nd cohort dominates the dynamics of the simulation.
In particular, when the contact reduction of the 2nd cohort is 50%, scenario L can be replaced, whereas when the infectious
individuals of the 2nd cohort are removed from the community at around the 4th day, scenario M can be replaced.
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Fig. 5. Two density plots of the 2nd cohort and the grouping of the two older cohorts together. When social distancing is enforced on the 2nd cohort, scenario H
can only be achieved with laxer restriction compared to the respective restrictions on the 1st cohort. Neither of the pictured simulations are able to offer a
replacement to scenario H. Much like the simulations of Fig. 3b and Fig. 4b, for the scenario M to be achieved the testing of the younger cohorts dominates the
dynamics of R0, with the dynamics of the older cohorts being almost irrelevant.

Fig. 6. Two density plots of the 3rd cohort and the grouping of the two older cohorts together. Neither of the simulations is able to offer a replacement to scenario
M and scenario H. The influence of the 3rd cohort to the dynamics of R0 is far weaker when compared to the influence of the 1st and 2nd cohort, as can be seen
from Fig. 3b and Fig.4b.
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Fig. 7. Two density plots of the influence of the 1st cohort and 2nd cohort on the dynamics of R0. In both cases, all three of our horizontal lockdown scenarios
L;M and H, can be replaced by enforcing a wide range of intensity level restrictions to the 1st cohort and 2nd cohort. The 1st and 2nd cohorts are the most
important cohorts at effecting the dynamics of R0, since they influence the dynamics of R0 comparably to the influence of the combination of all of our cohorts,
as seen in Fig. 4.

Fig. 8. Two density plots of the influence of the 4th and 5th cohort on the dynamics of R0. Neither case was able to offer a replacement to horizontal lockdown
scenario M and scenario H. Restrictions on the combination of the 4th cohort and the 5th cohort result in the poorest reduction in R0 when compared to the
remaining of our simulations. When measures are imposed to the 4th and 5th cohort, the restrictions on the 4th cohort dominate the dynamics of R0.
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Fig. 9. Four density plots of the influence of the interactions of the 2nd and 4th cohort, as well as the 2nd and 5th cohort, on the dynamics of R0. None of the
simulations was able to offer a replacement to horizontal lockdown scenario H. The 5th cohort's contribution to the dynamics of R0 is insignificant, since its
removal from the measure-targeted cohorts, minimally affects the dynamics of R0, as can be seen when Fig. 9a and Fig. 9b and Fig. 5 are compared. Additionally,
the 2nd cohort completely dominates the dynamics of R0, when the 5th cohort is included in the simulations, as can be seen from Fig. 9c and Fig. 9d.
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3.4.2. Epidemiological overview of the results, S1 versus S2
Throughout our simulations we let ða; bÞ of each gradation to take values in the 2D interval ½0;1Þ2 and illustrate the results

in contour plots, where in the x-axis and y-axis we have a$100% and b$PI/R ¼ b
gI
¼ b$14 days, respectively.
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H versus S2. We begin by examining howmany substrategies of
�
S2i

�16
i¼1 can be considered as an alternative to scenarioH.

As can be seen from Fig. 10a, five substrategies of
�
S2i

�16
i¼1 admit the same R0 as the respective one of scenario H. Therefore,

the epidemiological coverage of scenarioH by the substrategies
�
S2i

�16
i¼1 is 31.25%. We highlight the fact that every one of the

five substrategies that can replace scenario M, regards restrictions on the 1st cohort.

M versus S2. Next, we examine howmany substrategies of
�
S2i

�16
i¼1 can be considered as an alternative to scenarioM. As

can be seen from Fig. 10b, eleven substrategies of
�
S2i

�16
i¼1 admit the sameR0 as the respective one of scenarioM. Therefore,
Fig. 10. Three contour plots illustrating the epidemiological coverage of each substrategy (L; M and H) of horizontal lockdown strategy. The denser the plot is,
the higher the epidemiological coverage.

