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ABSTRACT

Objectives: Accurate assessment of estimated fetal weight (EFW) is crucial in obstetrics, yet the
exact contribution of the biometric parameters in sonographic formulas remains unclear. This study
employs a statistical method to quantify their influence on EFW.
Methods: Data from 26 published studies covering diverse populations and gestational ages con-
cerning ultrasonic measurements of biparietal diameter (BPD), abdominal circumference (AC), head
circumference (HC), and femur length (FL) were analyzed. The Sobol’ global sensitivity analysis
method was employed for the examination of parameter importance on the EFW admitted by 29
established formulas. Bootstrapping was applied to estimate the median sensitivity indices with 95%
confidence intervals.
Results: Parameter significance differs according to formula and gestational age. AC was generally
the most influential parameter, especially in later pregnancy, whereas the rest of the parameters
showed more variable importance. Two-thirds of the formulas exhibited parameter crossover effects,
and nearly half had at least one parameter with minimal contribution.
Conclusions: Clinicians should choose formulas based on gestational age, measurement reliability
and fetal characteristics. Estimates made with fewer than the intended parameters can be viable
in emergencies. The proposed methodology can guide the refinement of existing formulas and the
development of improved fetal weight estimation models.

1 Introduction

Estimating the weight of a fetus is a critical aspect of prenatal care, primarily conducted through ultrasound imaging [1–4].
This method allows healthcare providers to measure various fetal parameters, such as the biparietal diameter (BPD),
abdominal circumference (AC), head circumference (HC), and femur length (FL). These measurements are then used as
parameters in established mathematical formulas to calculate the estimated fetal weight (EFW) [5] (see Figure 1).

The parameters of a mathematical function do not necessarily contribute equally to its output. In many mathematical
models, particularly nonlinear ones, certain parameters can have a more significant impact on the result than others.
Mathematical methods, such as sensitivity analysis, can reveal the varying degrees of influence each parameter has,
illustrating that the overall result is often a product of both individual and interactive effects among the parameters
involved [6;7]. This complexity underscores the importance of analyzing parameter contributions rather than assuming
uniform influence across all inputs.

As pregnancy progresses, the accuracy of fetal head measurement becomes increasingly challenging. This is due to
various factors, including the position of the fetus, the volume of amniotic fluid, and the presence of an anterior placenta.
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Dependence of biometric parameters on estimated fetal weight

Figure 1: The biometric characteristics of a fetus, such as the circumference of its head and abdomen, the length of
its femur, or its biparietal diameter are measured using ultrasound. The measurements are then entered into various
mathematical formulas to estimate the weight of the fetus.

Furthermore, the fetal head may engage with the pelvis, potentially impeding the acquisition of clear ultrasound
images [8–10]. Therefore, in the latter stages of pregnancy, formulas that are influenced less by head parameters (BPD
and HC) could lead to more accurate predictions.

Shaheen et al. [11] conducted a comparative analysis of two distinct fetal weight estimation formulas, one incorporating
HC and one that does not. The study concluded that the discrepancy in accuracy between these formulas was negligible.
Consequently, the researchers deduced that, in the context of this particular comparison, HC does not constitute a
substantial parameter.

Is it possible to extend the conclusions drawn by Shaheen et al. [11], i.e., to systematically analyze the contributions of
parameters across different formulas? Establishing a way to quantify the contribution of each parameter in fetal weight
estimation formulas would enable comparisons and resolve the aforementioned inquiry. Sensitivity analysis emerges as
a mathematical approach that can effectively tackle this challenge [6;7]. Techniques such as the Sobol’ method [12] are
employed in sensitivity analysis to measure the extent to which a parameter influences the output of a given problem,
quantified by a metric known as the Sobol’ index.

There exist many studies comparing the accuracy of different formulas for the calculation of EFW [3;5;13–20]. They
often involve retrospective and prospective analysis, comparing predicted weights to actual birth weights to assess
accuracy, bias, and reproducibility. Such articles underscore the ongoing quest for more reliable fetal weight estimation
techniques that can enhance obstetric care by improving predictions related to delivery management and neonatal
outcomes. However, no research has been conducted that systematically assesses the contribution of the involved
parameters of each formula to the EFW.

