
Age-based restrictions: An alternative to horizontal

lockdowns?

Vasiliki Bitsouni ∗1, Nikolaos Gialelis †2,3, and Vasilis Tsilidis ‡1

1Department of Mathematics, University of Patras, GR-26504 Rio Patras, Greece
2Department of Mathematics, National and Kapodistrian University of Athens,

GR-15784 Athens, Greece
3School of Medicine, National and Kapodistrian University of Athens,

GR-11527 Athens, Greece

Abstract

During an epidemic, such as the COVID-19 pandemic, policy-makers are dealing with the
decision of effective, but socioeconomically costly interference, such as horizontal lockdowns,
including school and workplace closure, physical distancing e.t.c. Investigating the role of the
age of the individuals in the evolution of epidemiological phenomena, we propose a scheme
for the comparison of certain epidemiological strategies. Then, we put the proposed scheme
to the test by employing an age-based epidemiological compartment model introduced in [4],
coupled with data from the literature, in order to compare the effectiveness of age-based and
horizontal interventions. In general, our results suggest that these two are comparable mainly
at low or medium level of austerity.
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1 Introduction

The recent COVID-19 pandemic brought to the fore the disastrous for the economy consequences
of horizontal lockdowns. Economically costly horizontal measures during the COVID-19 pandemic
have been the closure of workplaces and schools, the cancellation of public events and general
stay-at-home restrictions (see [5, 10, 11, 20] and many references therein).

This fact highlights the need for a more sophisticated managing of epidemiological crises. In this
context, many countries, especially after the spasmodic first response, have looked for more flexible
intervention policies. Multiple combinations of interventions were deployed by policy-makers in
order to combat the spread of SARS-CoV-2 and minimize their financial ramifications [2, 19, 21].

The aim of the present paper is to investigate the role of the age of the individuals in the
evolution of epidemiological phenomena, in order to verify age-based restrictions as a potential
alternative to horizontal lockdowns. Using as a case study the COVID-19 outbreak and data from
the literature, in order to address the following questions:

– How can we systematically model and compare the effect of lockdowns and testing?

– How does the age of individuals affect the outcome of the epidemic?

– Can age-based interventions offer a replacement to horizontal lockdowns?
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We answer the above questions by firstly proposing a scheme for the comparison of certain epi-
demiological strategies, and secondly, by utilizing the aforementioned scheme and the age-based
epidemiological compartment model proposed and studied in [4] for the comparison of a horizontal
lockdown policy with various age-based interventions.

This study is organized as follows. In §2, we introduce the notion of (epidemiological) strategy
with their potential gradations, and we present a framework for comparing the effectiveness of
certain strategies. In §3, we present the age-based SVEAIR model derived in [4], that incorporates,
among others, the ambiguous (see §4.1) variable of asymptomaticity of infectious individuals for the
spread of COVID-19 disease, and we estimate the model parameters. In §4, we compare the effect
of a horizontal lockdown with varying level of austerity with certain age-based counter measures of
similar epidemiological, but less social hence financial, impact. We conclude in §5 with a summary
and discussion of the results.

2 A framework for comparing the effectiveness of different
strategies

Let us divide a population into two classes, the infectious, I, and the non-infectious, Ic. Each of
these classes can be divided to further sub-compartments, e.g. A ∈ I and B ∈ Ic.

The transmission rate from compartment B to compartment A is defined as

βB→A ∶= cB ⋅ϖB→A

N
, (1)

where cB is the average number of close contacts of an individual belonging in B with other individ-
uals, ϖB→A is the probability of a contact to be effective in turning an individual of compartment
B to an individual of compartment A, and

N ∶= I + Ic

is the total number of the population. The removal rate from compartment A to compartment B
is defined as

γA→B ∶= 1

PA→B
, (2)

where PA→B is the average period an individual spends on compartment A before moving into
compartment B. A diagram for the above definitions is shown in Figure 1.

Figure 1: Flows between the classes of infectious, I, and non-infectious, Ic, individuals of a population.

These parameters, probably among some others, are involved into the formulation of an epi-
demiological model that describes an epidemiological problem under study. However, these param-
eters are special because the interventions of exterior factors acting for the control of the studied
epidemiological phenomenon (e.g. policy makers) can be described as certain changes of their
values.

Now, enumerating all the different transmission and removal rates of a particular model, i.e.
β1, . . . , βn1 and γ1, . . . , γn2 , respectively, we can write

βββ = (βi)n1

i=1 and γγγ = (γi)n2

i=1.

Throughout the present section we assume a well-posed global (with respect to time) epidemiolog-
ical compartmental problem,

P =P(M ),
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which is described by a (differential/difference equations, agent-based, etc.) model,

M =M (xxx, (βββ(xxx),γγγ(xxx)) , δδδ(xxx)),

where
xxx = (xi)mi=1 ∈ X ⊆ R

m

is the vector of the independent variables,

(βββ,γγγ) ∈ F (X ;Ptr,r ⊆ Rn1 ×Rn2) = {fff ∶ X → Ptr,r}

is the vector-valued function of the parameters of interest of M and

δδδ ∈ F (X ;Pother ⊆ Rn3)

is the vector-valued function of the rest of parameters of M .

2.1 Strategies and substrategies

First, we introduce the notion of a strategy of P, which is of pivotal importance for the following
analysis. In the epidemiology framework, a strategy can be considered as the mathematical de-
scription of a set of epidemiological interventions made by potential external factors, such as policy
makers, experts e.t.c., in order to restrict the epidemiological phenomenon. The structure of these
interventions consists first on fixing a value of the parameters, (βββ0,γγγ0) ∈ F (X ;Ptr,r), chosen as a
reference value, and second, on scaling each element of the set in terms of the fixed value.

Defintion 1 (strategy & strategic scale of an element). Let (βββ0,γγγ0) ∈ F (X ;Ptr,r).

1. A set S = S(βββ0,γγγ0) ⊆ F (X ;Ptr,r) is called strategy (of P) with respect to (βββ0,γγγ0) iff

∀yyy ∈ S ∃rrr = rrr( ⋅ ; (βββ0,γγγ0) ,yyy) ∈ F (X ;Rn1+n2) s.t. yyy = rrr ⊙ (βββ0,γγγ0) ,

where ⊙ stands for the Hadamard product.

2. Let

i. S = S(βββ0,γγγ0) be a respective strategy and

ii. yyy ∈ S.

A function rrr ∈ F (X ;Rn1+n2) as in 1. is called strategic scale of yyy.

We observe that every subset of a strategy is a strategy itself, as it is referred in the following
result, the elementary proof of which is omitted.

Proposition 1. Let

1. (βββ0,γγγ0) ∈ F (X ;Ptr,r),

2. S = S(βββ0,γγγ0) be a respective strategy and

3. S0 ⊆ S.

Then S0 is a strategy with respect to (βββ0,γγγ0).

In view of Proposition 1, we give the definition of a substrategy of a given strategy. In the
epidemiology framework, a substrategy can be considered as the mathematical description of a
subset of a given set of epidemiological interventions.

Defintion 2 (substrategy). Let

i. (βββ0,γγγ0) ∈ F (X ;Ptr,r),

ii. S = S(βββ0,γγγ0) be a respective strategy and

iii. S0 ⊆ S.

We call S0 a substrategy of S.
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In fact, we can define a substrategy by setting limitations to the choice of a strategic scale of
each of its elements. Below we name certain such examples.

Defintion 3 (horizontal and xi-based strategy). Let

i. (βββ0,γγγ0) ∈ F (X ;Ptr,r),

ii. S = S(βββ0,γγγ0) be a respective strategy and

iii. S0 ⊆ S.

We name the following substrategies.

1. Let i ∈ {1, . . . ,m}. S0 is called horizontal with respect to xi iff

rrr(xxx; (βββ0,γγγ0) ,yyy) = rrr(x1, . . . , xi−1, xi+1, . . . , xm; (βββ0,γγγ0) ,yyy), ∀xxx ∈ X , ∀yyy ∈ S0,

i.e. ∀yyy ∈ S0 a respective strategic scale is independent of xi, otherwise we call it xi-based.

2. S0 is called horizontal iff it is horizontal with respect to xi, ∀i ∈ {1, . . . ,m}.

In the epidemiology framework, a xi-based substrategy can be considered as the mathemat-
ical description of a subset of epidemiological interventions, which targets a certain group of a
population partitioned with respect to xi variable.