1319



Table 5
Horizontal lockdowns versus age-based restrictions. The total coverage of horizontal lockdowns from age-based restrictions is 66.66%. Additionally, the table

is populated with representative values of
�
a$100%;

b
gI

�
of the strategic scale that each age-based strategy needs to have in order for the strategy to have the

same R0 as each of the three horizontal lockdown scenarios.

Age-based restrictions
Horizontal lockdowns

Epidemiological coverage

Contact reduction: 1st, 2nd, 3rd cohorts
80.6% and 3.06 days 42.3% and 3.71 days 4.55% and 11.7 days

100%
Testing: 4th, 5th cohorts

88% and 6.4 days 50.5% and 7.43 days 12.5% and 8.19 days
95.4% and 9.82 days 58.9% and 11.4 days 19.9% and 4.59 days

Contact reduction: 4th, 5th cohorts
21.1% and 2.92 days 18.4% and 7.43 days 17.8% and 13.4 days

100%
Testing: 1st, 2nd, 3rd cohorts

50.4% and 2.9 days 50% and 7.68 days 42.9% and 12.4 days
81.7% and 2.89 days 78.9% and 7.96 days 67.9% and 11.7 days

Contact reduction: 1st cohort
✗

98.8% and 1 day 10.7% and 11.9 days
66.66%

Testing: 4th, 5th cohorts
99.1% and 1.05 days 34% and 8.18 days
99.5% and 1.12 days 55.4% and 4.31 days

Contact reduction: 4th, 5th cohorts
18.8% and 2.05 days 17.9% and 4.72 days 17.5% and 9.41 days

100%
Testing: 1st cohort

48.6% and 2.1 days 50% and 5.11 days 43.2% and 10.8 days
80.2% and 2.18 days 79.1% and 5.57 days 68.6% and 12.7 days

Contact reduction: 2nd cohort
✗

82.7% and 1.86 days 10.6% and 11.7 days
66.66%

Testing: 4th, 5th cohorts
89.6% and 3.29 days 27.7% and 8.32 days
96.4% and 4.71 days 43% and 4.73 days

Contact reduction: 4th, 5th cohorts
✗

21.2% and 4.65 days 17.9% and 9.82 days
66.66%

Testing: 2nd cohort
50% and 4.4 days 43.1% and 11 days

82.1% and 4.22 days 67.9% and 12.7 days

Contact reduction: 3rd cohort
✗ ✗

19.5% and 8.89 days
33.33%

Testing: 4th, 5th cohorts
50.9% and 6.45 days
82.1% and 4.04 days

Contact reduction: 4th, 5th cohorts
✗ ✗

23.1% and 4.93 days
33.33%

Testing: 3rd cohort
54.7% and 6.89 days
75% and 11 days

Contact reduction: 1st cohort
58.1% and 3.29 days 19.6% and 4.95 days 14% and 10.1 days

100%
Testing: 2nd cohort

74% and 2.52 days 50% and 6.27 days 34.3% and 11.4 days
89.5% and 1.59 days 80.2% and 7.71 days 54.5% and 13 days

Contact reduction: 2nd cohort
20.2% and 2.41 days 20.1% and 4.88 days 10.7% and 9.36 days

100%
Testing: 1st cohort

51.2% and 2.23 days 52.5% and 5.64 days 28.2% and 10.8 days
82% and 2.09 days 82.1% and 6.77 days 44.4% and 12.6 days

Contact reduction: 4th cohort
✗ ✗

81.1% and 3.46 days
33.33%

Testing: 5th cohort
81.8% and 7.5 days
82.3% and 11.2 days

Contact reduction: 5th cohort
✗ ✗

18.9% and 2.53 days
33.33%

Testing: 4th cohort
48.9% and 2.53 days
79.7% and 2.53 days

Contact reduction: 2nd cohort
✗

87.5% and 1.62 days 11.5% and 2.76 days
66.66%

Testing: 4th cohort
92% and 2.51 days 33.8% and 7.25 days
96.4% and 3.41 days 52.8% and 11.3 days