The scope of the present study is to evaluate the effect of the biometric parameters of various formulas on the EFW. The
utilized approach relies on an unbiased global sensitivity analysis scheme, known as the Sobol’ method.

2 Methods

An overview of the implemented methods can be found in Figure 2, and a detailed description is presented below.

2.1 Formulas

The formulas under investigation, which take into account more than one independent parameter, are presented in Table
1. These formulas take a combination of BPD, AC, HC, and FL as their parameter arguments.

2.2 Sensitivity analysis

The Sobol’ method [12], a global sensitivity analysis technique, is a variance-based approach employed to evaluate how
changes in parameter inputs influence the outputs of a mathematical model. The method operates by partitioning the
variance of the outputs generated by the model into distinct contributions from individual input parameters and their
respective interactions [6;7]. Assuming that f is the mathematical formula used for fetal weight estimation and X is the
vector of the parameters of f , then by the Hoeffding decomposition, the total variance of the formula can be written as:

Var[f(X)] =

d∑
i=1

Vi +

d∑
i<j

Vi,j + · · ·+ V1,2...,d
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Figure 2: The current study deploys a multi-step process involving the utilization of numerous datasets sourced from
existing literature. The Sobol’ method is then applied to each of these datasets, for all the studied formulas. Following
this, bootstrapping is conducted using the computed Sobol’ indices from each individual week as the sample points
(the figure employs color to visualize the different sample points). Finally, the median, along with a 95% confidence
interval, are estimated from the mean Sobol’ index of the resamples.

where Vi represents the variance due to the main effect of parameter i, Vi,j represents the variance due to the interaction
between parameters Xi and Xj , and so on.

Sobol’ sensitivity indices are normalized metrics that correspond to the aforementioned representations. The first-order
sensitivity indices are defined as

Si =
Vi

Var [f(X)]
.

A high first-order index indicates that the parameter has a significant direct influence on the output.

The second-order sensitivity indices are defined as

Si,j =
Vi,j

Var [f(X)]
.

A high second-order index indicates that the combined effects of the two parameters are not merely additive. Both the
first- and second-order indices range from 0 to 1.

Higher-order indices are calculated similarly.

The total-order indices are defined as

STi
= Si +

∑
j ̸=i

Si,j +
∑

j<k ̸=i

Si,j,k + . . . .

It captures the total contribution of parameter Xi, including its main effect and all interactions with other variables.
Unlike the n-th order indices, they do not range from 0 to 1.

The Julia package GlobalSensitivity.jl [39] is utilized for the calculation of the Sobol’ indices. The variances are
calculated numerically using the Jansen estimator [40].

2.3 Data

A rundown of the utilized datasets can be seen in Table 2. In all the studies presented in Table 2, a number of
measurements, regarding the parameters of interest, were taken from pregnant women of various ethnicities at various
gestational ages. Furthermore, the researchers calculated the 10th and 90th percentile charts for all parameters and
for all gestational ages investigated in each study. The present study examines the 10th and 90th percentiles of each
parameter on a weekly basis, designating these values as the lower and upper bounds for each parameter during each
week. These bounds are critical for the parameter sampling that is required for the Sobol’ method.
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Source Formula

Combs (1993) [21] 0.23718 (AC)2 (FL) + 0.03312 (HC)3

Ferrero (1994) [22] 100.77125+0.13244(AC)−0.12996(FL)−1.73588(AC)2/1000+3.09212(AC)(FL)/1000+2.18984(FL)/(AC)

Hadlock I (1985) [23] 101.304+0.05281(AC)+0.1938(FL)−0.004(AC)(FL)

Hadlock II (1985) [23] 101.335−0.0034(AC)(FL)+0.0316(BPD)+0.0457(AC)+0.1623(FL)

Hadlock III (1985) [23] 101.326−0.00326(AC)(FL)+0.0107(HC)+0.0438(AC)+0.158(FL)

Hadlock IV (1985) [23] 101.3596+0.00061(BPD)(AC)+0.424(AC)+0.174(FL)+0.0064(HC)−0.00386(AC)(FL)