We also observe that every union of strategies is a strategy itself, as it is referred in the following
elementary result.

Proposition 2. Let

1. (βββ0,γγγ0) ∈ F (X ;Ptr,r) and

2. {Sj = Sj(βββ0,γγγ0)}j∈J be a family of respective strategies.

Then ⋃
j∈J

Sj is a strategy with respect to (βββ0,γγγ0).

In view of Proposition 2, we give the following definition.

Defintion 4 (the largest strategy). Let

1. (βββ0,γγγ0) ∈ F (X ;Ptr,r) and

2. S be the family of all the respective strategies.

We call
Ŝ = Ŝ(βββ0,γγγ0) = ⋃

S∈S
S

the largest strategy with respect to (βββ0,γγγ0).

Of course, whatever result holds for the largest strategy also holds for an abstract strategy, like
the following direct one.

Proposition 3. Let (βββ0,γγγ0) ∈ F (X ;Ptr,r). If

⎛
⎜⎜
⎝
0, . . . ,0
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
# n1+n2

⎞
⎟⎟
⎠
∉ (βββ0(X ),γγγ0(X )) , (3)

then
∀yyy ∈ Ŝ ∃! strategic scale of yyy.

Under the light of Proposition 3, the next notion is well-defined.

Defintion 5 (strategic scale of a strategy). Let

1. (βββ0,γγγ0) ∈ F (X ;Ptr,r) satisfy (3) and

2. S = S(βββ0,γγγ0) be a respective strategy.
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We call the function
S ∋ yyy ↦ rrr( ⋅ ; (βββ0,γγγ0) ,yyy) ∈ F (X ;Rn1+n2)

the strategic scale of S.

We can then easily deduce the following result.

Proposition 4. Let

i. (βββ0,γγγ0) ∈ F (X ;Ptr,r) satisfy (3),

ii. S = S(βββ0,γγγ0) be a respective strategy,

iii. Pj, ∀j ∈ {1,2} be mathematical statements with respect to the strategic scale of S such that
P1 ⇒P2 and

iv. Sj ⊆ S, ∀j ∈ {1,2,3}, be substrategies of S such that

Sj = {yyy ∈ S ∣Pi(rrr( ⋅ ; (βββ0,γγγ0) ,yyy))} , ∀j ∈ {1,2} & S3 = {yyy ∈ S ∣¬P1(rrr( ⋅ ; (βββ0,γγγ0) ,yyy))} .

Then

1. S1 ⊆ S2 and

2. S3 = S ∖ S1.

For example, for a given (βββ0,γγγ0) ∈ F (X ;Ptr,r) that satisfies (3) and a given i ∈ {1, . . . ,m}, the
horizontal with respect to xi substrategy of Ŝ = Ŝ(βββ0,γγγ0) is the set-theoretic complement with
respect to Ŝ of the xi-based substrategy of Ŝ. The scope of the present paper can be now stated
as the comparison of the above substrategies for xi being the age of an individual of a population.

2.2 Comparison of strategies

Here we introduce a scheme for the comparison of strategies, for which we need some preliminary
notions, such as the basic reproductive number and the graded strategies.

2.2.1 R0: the measure of comparison

An important epidemiological notion studied and used extensively in the epidemiological literature
is the basic reproductive number, R0, which is defined as the average number of infectious cases
directly generated by one such case in a population where all individuals are susceptible to an
infection. For every mathematical model, that describes a problem under study, corresponds the
respective R0, which can be calculated with several ways, such as with the next-generation method
or the existence of the endemic equilibrium [13].

In general, R0 depends on both the independent variables and the parameters of a model,
therefore it is considered as a function defined as

R0∶ X × F (X ;Ptr, r) × F (X ;Pother)→ (0,∞)
(xxx, (βββ,γγγ) , δδδ)↦R0(xxx, (βββ,γγγ) , δδδ).

Only for the sake of brevity and compactness of the exposition, in the present paper we assume
that it is independent of xxx, that is

R0∶ F (X ;Ptr, r) × F (X ;Pother)→ (0,∞)
((βββ,γγγ) , δδδ)↦R0((βββ,γγγ) , δδδ).

In the proposed scheme, we check how one strategy measures against another of a special kind,
via the calculation of the respective values of R0. That special kind of strategies is described
below.
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2.2.2 Gradable and graded strategies

The notion of the graded strategies is the crux of the proposed scheme. But before its introduction,
we first need the following one.

Defintion 6 (gradable strategy). Let

1. (βββ0,γγγ0) ∈ F (X ;Ptr,r) satisfy (3) and

2. S = S(βββ0,γγγ0) be a respective strategy.

We call S gradable iff ∀δδδ ∈ F (X ;Pother) the function R0∣S ( ⋅ , δδδ) is injective.

Since R0(S,δδδ) ⊆ (0,∞), ∀δδδ ∈ F (X ;Pother), we can arrange any family of pairwise distinct
elements of such a set in a strictly ascending order when S is gradable, hence the following notion
is well defined.

Defintion 7 (graded strategy). Let

1. (βββ0,γγγ0) ∈ F (X ;Ptr,r) satisfy (3),

2. S = S(βββ0,γγγ0) be a respective gradable strategy,

3. δδδ ∈ F (X ;Pother) and

4. {yyyi}ki=1 ⊆ S be a family of pairwise distinct elements of S, such that

R0(yyy1, δδδ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶G1

< ⋅ ⋅ ⋅ <R0(yyyk, δδδ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Gk

.

We call the pair (S,GGG = (Gi)ki=1) a graded strategy, while GGG is called a gradation of S and each of

the G1, . . . ,Gk is called a grade of GGG.

We note that the gradation of a graded strategy is a matter of choice. In what follows, for the
sake of simplicity, we write S instead of (S,GGG) for a graded strategy.

2.2.3 Comparison matrix and coverage

With the above toolbox at hand, we propose a scheme for the comparison of two strategies, only
when one of them is graded. In addition, the scheme allows us to include many substrategies
of the other strategy. Below follow the steps of the proposed scheme, which is governed by the
construction of the respective comparison matrix and evaluated in terms of epidemiological and
social coverage.

Construction of the comparison matrix.

1. Placing of the grades G1, . . . ,Gk of the gradation GGG = (Gi)ki=1 of a given graded strategy S1,
in increasing order, to the top row:

S1 G1 G2 ⋯ Gk

2. Placing the under study substrategies {S2i}
ℓ
i=1 of a second strategy S2 to the left of the table,

with the intend of comparing them against the first graded strategy.
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S2

S1 G1 G2 ⋯ Gk

S21

S22

⋮
S2ℓ

3. Populating the comparison matrix with ⋆, where

⋆ij =
⎧⎪⎪⎨⎪⎪⎩

✓ if the R0 of S2i is greater than or equal to Gj

✗ otherwise ,
∀ (i, j) ∈ {1, . . . , ℓ} × {1, . . . , k} .

S2

S1 G1 G2 ⋯ Gk

S21 ⋆11 ⋆12 ⋯ ⋆1k
S22 ⋆21 ⋆22 ⋯ ⋆2k
⋮ ⋮ ⋮ ⋱ ⋮

S2ℓ ⋆ℓ1 ⋆ℓ2 ⋯ ⋆ℓk

Next we present two ways to read the comparison matrix for extracting useful information.

Social overview of the comparison matrix: epidemiological coverage. Here we compare
S2 to S1. In particular, for every fixed substrategy of S2 (social overview), we check how good of
an alternative it is, compared to S1 (epidemiological coverage).

4→. Calculating the epidemiological coverage of the gradation GGG of S1 by each substrategy of S2,
by calculating the average number of ✓ in each row.

S2

S1 G1 G2 ⋯ Gk
Epidemiological
coverage (⋅100%)

S21 ⋆11 ⋆12 ⋯ ⋆1k
#{⋆1j=✓}kj=1

k

S22 ⋆21 ⋆22 ⋯ ⋆2k
#{⋆2j=✓}kj=1

k
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

S2ℓ ⋆ℓ1 ⋆ℓ2 ⋯ ⋆ℓk
#{⋆ℓj=✓}kj=1

k

5→. Calculating the total coverage of the gradation GGG of S1 by the whole S2, through the average
value of all epidemiological coverages.