Contact reduction: 4th cohort
✗

21.4% and 4.63 days 17.9% and 9.81 days
66.66%

Testing: 2nd cohort
51.1% and 4.4 days 44.5% and 11 days
81.5% and 4.22 days 68.1% and 12.6 days

Contact reduction: 2nd cohort
✗ ✗

52.1% and 3.52 days
33.33%

Testing: 5th cohort
52.5% and 7.36 days
52.9% and 11.3 days

Contact reduction: 5th cohort
✗

20.4% and 4.12 days 18.9% and 9.22 days
66.66%

Testing: 2nd cohort
51% and 4.12 days 49.1% and 9.25 days
81.2% and 4.12 days 79.3% and 9.27 day

Social coverage 31.25% 68.75% 100% 66.66%
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the epidemiological coverage of scenarioM by the substrategies
�
S2i

�16
i¼1 is 68.75%.We highlight the fact that every one of the

eleven substrategies that can replace scenario M, regards restrictions on the 1st and 2nd cohort.

L versus S2. Finally, we examine howmany substrategies of
�
S2i

�16
i¼1 can be considered as an alternative to scenario L. As

can be seen from Fig. 10c, all substrategies
�
S2i

�16
i¼1 admit the same R0 as the respective one of scenario L. Therefore, the

epidemiological coverage of scenario L by the substrategies
�
S2i

�16
i¼1 is 100%.

A summary of the results of x3 can be seen in Table 5.
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4. Conclusions and discussion

In this paper, we introduced a scheme for the comparison of certain types of interventions for the restriction of an
epidemiological phenomenon. This scheme incorporates some novel notions such as “strategy”, “substrategy”, “gradable
strategy” and its “gradation”, “comparison table”, as well as “epidemiological coverage” and “social coverage”. Then, we
utilized the aforementioned scheme and the age-based epidemiological compartment problem studied in Bitsouni et al.
(2024) to compare horizontal lockdown policies with various age-based interventions.

In particular, we distributed the total population into five cohorts, based on the age of each individual (in ascending order)
and we defined the graded strategy of horizontal lockdowns, considering three scenarios of horizontal lockdowns with
varying intensity, Low ðLÞ, Medium ðMÞ and High ðHÞ. We also defined the strategy of age-based restrictions, consisting of 16
substrategies. In general, our results suggest that these two strategies are comparable mainly at low or medium level of
intensity. Particularly, throughout our simulations, which used data from the literature, we deduced that the strategies that
targeted the 1st and 2nd cohort had the best epidemiological coverage. Moreover, all substrategies were able to admit the
same R0 as the respective one of scenario L, meaning a 100% social coverage of L, while the social coverage of scenarios M
and H by the substrategies is 68.75% and 31.25%, respectively.

Future work could entail the generalization of the notion of strategy, hence the comparison process itself.
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Appendix A. The employed epidemiological model

Here we use the epidemiological model M along with the respective problem P , introduced and studied in Bitsouni et al.
(2024), as a means of utilization of the proposed scheme in answering themain question of the present paper. We choose this
model as it incorporates both symptomatic and asymptomatic infectious individuals, with the latter playing an important role
in the spread of the COVID-19 (see Gao et al. (2021) and many references therein), as well as the age of the infected/infectious
individuals.