Halaska (2006) [24] 100.64041(BPD)−0.03257(BPD)2+0.00154(AC)(FL)

Hsieh (1987) [25] 102.1315+0.0056541(BPD)(AC)−0.00015515(BPD)(AC)2+0.000019782(AC)3+0.052594(BPD)

INTERGROWTH-21 (2017) [26] e5.084820−54.06633((AC)/100)3−95.80076((AC)/100)3 ln((AC)/100)+3.136370(HC)/100

Jordaan I (1983) [27] 10−1.1683+0.0377(AC)+0.095(BPD)−0.0015(BPD)(AC)

Jordaan II (1983) [27] 100.9119+0.0488(HC)+0.0824(AC)+0.001599(AC)(HC)

Merz (1988) [28] 3200.40479 + 157.07186 (AC) + 15.90391 (BPD)
2

Ott (1986) [29] 10−2.0661+0.04355(HC)+0.05394(AC)−0.0008582(AC)(HC)+1.2594(AC)(FL)(AC)

Roberts (1985) [30] 101.6758+0.01707(AC)+0.042478(BPD)+0.05216(FL)+0.01604(HC)

Schild (2004) [31] 5381.193 + 150.324 (HC) + 2.069 (FL)3 + 0.0232 (AC)3 − 6235.478 log(HC)
Shepard I (1982) [32] 10−1.599+0.144(BPD)+0.032(AC)−0.000111(AC)(BPD)2

Shepard II (1982) [32] 10−1.7492+0.166(BPD)+0.046(AC)−0.002646(BPD)(AC)

Thurnau (1983) [33] 9.337 (BPD) (AC)− 229
Vintzileos I (1987) [34] 101.879+0.084(BPD)+0.026(AC)

Vintzileos II (1987) [34] 102.082+0.004(HC)(FL)+0.0018(AC)−0.00000001509((HC)(FL))3

Warsof (1977) [35] 10−1.599+0.144(BPD)+0.032(AC)−0.000111(BPD)2(AC)

Weiner I (1985) [36] 101.6961+0.02253(HC)+0.01645(AC)+0.06439(FL)

Weiner II (1985) [36] 101.6575+0.04035(HC)+0.01285(AC)

Woo (1986) [37] 1.4 (BPD) (AC) (HC)− 200

Woo I (1985) [38] 101.54+0.15(BPD)+0.00111(AC)2−0.0000764(BPD)(AC)2+0.05(FL)−0.000992(AC)(FL)

Woo II (1985) [38] 101.14+0.16(BPD)+0.05(AC)−2.8(BPD)(AC)/1000+0.04(FL)−4.9(AC)(FL)/10000

Woo III (1985) [38] 101.13+0.18(BPD)+0.05(AC)−3.35(BPD)(AC)/1000

Woo IV (1985) [38] 101.63+0.16(BPD)+0.00111(AC)2−0.0000859(BPD)(AC)2

Woo V (1985) [38] 100.59+0.08(AC)+0.28(FL)−0.00716(AC)(FL)

Table 1: List of the formulas under investigation.

2.4 Sampling

The computation of variances using the Jansen estimator necessitates the use of two design matrices. In order to
construct a design matrix, it is essential to have a method for generating samples of the parameters.

In order to eliminate the bias from the dataset and at the same time investigate the whole parameter space uniformly
(i.e., more evenly), it is assumed that, for each week, the parameters follow a continuous uniform distribution, between
the bounds defined by the 10th and 90th percentiles charts of that week. To this end, a quasi-random low-discrepancy
sequence of numbers is generated in the interval between the 10th and the 90th percentile of each parameter, utilizing
the Sobol’ sampling method, which is described in Sobol [12]. The Julia package QuasiMonteCarlo.jl is employed to
generate design matrices consisting of Sobol’ sequences, with a sample size of 106, for each formula and each week.

2.5 Estimation of the mean of indices with bootstrapping

The mean values of the indices of each formula are estimated using non-parametric bootstrapping, which is described
in Casella and Berger [66]. This method is chosen due to its no distributional assumptions, robustness to outliers, and
usefulness in small samples.