S2

S1 G1 G2 ⋯ Gk
Epidemiological
coverage (⋅100%)

S21 ⋆11 ⋆12 ⋯ ⋆1k
#{⋆1j=✓}kj=1

k

S22 ⋆21 ⋆22 ⋯ ⋆2k
#{⋆2j=✓}kj=1

k
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

S2ℓ ⋆ℓ1 ⋆ℓ2 ⋯ ⋆ℓk
#{⋆ℓj=✓}kj=1

k

#{⋆ij=✓}ℓ,ki,j=1

ℓ⋅k

The takeaway of the above analysis is that if the total (epidemiological) coverage of GGG by the
(respective sub-)strategy S2 (S2i , for i ∈ {1, . . . , ℓ}) is satisfying, then S2 (S2i) could be considered
as an alternative to S1. We note that the quantification of the term “satisfying” is subjective.
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Epidemiological overview of the comparison matrix: social coverage. Here we compare
S1 to S2. In particular, for every fixed grade of GGG (epidemiological overview), we check how much
of that grade S2 is (social coverage).

4↓. Calculating the social coverage of S2 by each grade of GGG of S1, by calculating the average
number of ✓ in each column.

S2

S1 G1 G2 ⋯ Gk

S21 ⋆11 ⋆12 ⋯ ⋆1k
S22 ⋆21 ⋆22 ⋯ ⋆2k
⋮ ⋮ ⋮ ⋱ ⋮

S2ℓ ⋆ℓ1 ⋆ℓ2 ⋯ ⋆ℓk

Social coverage (⋅100%) #{⋆i1=✓}ℓi=1
ℓ

#{⋆i2=✓}ℓi=1
ℓ

⋯ #{⋆ik=✓}ℓi=1
ℓ

5↓. Calculating the total coverage of S2 by the whole GGG of S1, through the average value of all
social coverages.

S2

S1 G1 G2 ⋯ Gk

S21 ⋆11 ⋆12 ⋯ ⋆1k
S22 ⋆21 ⋆22 ⋯ ⋆2k
⋮ ⋮ ⋮ ⋱ ⋮

S2ℓ ⋆ℓ1 ⋆ℓ2 ⋯ ⋆ℓk

Social coverage (⋅100%) #{⋆i1=✓}ℓi=1
ℓ

#{⋆i2=✓}ℓi=1
ℓ

⋯ #{⋆ik=✓}ℓi=1
ℓ

#{⋆ij=✓}ℓ,ki,j=1

ℓ⋅k

Total overview of the comparison matrix. Here, we combine the social and the epidemio-
logical overview of the camparison matrix.

6. Merging of the social and epidemiological overviews.

S2

S1 G1 G2 ⋯ Gk
Epidemiological
coverage (⋅100%)

S21 ⋆11 ⋆12 ⋯ ⋆1k
#{⋆1j=✓}kj=1

k

S22 ⋆21 ⋆22 ⋯ ⋆2k
#{⋆2j=✓}kj=1

k
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

S2ℓ ⋆ℓ1 ⋆ℓ2 ⋯ ⋆ℓk
#{⋆ℓj=✓}kj=1

k

Social coverage (⋅100%) #{⋆i1=✓}ℓi=1
ℓ

#{⋆i2=✓}ℓi=1
ℓ

⋯ #{⋆ik=✓}ℓi=1
ℓ

#{⋆ij=✓}ℓ,ki,j=1

ℓ⋅k

3 The basic epidemiological model and estimation of pa-
rameters

Here we use the epidemiological model M along with the respective problem P, introduced and
studied in [4], as a means of utilization of the proposed scheme in answering the main question of
the present paper. We choose this model as it incorporates both symptomatic and asymptomatic
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infectious individuals, with the later playing an important role in the spread of the COVID-19 (see
[14] and many references therein), as well as the age of the infected/infectious individuals.

After scaling the independent age-variable, θ, and turning it to another time-variable measured
in the same units as t (see [4]) and using the relation N = S + V + E + A + I + R, we obtain the
following model

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dS

dt
= µN0 − (p +

∞
∫
0

βA(θ)a( ⋅ , θ) + βI(θ)i( ⋅ , θ)dθ + µ)S

S(0) = S0,

(4a)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dV

dt
= pS − (ζϵ +

∞
∫
0

βA(θ)a( ⋅ , θ) + βI(θ)i( ⋅ , θ)dθ (1 − ϵ) + µ)V

V (0) = V0,

(4b)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂e

∂t
+ ∂e

∂θ
= − (k + µ) e

e( ⋅ ,0) =
∞
∫
0

βA(θ)a( ⋅ , θ) + βI(θ)i( ⋅ , θ)dθ (S + (1 − ϵ)V )

e(0, ⋅ ) = e0,

(4c)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂a

∂t
+ ∂a

∂θ
= − (γAξ + χ (1 − ξ) + µ)a

a( ⋅ ,0) =
∞
∫
0

k(θ)q(θ)e( ⋅ , θ)dθ

a(0, ⋅ ) = a0,

(4d)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂i

∂t
+ ∂i

∂θ
= − (γI + µ) i

i( ⋅ ,0) =
∞
∫
0

k(θ) (1 − q(θ)) e( ⋅ , θ) + χ(θ) (1 − ξ(θ))a( ⋅ , θ)dθ

i(0, ⋅ ) = i0.

(4e)

The flow diagram of the differential equations in (4) is shown in Figure 2, and the dimensional
units of all variables and parameters appeared in P (4) are gathered in Table 1.

Figure 2: Flow diagram of P (4).
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Independent
variables

Description Units

t Time T
θ Age, i.e. time elapsed since, e.g., birth or infection Θ

Conversion
factor

Description Units

ω Conversion factor from the units of θ to the units of t TΘ−1

Dependent
variables

Description Units

N Number of total population of individuals #
S Number of susceptible individuals #
V Number of vaccinated-with-a-prophylactic-vaccine individuals #
e Age density of latent/exposed individuals #Θ−1

E Number of latent/exposed individuals #
a Age density of asymptomatic infectious individuals #Θ−1

A Number of asymptomatic infectious individuals #
i Age density of symptomatic infectious #Θ−1

I Number of symptomatic infectious individuals #
R Number of recovered/removed individuals #

Parameters Description Units

N0 Population size #
µ Birth/Death rate T−1

βA Transmission rate of asymptomatic infectious individuals #−1T−1

βI Transmission rate of symptomatic infectious individuals #−1T−1

p Vaccination rate T−1

ϵ Vaccine effectiveness -
ζ Vaccine-induced immunity rate T−1

k Latent rate (rate of susceptible individuals becoming infectious) T−1

q Proportion of the latent/exposed individuals becoming asymptomatic
infectious

-

ξ Proportion of the asymptomatic infectious individuals becoming recov-
ered/removed (without developing any symptoms)

-

χ Incubation rate (rate of a part of asymptomatic infectious individuals
developing symptoms)

T−1

γA Recovery rate of asymptomatic infectious individuals T−1

γI Recovery rate of symptomatic infectious individuals T−1

Table 1: Description of the independent and dependent variables and parameters of M , along with their
units.

From the analysis conducted in [4], the basic reproductive number, R0, of the model is

R+0 ∋R0 ∶=
µN0

p + µ
(1 + p (1 − ϵ)

ζϵ + µ
)(RA +RI) , (5)

where

R+0 ∋RA ∶=
∞

∫
0

k(s)q(s)e
−

s

∫
0

k(τ)+µdτ
ds

∞

∫
0

βA(s)e
−

s

∫
0

γA(τ)ξ(τ)+χ(τ)(1−ξ(τ))+µdτ
ds
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and

R+0 ∋RI ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∞

∫
0

k(s) (1 − q(s)) e
−

s

∫
0

k(τ)+µdτ
ds+

+
∞

∫
0

k(s)q(s)e
−

s

∫
0

k(τ)+µdτ
ds

∞

∫
0

χ(s) (1 − ξ(s)) e
−

s

∫
0

γA(τ)ξ(τ)+χ(τ)(1−ξ(τ))+µdτ
ds

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

×

×
∞

∫
0

βI(s)e
−

s

∫
0

γI(τ)+µdτ
ds.

We now present parameter values fitting for the case of SARS-CoV-2. The chosen values are
taken from the biological and medical literature. Bellow, we give a detailed explanation about the
value of each parameter, whereas a summary of the parameter values can be found in Table 2.

Table 2: A list of parameters of M , along with their value, units and value source.