After scaling the independent age-variable, q, and turning it to another time-variable measured in the same units as t (see
Bitsouni et al. (2024)) and using the relation N ¼ Sþ V þ Eþ Aþ Iþ R, we obtain the following model

8>>><
>>>:

dS
dt

¼ mN0 �
0
@pþ

Z∞
0

bAðqÞað $; qÞ þ bIðqÞið $; qÞdqþ m

1
AS

Sð0Þ ¼ S0;

(4a)

8> 0 Z∞ 1
>><
>>>:

dV
dt

¼ pS�@zeþ
0

bAðqÞað $; qÞ þ bIðqÞið $; qÞdqð1� eÞ þ mAV

Vð0Þ ¼ V0;

(4b)

8> ve ve
>>>>>><
>>>>>>>:

vt
þ
vq

¼ �ðkþ mÞe

eð $; 0Þ ¼
Z∞
0

bAðqÞað $; qÞ þ bIðqÞið $; qÞdqðSþ ð1� eÞV Þ

eð0; $ Þ ¼ e0;

(4c)
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8>>>>>>><
>>>>>>>:

va
vt

þ va
vq

¼ �ðgAxþ cð1� xÞ þ m Þa

að $;0Þ ¼
Z∞
0

kðqÞqðqÞeð $; qÞdq

að0; $ Þ ¼ a0;

(4d)

8> vi vi
>>>>>><
>>>>>>>:

vt
þ
vq

¼ �ðgI þ mÞi

ið $;0Þ ¼
Z∞
0

kðqÞð1� qðqÞ Þeð $; qÞ þ cðqÞð1� xðqÞ Það $; qÞdq

ið0; $ Þ ¼ i0:

(4e)
The flow diagram of the differential equations in (4) is shown in Fig. 11, and the dimensional units of all variables and
parameters appeared in P (4) are gathered in Table 6.
Fig. 11. Flow diagram of P (4).
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Table 6
Description of the independent and dependent variables and parameters of M , along with their units.
Independent variables
 Description
1323
Units
t
 Time
 T

q
 Age, i.e., time elapsed since, e.g., birth or infection
 Q
Conversion factor
 Description
 Units
u
 Conversion factor from the units of q to the units of t
 T Q�1
Dependent variables
 Description
 Units
N
 Number of total population of individuals
 #

S
 Number of susceptible individuals
 #

V
 Number of vaccinated-with-a-prophylactic-vaccine individuals
 #

e
 Age density of latent/exposed individuals
 # Q�1
E
 Number of latent/exposed individuals
 #

a
 Age density of asymptomatic infectious individuals
 # Q�1
A
 Number of asymptomatic infectious individuals
 #

i
 Age density of symptomatic infectious
 # Q�1
I
 Number of symptomatic infectious individuals
 #

R
 Number of recovered/removed individuals
 #
Parameters
 Description
 Units
N0
 Population size
 #

m
 Birth/Death rate
 T�1
bA
 Transmission rate of asymptomatic infectious individuals
 #�1 T�1
bI
 Transmission rate of symptomatic infectious individuals
 #�1 T�1
p
 Vaccination rate
 T�1
e
 Vaccine effectiveness
 e
z
 Vaccine-induced immunity rate
 T�1
k
 Latent rate (rate of susceptible individuals becoming infectious)
 T�1
q
 Proportion of the latent/exposed individuals becoming asymptomatic infectious
 e
x
 Proportion of the asymptomatic infectious individuals becoming recovered/removed (without
developing any symptoms)
e

c
 Incubation rate (rate of a part of asymptomatic infectious individuals developing symptoms)
 T�1
gA
 Recovery rate of asymptomatic infectious individuals
 T�1
gI
 Recovery rate of symptomatic infectious individuals
 T�1
From the analysis conducted in Bitsouni et al. (2024), the basic reproductive number, R0, of the model is