Parameters Value Units Source

N0 80 ⋅ 106 individuals Estimated from [20]
µ 4.38356 ⋅ 10−5 day −1 Estimated from [20]
βA Figure 4 individual−1 ⋅day −1 Estimated from [12]
βI Figure 4 individual−1 ⋅day−1 Estimated from [12]
p 10−3 day−1 Estimated from [20]
ϵ 0.7 - Estimated from [15]
ζ 1

14
day−1 Estimated from [9]

k Equation 6 day−1 Estimated from [18, 30]
q Figure 5 - Estimated from [25]
ξ 0.5 - Estimated from [16, 6]
χ Equation 7 day−1 Estimated from [16, 6]
γA

1
8

day−1 Estimated from [7]
γI

1
14

day−1 Estimated from [7]

The size of the population N0 = 80 ⋅ 106 individuals is assumed to be that of a relative large
country, such as Germany, Turkey or Thailand [20].

The birth/death rate, µ = 4.38356 ⋅ 10−5 day−1, is taken from data from [20]. The average
birth/death rate of the world for the year 2021 is about 16 per 1000 individuals per year. Hence,
we convert the aforementioned quantity from “per 1000 individuals per year” to “per day” to get

16
1

1000 individuals ⋅ year ↦ 16 ⋅ 10−3 1

365 days
= 4.38356 ⋅ 10−5 day−1 = µ.

For the transmission rate of asymptomatic and symptomatic infectious individuals, we firstly
assume the probability of an exposed individual passing to the compartments of asymptomatic and
symptomatic individuals to be ϖE→A = 1

8
and ϖE→I = 1

3
, respectively. From [12], we have that the

average number of daily contacts of any person, regardless its epidemiological status, of age θ, c(θ),
follows the graph as seen in Figure 3. To digitize the data of the contacts, we use WebPlotDigitizer
4.6 [23] to manually extract data points from Fig. 2 of [12] and then interpolated them using
a third order polynomial interpolation scheme through Mathematica 13.1 [17] and the function
Interpolation. Subsequently, from (1) we deduce that the transmission rate of asymptomatic
and symptomatic infectious individuals are the functions presented in Figure 4.

The vaccination rate, p = 10−3 day−1, is taken from data from [20], during the summer of 2021
in the USA, when the Delta variant of SARS-CoV-2 was the dominant variant. During the end of
summer, the percentage of fully vaccinated USA citizens was about 54% whereas in the beginning
of summer it was around 45%. Hence, we estimate the vaccination from that three-month period
to be p = 54%−45%

90
day−1 = 10−3 day−1.

The vaccine effectiveness, ϵ = 0.7, is estimated from data from [15]. In [15], the authors find
that with the BNT162b2 vaccine, the effectiveness of two doses is 88.0% among those with the
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Figure 3: Age density (in years) of the average number of daily contacts, c, taken from [12].

delta variant, whereas with the ChAdOx1 nCoV-19 vaccine, the respective effectiveness of two
doses was 67.0%. Hence, we assume ϵ = 0.7.

The vaccine-induced immunity rate, ζ = 1
14

day−1, is estimated from data from [9]. The authors
of [9] report that, after two weeks of the second dose of the ChAdOx1 nCoV-19 vaccine, the
percentage of study participants with detectable neutralizing antibodies reached 98.1%.

The latent rate, k, is found by estimating that the latent and incubation period differ by 1 day.
In [18], the authors examined data from 93 Delta transmission pairs and estimated the latent period
by fitting the data to the Weibull distribution, which made the best fit. They found the mean
latent period to be 3.9 days. In [30], the authors performed a systematic review and meta-analysis
of 141 articles and found that the incubation periods of COVID-19 caused by the Alpha, Beta,
Delta, and Omicron variants were 5.00, 4.50, 4.41, and 3.42 days, respectively. Hence, assuming
that the latent and incubation period vary by 1 day, we have that k = χ

1−χ , and by substituting χ
as found later in the present section, we have that

k(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4
day−1, θ < 30

1
4.8

day−1, 30 ≤ θ < 40
1
4.8

day−1, 40 ≤ θ < 50
1
5.5

day−1, 50 ≤ θ < 60
1
3.1

day−1, 60 ≤ θ < 70
1
6
day−1, 70 ≤ θ ,

(6)

where θ is measured in years.
The proportion of the latent/exposed individuals becoming asymptomatic infectious, q, is taken

from [25], where the authors estimated the asymptomatic proportion by age, by performing a
systematic review and meta-analysis of 38 studies involving 14850 individuals. The curve they
estimated can be seen in Figure 5. To digitize the data, we use the same procedure we used for
the age density of daily contacts described earlier in the present section.

The proportion of the asymptomatic infectious individuals becoming recovered/removed with-
out developing any symptoms, ξ = 0.5, is estimated from data from [16, 6]. In [16], the authors
performed a systematic review and meta-analysis from 41 studies containing the rate of asymp-
tomatic COVID-19 infection before May 20, 2020, aggregating 50155 patients, and found that
nearly half of the patients with no symptoms at the time of their detection, would develop symp-
toms later. In [6], the authors performed a systematic review and meta-analysis from 130 studies
and reported the percentage of persistently asymptomatic individuals being between 14 to 50%.
Hence, we choose the proportion of persistently asymptomatic individuals being 50%.

The incubation rate, χ, is estimated from data from [28]. The authors of [28] found that the
incubation period varies with age, based on data from Singaporean hospitals between January 23,
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Figure 4: Estimation of the age density (in years) of the asymptomatic and symptomatic transmission
rate, assuming βA =

cA ⋅ϖE→A
N0

and βI =
cI ⋅ϖE→I

N0
according to (1), where cA = c = cI .

2020 and April 2, 2020. The authors divided the participants based on their age to six groups (<30,
30–39, 40–49, 50–59, 60–69 and 70<) and presented their results through a box plot. Hence, we
assume that χ is a piecewise function with its domain intervals being the six aforementioned age
groups, and with the function being constant on each interval and equal to one over the median
of the respective age group. Therefore, we have that

χ(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
5
day−1, θ < 30

1
5.8

day−1, 30 ≤ θ < 40
1
5.8

day−1, 40 ≤ θ < 50
1
6.5

day−1, 50 ≤ θ < 60
1
4.1

day−1, 60 ≤ θ < 70
1
7
day−1, 70 ≤ θ ,

(7)

where θ is measured in years.
The recovery rate of asymptomatic infectious individuals, γA = 1

8
day−1 , and recovery rate of

the symptomatic infectious individuals, γI = 1
14

day−1, is estimated from [7]. In [7], the authors
performed a rapid scoping review up to April 1, 2020 and found that the median infectious period
for asymptomatic cases was 6.5–9.5 days, whereas time from symptom onset to two negative
RT-PCR tests ranged from 10.9 to 15.8 days. Hence, we assume that the recovery period of
asymptomatic and symptomatic infectious individuals to be 8 and 14 days respectively.

4 Horizontal lockdowns vs age-based interventions

In this section, we investigate whether age-based interventions can offer a replacement to horizontal
lockdowns for the case of SARS-CoV-2, following the framework presented in §2. In §4.1, we
categorize the parameters into δδδ,βββ and γγγ, and pick our choice of strategic scales, rrr; both (βββ,γγγ)
and rrr serve for the definition of the strategies under investigation. Additionally, we distribute the
total population of P (4) into five cohorts, based on age, θ, of each individual. In §4.3, we define
the graded strategy of horizontal lockdowns and the strategy of age-based restrictions. Finally, in
§4.4, we compare the aforementioned strategies.
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Figure 5: Percentage of asymptomatic COVID-19 infection, by age (in years), taken from [25].

4.1 Choice of general strategy

The independent variables that appear in P (4) are t and θ, thus

xxx = (t, θ) .

In order to define the strategies under investigation, we need to categorize the parameters appeared
in P (4) into (βββ0,γγγ0) and δδδ, and consequently choose an appropriate strategic scale as discussed
in §2.1.

The parameters which affect the strategies under investigation are βA, βI and γI . Therefore,
we have that

(βββ0, γ0) = (βA, βI , γI) ,
whereas

δδδ = (µ, p, ϵ, ζ, k, q, ξ, χ, γA) ,
with the parameter values being as in Table 2.

We note that regardless of the aforementioned (see §3), seemingly important role of asymp-
tomaticity for the spread of the disease, the performance of the means of detection, such as the
rapid antigen tests (Ag-RDTs), for the case of asymptomatic infectious individuals still remains
ambiguous [8, 22, 24, 27]. In the light of the above we prefer not to incorporate such means to our
general strategy, hence we exclude γA from (βββ0,γγγ0). Moreover we note that (3) holds.

We are now ready to construct our choice of general strategy along with its strategic scales,
following the next steps.

1. We consider an interval Λ ⊆ R+0 such that 0 ∈ Λ, to be the average lifespan of an individual
of the population under study, hence θ ∈ Λ. Of course, supΛ <∞.

2. We discretise Λ by considering a respective partition ∆Λ ∶= {δj}nj=0, for a fixed n ∈ N, i.e

0 = δ0 < δ1 < ⋅ ⋅ ⋅ < δn = supΛ

and we define the subintervals

Λj ∶= [δj−1, δj) , ∀j ∈ {1, . . . , n} .

3. We set
ΛW ∶= ⋃

j∈W
Λj , ∀W ∈ P({1, . . . , n}) ,
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where P stands for the powerset, as well as we define

ρW ( ⋅ ;a)∶ Λ→ [0,1]

θ ↦ ρW (θ;a) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 θ ∉ ΛW

a θ ∈ ΛW ,

∀ (W,a) ∈ P({1, . . . , n}) × [0,1)

and
gW ( ⋅ ; b)∶ Λ→ [1,∞]

θ ↦ gW (θ; b) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 θ ∉ ΛW

1
b

θ ∈ ΛW ,

∀ (W,b) ∈ P({1, . . . , n}) × [0,1) ,

where the choice of (a, b) ∈ [0,1)2 is left to be explained.

We note that in the extreme cases of W ∈ {∅,{1, . . . , n}} we have Λ∅ = ∅ and Λ{1,...,n} = Λ,
as well as

(ρ∅( ⋅ ;a), g∅( ⋅ ; b)) = (1,1) , ∀ (a, b) ∈ [0,1)2

and

(ρ{1,...,n}( ⋅ ;a), g{1,...,n}( ⋅ ; b)) = (a,
1

b
) , ∀ (a, b) ∈ [0,1)2.

Hence, the above functions are independent of θ iff W ∈ {∅,{1, . . . , n}}, as well as they are
equal to 1 iff W = ∅.

4. We define the strategic scales to be

rrrWβββ ,Wγ ( ⋅ ;a, b) ∶= (ρWβββ
( ⋅ ;a), ρWβββ

( ⋅ ;a), gWγ ( ⋅ ; b)) ,
∀ (Wβββ ,Wγ , a, b) ∈ (P({1, . . . , n}))2 × [0,1)2.

5. The general strategy of interest S has the form

S ∶= {(βββ, γ) = rrrWβββ ,Wγ ( ⋅ ;a, b)⊙ (βββ0, γ0) ∣ (Wβββ ,Wγ , a, b) ∈ (P({1, . . . , n}))2 × [0,1)2} .

Regarding a ∈ [0,1], in the light of (1), the effect of every ρWβββ
( ⋅ , a) to βββ can be interpreted

as having the average number of close contacts of an (asymptomatic or symptomatic) infectious
individual belonging in ΛWβββ

reduced by 1 − a, i.e.

(cA, cI)∣ΛWβββ
↦ a ⋅ (cA, cI)∣ΛWβββ

.

Regarding b ∈ (0,1], in the light of (2), the effect of every gWγ ( ⋅ , b) to γ can be interpreted as
having the average period an individual belonging in ΛWβββ

spends on compartment I before moving
into compartment R reduced by 1 − b, i.e.

PI→R∣ΛWβββ
↦ b ⋅ PI→R∣ΛWβββ

.

4.2 Choice of distribution of the population into age cohorts

We now specify the distribution of the whole population into cohorts with respect to the age of
each individual, hence with respect to its occupational and social activity.

We divide the population into five (5) cohorts, thus n = 5, as seen in Figure 6, where Λ =
[0,90) years and ∆Λ = {0,6,18,24,65,90} years (both non-scaled). The 1st cohort is made of
toddlers and preschoolers, the 2nd is made of school students, the 3rd is primarily made of uni-
versity students, the 4th is primarily made of the working class, and the 5th is primarily made of
pensioners.

As an example of the strategic scale within the context of the cohorts presented in Figure 6,
the reduction of the number of contacts of the 1st and 3rd cohort by 80% and not performing tests
on any cohort is modeled by the strategic scale

rrr{1,3},∅( ⋅ ;
1

5
, ⋅) = (ρ{1,3}( ⋅ ;

1

5
), g∅( ⋅ ; ⋅ )) ,
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1st cohor
t

2nd cohor
t

3rd cohor
t

4th cohor
t

5th cohor
t

Figure 6: The partition of the non-scaled lifespan and the respective distribution of the whole population
into cohorts. The partition was made by taking into account the social profile connecting individuals in
each cohort, such as going to school, working, or being pensioners.

where

ρ{1,3} (θ;
1

5
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
5
, if θ ∈ Λ1

1, if θ ∈ Λ2

1
5
, if θ ∈ Λ3

1, if θ ∈ Λ4

1, if θ ∈ Λ5 ,

and
g∅ (θ; ⋅ ) = 1, ∀θ ∈ Λ .

4.3 Choice of substrategies of general strategy

In this section, we define the two strategies under investigation. Furthermore, we utilize the
strategic scale introduced in §4.1 to model each strategy.

4.3.1 Horizontal lockdowns substrategy

It is straightforward to check that the largest horizontal with respect to age substrategy of S is

{(βββ, γ) = rrrWβββ ,Wγ ( ⋅ ;a, b)⊙ (βββ0, γ0) ∣ (Wβββ ,Wγ , a, b) ∈ (P({1, . . . ,5}))2 × [0,1)2 such that

such that (Wβββ ,Wγ) ∈ {∅,{1, . . . ,5}}2},

which implies that every substrategy of the above strategy is horizontal with respect to age.
Thus, a choice of horizontal lockdowns substrategy can be made by considering S1 ⊆ S as

S1 = {(βββ, γ) = rrr{1,...,5},∅( ⋅ ;a, ⋅ )⊙ (βββ0, γ0) ∣a ∈ [0,1)} .

The austerity (that is the amount of contact reduction for every individual) can be varied but
uniformly, i.e.

a ∈ [0,1) and Wβββ = {1, . . . , n} ,
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respectively, in order to capture different scenarios. We also assume that no tests are performed
in any of the five cohorts, i.e.

Wγ = ∅.
Now, S1 is gradable, since from (5) we get that

R0(βββ, γ,δδδ) = a ⋅R0(βββ0, γ0, δδδ),∀ (βββ, γ) ∈ S1 .

In particular, R0 is strictly increasing with respect to a, as it is depicted in Table 3.

a Contact reduction R0

0 100% 0
0.1 90% 0.285
0.2 80% 0.571
0.3 70% 0.856
0.4 60% 1.141
0.5 50% 1.427
0.6 40% 1.712
0.7 30% 1.998
0.8 20% 2.283
0.9 10% 2.569

Table 3: The value of R0 decreases linearly as the austerity of the stay-at-home restrictions increases,
i.e. as a decreases.

To get a better understanding of how a ∈ [0,1) translates into the real life austerity of a stay-
at-home restriction policy, we firstly notice that when Wβββ = ∅ (or else a → 1−), we have that no
stay-at-home restrictions are in effect. In that case, our model predicts an R0 of 2.854 (or else
R0 → 2.854−), which is in line with various systematic reviews found in scientific literature, such
as 2.87 (95% CI: 2.39-–3.44) in [3] and 2.69 (95% CI: 2.40–2.98) in [1], which solidifies the validity
of our model in predicting the R0 of SARS-CoV-2 pandemic. Furthermore, we see that the tight
lockdown Italy enforced in early 2020 resulted in an 82% reduction in mobility [29], which would
correspond to a being approximately equal to 0.2. During the same time frame in Germany, the
authors of [26], report about a 50% drop in the average number of contacts, which corresponds to
a = 0.5. Finally, in [31] the authors show that even a 20% reduction in mobility proved a good way
of delaying the spread of the infection, which would correspond to a being approximately equal to
0.8.

Based on the aforementioned cases, we construct three different scenarios based on the austerity
of the mobility restrictions:

• the low austerity scenario, L, where the average number of contacts is reduced by 20% and
R0L = 2.283,

• the medium austerity scenario,M, where the average number of contacts is reduced by 50%
and R0M = 1.427 and

• the high austerity scenario, H, where the average number of contacts is reduced by 80% and
R0H = 0.571.