Rþ
0HR0 : ¼ mN0

pþ m



1þ pð1� eÞ

zeþ m

�
ðRA þRIÞ; (5)
where

Rþ
0HRA :¼

Z∞
0

kðsÞqðsÞe
�
Rs

0

kðtÞþm dt
ds

Z∞
0

bAðsÞe
�
Rs

0

gAðtÞxðtÞþcðtÞð1�xðtÞ Þþm dt
ds
and

Rþ
0HRI :¼

0
BBBBBBB@

Z∞
0

kðsÞð1�qðsÞÞe
�
Rs

0

kðtÞþmdt
dsþ

þ
Z∞
0

kðsÞqðsÞe
�
Rs

0

kðtÞþmdt
ds

Z∞
0

cðsÞð1�xðsÞÞe
�
Rs

0

gAðtÞxðtÞþcðtÞð1�xðtÞÞþmdt
ds

1
CCCCCCCA

�
Z∞
0

bIðsÞe
�
Rs

0

gIðtÞþmdt
ds:
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Appendix B. Parameter estimation

We now present parameter values fitting for the case of SARS-CoV-2. The chosen values are taken from the biological and
medical literature. Bellow, we give a detailed explanation about the value of each parameter, whereas a summary of the
parameter values can be found in Table 1.

The size of the population, N0 ¼ 80 $ 106 individuals, is assumed to be that of a relative large country, such as Germany,
Turkey, or Thailand (Mathieu et al., 2020).

The birth/death rate, m¼ 4.38356 $ 10�5 day�1, is taken from data fromMathieu et al. (2020). The average birth/death rate
of the world for the year 2021 is about 16 per 1000 individuals per year. Hence, we convert the aforementioned quantity from
“per 1000 individuals per year” to “per day” to get

16
1

1000 individuals$year
116$10�3 1

365 days
¼ 4:38356$10�5 day�1 ¼ m:
For the transmission rate of asymptomatic and symptomatic infectious individuals, we firstly assume the probability of an
exposed individual passing to the compartments of asymptomatic and symptomatic individuals to be 6E/A ¼ 1

8 and 6E/I ¼
1
3, respectively. From Del Valle et al. (2007), we have that the average number of daily contacts of any person, regardless its
epidemiological status, of age q, c(q), follows the graph as seen in Fig. 12. To digitize the data of the contacts, we use Web-
PlotDigitizer 4.6 (Rohatgi, 2022) to manually extract data points from Fig. 2 of Del Valle et al. (2007) and then interpolated
them using a third order polynomial interpolation scheme through Mathematica 13.1 (Wolfram Research Inc., 2022) and the
function Interpolation. Subsequently, from (1) we deduce that the transmission rate of asymptomatic and symptomatic in-
fectious individuals are the functions presented in Fig. 13.
Fig. 12. Age density (in years) of the average number of daily contacts, c, taken from Del Valle et al. (2007).

Fig. 13. Estimation of the age density (in years) of the asymptomatic and symptomatic transmission rate, assuming bA ¼ cA$6E/A
N0

and bI ¼ cI$6E/I
N0

according to (1),
where cA ¼ c ¼ cI.
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The vaccination rate, p¼ 10�3 day�1, is taken from data fromMathieu et al. (2020), during the summer of 2021 in the USA,
when the Delta variant of SARS-CoV-2 was the dominant variant. During the end of summer, the percentage of fully vacci-
nated USA citizens was about 54%whereas in the beginning of summer it was around 45%. Hence, we estimate the vaccination

from that three-month period to be p ¼ 54%�45%
90 day�1 ¼ 10�3 day�1.

The vaccine effectiveness, e ¼ 0.7, is estimated from data from Grant et al. (2022). In Grant et al. (2022), the authors find
that with the BNT162b2 vaccine, the effectiveness of two doses is 88.0% among thosewith the Delta variant, whereas with the
ChAdOx1 nCoV-19 vaccine, the respective effectiveness of two doses was 67.0%. Hence, we assume e ¼ 0.7.

The vaccine-induced immunity rate, z ¼ 1
14 day�1, is estimated from data from Chau et al. (2022). The authors of Chau

et al. (2022) report that, after two weeks of the second dose of the ChAdOx1 nCoV-19 vaccine, the percentage of study
participants with detectable neutralizing antibodies reached 98.1%.