The above scenarios constitute a gradation GGG of S1 with

G1 =R0H, G2 =R0M and G3 =R0L.

Such a gradation is summarized in Table 4.

4.3.2 Aged-based substrategies

The largest aged-based substrategy of S, S2 ⊆ S, is
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Gradation Austerity level Contact reduction R0

G1 High (H) 80% 0.571
G2 Medium (M) 50% 1.427
G3 Low (L) 20% 2.283

Table 4: Summary of the three horizontal lockdowns austerity scenarios, Low (L), Medium (M) and
High (H), which constitute a gradation of S1.

S2 = {(βββ, γ) = rrrWβββ ,Wγ ( ⋅ ;a, b)⊙ (βββ0, γ0) ∣ (Wβββ ,Wγ , a, b) ∈ (P({1, . . . ,5}))2 × [0,1)2 such that

such that (Wβββ ,Wγ) ∉ {∅,{1, . . . ,5}}2},

which implies that every substrategy of S2 is aged-based hence it can potentially be compared to
the graded S1. For our simulations we choose the substrategies {S2i}

16
i=1 of S2 summarized in Table

5 for the comparison to S1.

i Age-based interventions Wβββ Wγ

1
Contact reduction: 1st, 2nd, 3rd cohorts

Testing: 4th, 5th cohorts
{1,2,3} {4,5}

2
Contact reduction: 4th, 5th cohorts

Testing: 1st, 2nd, 3rd cohorts
{4,5} {1,2,3}

3
Contact reduction: 1st cohort

Testing: 4th, 5th cohorts
{1} {4,5}

4
Contact reduction: 4th, 5th cohorts

Testing: 1st cohort
{4,5} {1}

5
Contact reduction: 2nd cohort

Testing: 4th, 5th cohorts
{2} {4,5}

6
Contact reduction: 4th, 5th cohorts

Testing: 2nd cohort
{4,5} {2}

7
Contact reduction: 3rd cohort

Testing: 4th, 5th cohorts
{3} {4,5}

8
Contact reduction: 4th, 5th cohorts

Testing: 3rd cohort
{4,5} {3}

9
Contact reduction: 1st cohort

Testing: 2nd cohort
{1} {2}

10
Contact reduction: 2nd cohort

Testing: 1st cohort
{2} {1}

11
Contact reduction: 4th cohort

Testing: 5th cohort
{4} {5}

12
Contact reduction: 5th cohort

Testing: 4th cohort
{5} {4}

13
Contact reduction: 2nd cohort

Testing: 4th cohort
{2} {4}

14
Contact reduction: 4th cohort

Testing: 2nd cohort
{4} {2}

15
Contact reduction: 2nd cohort

Testing: 5th cohort
{2} {5}

16
Contact reduction: 5th cohort

Testing: 2nd cohort
{5} {2}

Table 5: The age-based substrategies {S2i}
16
i=1 of S2 which are chosen for the comparison to S1.
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4.4 Simulations and results

Here we employ the scheme introduced in §2.2 for the comparison between S1 of §4.3.1 and {S2i}
16
i=1

of §4.3.2. The simulations were performed using Mathematica 13.1 [17]. In the end of this section
we summarize its results with the comparison matrix.

(a) R0 when social distancing is enforced on the 1st,
2nd and 3rd cohort and testing is enforced on the 5th
and 6th cohort (Wβββ = {1,2,3} and Wγ = {4,5}).

(b) R0 when social distancing is enforced on the 5th
and 6th cohort and testing is enforced on the 1st, 2nd
and 3rd cohort (Wβββ = {5,6} and Wγ = {1,2,3}).

Figure 7: Two density plots of the grouping of the three younger cohorts and the two older cohorts
together. In both cases all three of our horizontal lockdown scenarios L,M and H, can be replaced by
enforcing a wide range of austerity level restrictions to the different cohort groupings.

4.4.1 Social overview of the results, S2 vs S1

Throughout our simulations we let the (a, b) of each strategic scale to take values in the 2D interval
[0,1)2 and illustrate the results in density plots, where in the x-axis and y-axis we have a ⋅ 100%
and b ⋅ PI→R = b

γI
= b ⋅ 14 days, respectively.

S21,2 vs S1: We begin by examining whether restrictions on the younger or the older cohorts
play a more important role in reducing R0. In Figure 7a, we see that in order to achieve the same
R0 as the scenario H, the contact reduction of the first three cohorts needs to be at least 75%
and the individuals of the last two cohorts need to be detected and removed at least before the
twelfth day. Additionally, since the absolute value of the gradient of the contour lines is high, the
younger cohorts influence the dynamics of R0 more when compared to the older cohorts. In Figure
7b, we see that the scenario H, can be replaced by finding and removing from the community the
people belonging in the first three cohorts at around the third day from symptom onset, whereas
the contact reduction of the older age cohorts is almost irrelevant. Furthermore, since the gradient
of the contour lines is almost zero, the younger cohorts play a far greater role in reducing R0 when
compared to the older cohorts, especially the more austere the restrictions are. Overall, Figure 7
shows us that the younger cohorts are more influential in the dynamics of R0, both when they are
faced with social distancing restrictions, as well as mandatory testing.

It is now clear that the younger cohorts play a far more important role in the dynamics of R0.
We subsequently examine whether similar results as those presented in Figure 7 can be achieved,
by restricting just one of the three younger cohorts instead of all three of them together.

S23,4 vs S1: Figure 8 illustrates restrictions on the 1st and the 4th - 5th cohorts. When social
distancing on the 1st cohort and testing on the 4th and 5th cohorts are enforced, scenario M
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(a) R0 when social distancing is enforced on the 1st
cohort and testing is enforced on the 5th and 6th cohort
(Wβββ = {1} and Wγ = {4,5}).

(b) R0 when social distancing is enforced on the 5th
and 6th cohort and testing is enforced on the 1st cohort
(Wβββ = {5,6} and Wγ = {1}).

Figure 8: Two density plots of the 1st cohort and the grouping of the two older cohorts together. When
social distancing is enforced on the 1st cohort scenario H can only be achieved when the most austere
restriction are enforced. On the other hand, when the symptomatic individuals of the 1st cohort are the
ones getting tested all three of our horizontal lockdown scenarios L,M and H, can be replaced by enforcing
a wide range of austerity level restrictions to the 1st cohort and the grouping of the 4th and 5th cohort.
The detection-and-removal day of asymptomatic individuals needs to be one day faster when compared to
the simulation illustrated in Figure 8b, for the same results as scenario H to apply.

can only be achieved with the strongest possible restrictions on the aforementioned cohorts, as we
can see in Figure 8a. When the restrictions on the cohorts are reversed, Figure 8b shows that
scenario H can be achieved if the day that the symptomatic infectious individuals are detected
and removed from the community is around the second day, with the contact reduction of the
4th and 5th cohort being almost irrelevant just like the case described by Figure 7. There is,
however, a one day difference in the required detection day of asymptomatic individuals between
the scenarios presented in Figure 7b and Figure 8b for them to have the same effect on R0, as
scenario H. In other words, the procedure of detection and removal of asymptomatic individuals
from the community needs to be one day faster when only the 1st cohort is getting tested when
compared to the grouping of the 1st, 2nd and 3rd cohorts, for them to have the same results on
R0 as scenario H.

S25,6 vs S1: Next, we examine the importance of the 2nd cohort to the dynamics of R0, with the
results being shown in Figure 9. Contrary to the simulation of Figure 8a, when social distance is
enforced on the 2nd cohort, the results of scenarioM can be achieved with far less strict policies.
In particular, as shown in Figure 9a, for scenarioM to be achieved, the contacts of the 2nd cohort
need to be reduced by at least 80% and the symptomatic individuals of the 4th and 5th cohorts
need to be detected and removed from the community at least before around the fifth day. When
the 2nd cohort is the one being tested, Figure 9b shows that scenario M can be achieved by
removing symptomatic individuals from the community at around the fifth day, with the reduction
in the average number of contacts of the 4th and 5th cohorts being almost irrelevant, much like
the simulations illustrated in Figure 7b and Figure 8b. Additionally, none of the simulations of
Figure 9 can act as a replacement measure to scenario H.

S27,8 vs S1: Subsequently, we examine the contribution of the 3rd cohort to the dynamics of R,
with Figure 10 illustrating the results. As we can see from Figure 10, the 3rd cohort in combination
with the grouping of the 4th and 5th cohort, seems to influence the reduction of R0 far less when
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(a) R0 when social distancing is enforced on the 2nd
cohort and testing is enforced on the 5th and 6th cohort
(Wβββ = {2} and Wγ = {4,5}).

(b) R0 when social distancing is enforced on the 5th
and 6th cohort and testing is enforced on the 2nd cohort
(Wβββ = {5,6} and Wγ = {2}).

Figure 9: Two density plots of the 2nd cohort and the grouping of the two older cohorts together. When
social distancing is enforced on the 2nd cohort scenario H can only be achieved with laxer restriction
compared to the respective restrictions on the 1st cohort. Neither of pictured simulations are able to offer
a replacement to scenario H. Much like the simulations of Figure 7b and Figure 8b, for the scenarioM to
be achieved the testing of the younger cohorts dominates the dynamics of R0, with the dynamics of the
older cohorts being almost irrelevant.

(a) R0 when social distancing is enforced on the 3rd
cohort and testing is enforced on the 5th and 6th cohort
(Wβββ = {3} and Wγ = {4,5}).

(b) R0 when social distancing is enforced on the 5th
and 6th cohort and testing is enforced on the 3rd cohort
(Wβββ = {5,6} and Wγ = {3}).

Figure 10: Two density plots of the 3rd cohort and the grouping of the two older cohorts together.
Neither of the simulations is able to offer a replacement to scenarioM and scenario H. The influence of
the 3rd cohort to the dynamics of R is far weaker when compared to the influence of the 1st and 2nd
cohort, as can be seen from Figure 8 and Figure 9.
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compared to the younger cohorts. The only horizontal lockdown scenario that can be replaced
with this combination of age-based interventions is scenario L. Additionally, even though the 1st
and 2nd cohort dominated the dynamics of R0 when the symptomatic individuals of those cohorts
were getting tested, that is not the case with the 3rd cohort, as can be seen from Figure 10b. The
same holds for the case when social distancing is enforced on the 3rd cohort, since the absolute
value of the gradient of the contour lines of Figure 10a is about 2. Hence, out of the three younger
cohorts, the 3rd one has the weakest influence on the dynamics of R0.

(a) R0 when social distancing is enforced on the 1st
cohort and testing is enforced on the 2nd cohort (Wβββ =

{1} and Wγ = {2}).

(b) R0 when social distancing is enforced on the 2nd
cohort and testing is enforced on the 1st cohort (Wβββ =

{2} and Wγ = {1}).

Figure 11: Two density plots of the influence of the 1st cohort and 2nd cohort on the dynamics of R0.
In both cases all three of our horizontal lockdown scenarios L,M and H, can be replaced by enforcing
a wide range of austerity level restrictions to the 1st cohort and 2nd cohort. The 1st and 2nd cohorts
are the most important cohorts at effecting the dynamics of R0, since they influence the dynamics of R0

comparably to the influence of the combination of all of our cohorts as seen in Figure 8.

S29,10 vs S1: The 1st and 2nd cohort seem to be the two cohorts that influence the dynamics
of R0 the most. Hence, we quantify the results of targeting only the aforementioned cohorts in
Figure 11. As we can see from Figure 11, all three horizontal lockdown scenarios L,M and H can
be replaced with a combination of measures targeted at the 1st and 2nd cohort. This particular
combination of age-based measures has similar dynamics as the scenarios presented in Figure 7
which combine all of our cohorts, and Figure 8b which includes measures regarding thee different
cohorts. The vital role of the 1st and 2nd cohort is now undeniable. In Figure 11a we see that
scenario H can be replaced with the contacts of the 1st cohort being reduced by at least 50%
and the infectious individuals of the 2nd cohort being found and removed from the community at
least before the 4th day. When the restrictions are reversed, scenario H can be replaced when the
symptomatic individuals of the 1st cohort are detected and removed from the community at around
the second day after symptom onset, as can be seen in Figure 11b, with minimal contribution from
the 2nd cohort.

S211,12 vs S1: Up until now we examined the two older cohorts, namely the 4th and 5th cohort,
grouping them together as a single cohort. In an attempt to study the result of the interactions
of the aforementioned cohorts individually, we present Figure 12. As expected from the inability
of the grouping of the 4th and 5th cohort to dominate the dynamics of our previous simulations,
the simulations of Figure 12 offer a poor reduction of R0. Neither in Figure 12a nor Figure 12b
can horizontal lockdown scenarios H andM be replaced by a combination of measures in the 4th
and 5th cohort. Only scenario L can be replaced, and that is with austere restrictions on the 5th
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(a) R0 when social distancing is enforced on the 4th
cohort and testing is enforced on the 5th cohort (Wβββ =

{4} and Wγ = {5}).

(b) R0 when social distancing is enforced on the 5th
cohort and testing is enforced on the 4th cohort (Wβββ =

{5} and Wγ = {4}).

Figure 12: Two density plots of the influence of the 4st cohort and 5nd cohort on the dynamics of
R0. Neither case was able to offer a replacement to horizontal lockdown scenario M and scenario H.
Restrictions on the combination of the 4th cohort and the 5th cohort result in the poorest reduction in
R0 when compared to the remaining of our simulations. When measures are imposed to the 4th and 5th
cohort, the restrictions on the 4th cohort dominate the dynamics of R0.

cohort. In particular, scenario L can be achieved either when the reduction of the average amount
of contacts of the 4th cohort is 80% or when the symptomatic individuals of the 4th cohort are
detected and removed from the community at around 2.5 days after symptom onset. Finally, there
is a clear domination of the 4th cohort in this particular combination of age-based measures, with
the measures enforced on the 5th cohort being irrelevant.

S213,14,15,16 vs S1: Lastly, we present the final combination of measures in Figure 13. This final
set of restrictions acts as a viable proposal to a real life situation with the economical impact of the
measures in mind, since it targets the 2nd cohort, i.e. school students, whose contact reduction, or
in other words school closures, would minimally affect the economy. Additionally, Figure 13, allows
us to examine the difference between the grouping of the two older cohorts and their individual
contribution to R0, in combination to another, younger, cohort. As can be seen in Figure 13a, for
horizontal lockdown scenarioM to be replaced, the contact reduction of the 2nd cohort needs to
be at least 85% and the infectious individuals of the 4th cohort need to be found and removed
from the community at least before the fourth day after symptom onset. Compared to Figure 9a,
there is a 5% increase in the required contact reduction for scenario M to be replaced, as well
as about a 1.5 day decrease between the required detection-and-removal day for the symptomatic
individuals of the 4th cohort and the grouping of the 4th and 5th cohort. On the other hand,
Figure 13b is identical to Figure 9b, meaning that the 5th cohort’s contribution to the dynamics
of R0 is minimal. This is further proved in Figure 13c and Figure 13d, where we see that the 2nd
cohort dominates the dynamics of the simulation. In particular, when the contact reduction of the
2nd cohort is 50%, scenario L can be replaced, whereas when the infectious individuals of the 2nd
cohort are removed from the community at around the 4th day, scenarioM can be replaced.
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(a) R0 when social distancing is enforced on the 2nd
cohort and testing is enforced on the 4th cohort (Wβββ =

{2} and Wγ = {4}).

(b) R0 when social distancing is enforced on the 4th
cohort and testing is enforced on the 2nd cohort (Wβββ =

{4} and Wγ = {2}).

(c) R0 when social distancing is enforced on the 2nd
cohort and testing is enforced on the 5th cohort (Wβββ =

{2} and Wγ = {5}).

(d) R0 when social distancing is enforced on the 5th
cohort and testing is enforced on the 2nd cohort (Wβββ =

{5} and Wγ = {2}).

Figure 13: Four density plots of the influence of the interactions of the 2nd and 4th cohort, as well as
the 2nd and 5nd cohort on the dynamics of R0. None of the simulations was able to offer a replacement
to horizontal lockdown scenario H. The 5th cohort’s contribution to the dynamics of R0 is insignificant,
since it’s removal from the measure-targeted cohorts, minimally affects the dynamics of R0, as can be
seen when Figure 13a, Figure 13b and Figure 9 are compared. Additionally, the 2nd cohort completely
dominates the dynamics of R0, when the 5th cohort is included in the simulations as can be seen from
Figure 13c and Figure 13d.
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4.4.2 Epidemiological overview of the results, S1 vs S2

Throughout our simulations we let (a, b) of each gradation to take values in the 2D interval [0,1)2
and illustrate the results in contour plots, where in the x-axis and y-axis we have a ⋅ 100% and
b ⋅ PI→R = b

γI
= b ⋅ 14 days, respectively.