The latent rate, k, is found by estimating that the latent and incubation period differ by 1 day. In Kang et al. (2022), the
authors examined data from 93 Delta transmission pairs and estimated the latent period by fitting the data to the Weibull
distribution, which made the best fit. They found the mean latent period to be 3.9 days. In Wu et al. (2022), the authors
performed a systematic review andmeta-analysis of 141 articles and found that the incubation periods of COVID-19 caused by
the Alpha, Beta, Delta, and Omicron variants were 5.00, 4.50, 4.41, and 3.42 days, respectively. Hence, assuming that the latent
and incubation period vary by 1 day, we have that k ¼ c

1�c, and by substituting c as found later in the present section, we have

that

kðqÞ ¼

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

1
4 day�1

; q<30$360 day

1
4:8 day�1; 30$360 day � q<40$360 day

1
4:8 day�1; 40$360 day � q<50$360 day

1
5:5 day�1; 50$360 day � q<60$360 day

1
3:1 day�1; 60$360 day � q<70$360 day

1
6 day�1; 70$360 day � q;

(6)

where q is measured in years.
The proportion of the latent/exposed individuals becoming asymptomatic infectious, q, is taken from Sah et al. (2021),

where the authors estimated the asymptomatic proportion by age, by performing a systematic review andmeta-analysis of 38
studies involving 14850 individuals. The curve they estimated can be seen in Fig. 14. To digitize the data, we use the same
procedure we used for the age density of daily contacts described earlier in the present section.

Fig. 14. Percentage of asymptomatic COVID-19 infection, by age (in years), taken from Sah et al. (2021).

The proportion of the asymptomatic infectious individuals becoming recovered/removed without developing any
symptoms, x ¼ 0.5, is estimated from data from He et al. (2021) and Buitrago-Garcia et al. (2022). In He et al. (2021), the
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authors performed a systematic review and meta-analysis from 41 studies containing the rate of asymptomatic COVID-19
infection before May 20, 2020, aggregating 50155 patients, and found that nearly half of the patients with no symptoms
at the time of their detection, would develop symptoms later. In Buitrago-Garcia et al. (2022), the authors performed a
systematic review and meta-analysis from 130 studies and reported the percentage of persistently asymptomatic individuals
being between 14 and 50%. Hence, we choose the proportion of persistently asymptomatic individuals being 50%.

The incubation rate, c, is estimated from data from Tan et al. (2020). The authors of Tan et al. (2020) found that the in-
cubation period varies with age, based on data from Singaporean hospitals between January 23, 2020 and April 2, 2020. The
authors divided the participants based on their age (in years) to six groups (<30, 30e39, 40e49, 50e59, 60e69 and 70< ) and
presented their results through a box plot. Hence, we assume that c is a piecewise functionwith its domain intervals being the
six aforementioned age groups, andwith the function being constant on each interval and equal to one over themedian of the
respective age group. Therefore, we have that

cðqÞ ¼

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

1
5 day�1; q<30$360 day

1
5:8 day�1; 30$360 day � q<40$360 day

1
5:8 day�1; 40$360 day � q<50$360 day

1
6:5 day�1; 50$360 day � q<60$360 day

1
4:1 day�1; 60$360 day � q<70$360 day

1
7 day�1

; 70$360 day � q;

(7)

where q is measured in years.

The recovery rate of asymptomatic infectious individuals, gA ¼ 1
8 day�1, and recovery rate of the symptomatic infectious

individuals, gI ¼ 1
14 day�1, is estimated from Byrne et al. (2020). In Byrne et al. (2020), the authors performed a rapid scoping

review up to April 1, 2020 and found that the median infectious period for asymptomatic cases was 6.5e9.5 days, whereas
time from symptom onset to two negative RT-PCR tests ranged from 10.9 to 15.8 days. Hence, we assume that the recovery
period of asymptomatic and symptomatic infectious individuals to be 8 and 14 days respectively.
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