H vs S2: We begin by examining how many substrategies of {S2i}
16
i=1 can be considered as an

alternative to scenario H. As can be seen from Figure 14c, five substrategies of {S2i}
16
i=1 admit

the same R0 as the respective one of scenario H. Therefore, the epidemiological coverage of
scenario H by the substrategies {S2i}

16
i=1 is 31.25%. We highlight the fact that every one of the

five substrategies that can replace scenarioM, regards restrictions on the 1st cohort.

M vs S2: Next, we examine how many substrategies of {S2i}
16
i=1 can be considered as an alter-

native to scenarioM. As can be seen from Figure 14b, eleven substrategies of {S2i}
16
i=1 admit the

same R0 as the respective one of scenarioM. Therefore, the epidemiological coverage of scenario
M by the substrategies {S2i}

16
i=1 is 68.75%. We highlight the fact that every one of the eleven

substrategies that can replace scenarioM, regards restrictions on the 1st and 2nd cohort.

L vs S2: Finally, we examine how many substrategies of {S2i}
16
i=1 can be considered as an alter-

native to scenario L. As can be seen from Figure 14a, all substrategies {S2i}
16
i=1 admit the same

R0 as the respective one of scenario L. Therefore, the epidemiological coverage of scenario L by
the substrategies {S2i}

16
i=1 is 100%.

A summary of the results of §4 can be seen in Table 6.

5 Conclusions and discussion

In this paper, we introduced a scheme for the comparison of certain interventions for the restriction
of an epidemiological phenomenon. This scheme incorporates some novel notions such as “strat-
egy” and “substrategy”, “gradable strategy” and its “gradation”, “comparison matrix”, as well
as “epidemiological” and “social coverage”, which are also introduced here. Then, we utilized the
aforementioned scheme and the age-based epidemiological compartment problem studied in [4] to
compare horizontal lockdowns policy with various age-based interventions.

In particular, we distributed the total population into five cohorts, based on the age of each
individual (in ascending order) and we defined the graded strategy of horizontal lockdowns, con-
sidering three horizontal lockdowns austerity scenarios, Low (L), Medium (M) and High (H).
We also defined the strategy of age-based restrictions consisting of 16 substrategies. In general,
our results suggest that these two strategies are comparable mainly at low or medium level of
austerity. Precisely, throughout our simulations with data from the literature, we deduced that
strategies that include the 1st and 2nd cohort had the best epidemiological coverage. Moreover, all
substrategies admitted the same R0 as the respective one of scenario L, meaning that the social
coverage of L by the substrategies is 100%, while the social coverage of scenariosM and H by the
substrategies is 68.75% and 31.25%, respectively.

In terms of the proposed scheme, generalizations may include the notion of strategy, hence the
comparison process itself.
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(a) Loci of (a ⋅ 100%, b
γI
) of the respective substrategies of the family {S2i}

16

i=1
such that their R0 equals 0.571, i.e

the R0 of scenario H.

(b) Loci of (a ⋅ 100%, b
γI
) of the respective substrategies of the family {S2i}

16

i=1
such that their R0 equals 1.427, i.e

the R0 of scenarioM.

(c) Loci of (a ⋅ 100%, b
γI
) of the respective substrategies of the family {S2i}

16

i=1
such that their R0 equals 2.283, i.e

the R0 of scenario L.

Figure 14: Three contour plots illustrating the epidemiological coverage of each substrategy (L,M and
H) of horizontal lockdown strategy. The denser the plot is, the higher the epidemiological coverage.
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Age-based restrictions
Horizontal lockdowns

High (H) Medium (M) Low (L) Epidemiological
coverage

Contact reduction: 1st, 2nd, 3rd cohorts
Testing: 4th, 5th cohorts

80.6% and 3.06 days
88.% and 6.4 days

95.4% and 9.82 days

42.3% and 3.71 days
50.5% and 7.43 days
58.9% and 11.4 days

4.55% and 11.7 days
12.5% and 8.19 days
19.9% and 4.59 days

100%

Contact reduction: 4th, 5th cohorts
Testing: 1st, 2nd, 3rd cohorts

21.1% and 2.92 days
50.4% and 2.9 days
81.7% and 2.89 days

18.4% and 7.43 days
50.% and 7.68 days
78.9% and 7.96 days

17.8% and 13.4 days
42.9% and 12.4 days
67.9% and 11.7 days

100%

Contact reduction: 1st cohort
Testing: 4th, 5th cohorts

✗

98.8% and 1 day
99.1% and 1.05 days
99.5% and 1.12 days

10.7% and 11.9 days
34.% and 8.18 days
55.4% and 4.31 days

66.66%

Contact reduction: 4th, 5th cohorts
Testing: 1st cohort

18.8% and 2.05 days
48.6% and 2.1 days
80.2% and 2.18 days

17.9% and 4.72 days
50.% and 5.11 days
79.1% and 5.57 days

17.5% and 9.41 days
43.2% and 10.8 days
68.6% and 12.7 days

100%

Contact reduction: 2nd cohort
Testing: 4th, 5th cohorts

✗

82.7% and 1.86 days
89.6% and 3.29 days
96.4% and 4.71 days

10.6% and 11.7 days
27.7% and 8.32 days
43.% and 4.73 days

100%

Contact reduction: 4th, 5th cohorts
Testing: 2nd cohort

✗

21.2% and 4.65 days
50% and 4.4 days

82.1% and 4.22 days

17.9% and 9.82 days
43.1% and 11 days
67.9% and 12.7 days

66.66%

Contact reduction: 3rd cohort
Testing: 4th, 5th cohorts

✗ ✗

19.5% and 8.89 days
50.9% and 6.45 days
82.1% and 4.04 days

33.33%

Contact reduction: 4th, 5th cohorts
Testing: 3rd cohort

✗ ✗

23.1% and 4.93 days
54.7% and 6.89 days
75.% and 11 days

33.33%

Contact reduction: 1st cohort
Testing: 2nd cohort

58.1% and 3.29 days
74.% and 2.52 days
89.5% and 1.59 days

19.6% and 4.95 days
50% and 6.27 days
80.2% and 7.71 days

14% and 10.1 days
34.3% and 11.4 days
54.5% and 13 days

100%

Contact reduction: 2nd cohort
Testing: 1st cohort

20.2% and 2.41 days
51.2% and 2.23 days
82.% and 2.09 days

20.1% and 4.88 days
52.5% and 5.64 days
82.1% and 6.77 days

10.7% and 9.36 days
28.2% and 10.8 days
44.4% and 12.6 days

100%

Contact reduction: 4th cohort
Testing: 5th cohort

✗ ✗

81.1% and 3.46 days
81.8% and 7.5 days
82.3% and 11.2 days

33.33%

Contact reduction: 5th cohort
Testing: 4th cohort

✗ ✗

18.9% and 2.53 days
48.9% and 2.53 days
79.7% and 2.53 days

33.33%

Contact reduction: 2nd cohort
Testing: 4th cohort

✗

87.5% and 1.62 days
92.% and 2.51 days
96.4% and 3.41 days

11.5% and 2.76 days
33.8% and 7.25 days
52.8% and 11.3 days

66.66%

Contact reduction: 4th cohort
Testing: 2nd cohort

✗

21.4% and 4.63 days
51.1% and 4.4 days
81.5% and 4.22 days

17.9% and 9.81 days
44.5% and 11 days
68.1% and 12.6 days

66.66%

Contact reduction: 2nd cohort
Testing: 5th cohort

✗ ✗

52.1% and 3.52 days
52.5% and 7.36 days
52.9% and 11.3 days

33.33%

Contact reduction: 5th cohort
Testing: 2nd cohort

✗

20.4% and 4.12 days
51.% and 4.12 days
81.2% and 4.12 days

18.9% and 9.22 days
49.1% and 9.25 days
79.3% and 9.27 days

66.66%

Social coverage 31.25% 68.75% 100% 66.66%

Table 6: Horizontal lockdowns vs age-based restrictions. The total coverage of horizontal lockdowns
from age-based restrictions is 66.66%. Additionally, the table is populated with representative values of

(a ⋅ 100%, b
γI
) of the strategic scale that each age-based strategy needs to have in order for the strategy to

have the same R0 as each of the three horizontal lockdown scenarios.
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