To obtain the median, along with a 95% confidence interval (CI) for the estimation of the mean of the Sobol’ indices,
the methodology outlined below is followed.

4
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Source Year Country Number of fetuses Weeks

Araujo Júnior et al. [41] 2014 Brazil 31476 18–38
Brons et al. [42] 1990 Netherlands 63 12–40

Browne et al. [43] 1992 USA 8285 10–44
Buck Louis et al. [44] (Asian) 2015 USA 460 10–40
Buck Louis et al. [44] (Black) 2015 USA 611 10–40

Buck Louis et al. [44] (Hispanic) 2015 USA 649 10–40
Buck Louis et al. [44] (White) 2015 USA 614 10–40

Chitty et al. [45–47] 1994 UK 594–649 12–42
de la Vega et al. [48] 2008 Puerto Rico 548 14–38

Dubiel et al. [49] 2008 Poland 959 20–42
Dulger et al. [50] 2024 Turkey 1132 15–40
Fouad et al. [51] 2021 Egypt 540 14–40

Giorlandino et al. [52] 2009 Italy 4896 14–41
Johnsen et al. [53] 2006 Norway 650 10–42

Jung et al. [54] 2007 South Korea 10455 12–40
Kiserud et al. [55] 2017 Multinational 1387 14–40
Kwon et al. [56] 2014 South Korea 986 15–40
Lai and Yeo [57] 1992 Singapore 6374 14–41

Lessoway et al. [58] 1998 Canada 1396 11–42
Lindström et al. [59] 2020 Sweden 583 12–42

Munim et al. [60] 2012 Pakistan 1228 20–39
Paladini et al. [61] 2005 Italy 626 16–40

Papageorghiou et al. [62] 2014 Multinational 13108 14–40
Saksiriwuttho et al. [63] 2007 Thailand 628 14–41

Stampalija et al. [64] 2020 Italy 7347 15–40
Verburg et al. [65] 2008 Netherlands 8313 12–40

Table 2: Rundown of the utilized datasets.

1. The Sobol’ indices are calculated for every combination of formula and dataset for each week in which data
are available.

2. The calculated Sobol’ indices are grouped together by formula and gestation age (excluding weeks 43 and 44
due to scarcity of available data).

3. 106 bootstrap samples are created for each aforementioned group

4. The average is calculated for each bootstrap sample, resulting in samples of size 106 for the respective mean
value of each group.

5. The median, along with a 95% CI, is estimated for each mean-value sample, using the empirical distribution
function.

3 Results

Figure 4 presents an estimate of the first-order Sobol’ indices for a curated list of formulas of Table 1, based on the
datasets of Table 2. Each panel consists of an error bar for each parameter and for each gestational week. The median
of the mean value of the indices is represented by a dot, while the whiskers represent a 95% CI. In addition, each panel
displays the indices for each individual dataset as a scatter plot with a low alpha value. The complete list of obtained
results, for all formulas of Table 1, is presented in Figure S1 through S29 located in the Supplementary Material.

The higher-order Sobol’ indices for all the tested formulas were found to be small (< 0.01). Hence, they are not
presented. Given the insignificance of the higher-order indices, the total-order indices are approximately equal to the
first-order indices. Therefore, they are also omitted.

In terms of a general overview of the results, approximately half of the formulas (45%) have at least one parameter with
a first-order Sobol’ index that is less than 0.3.
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Figure 3: Descriptive statistics pertaining to the bounds of the biometric parameters of interest. The solid lines
represent the median corresponding to the 50th percentile, whereas the bands illustrate the medians of the 10th and 90th
percentiles, respectively, based on the aggregated data obtained from the sources outlined in Table 2.

Moreover, 66% of the formulas exhibit a crossover in parameter importance—some transition from low to high
significance, while others decline from high to low—over the course of gestation. This indicates that in most formulas,
the parameters undergo a reversal in their significance level.

With regard to the monotonicity of the indices, it is observed that, following the 20th week, the vast majority of the
studied formulas exhibit strictly monotone indices. During weeks 10 to 20, approximately 41% of the formulas exhibit
at least one index with a turning point. Notably, all of these formulas contain FL as a parameter. Furthermore, only two
of the sixteen formulas with FL as a parameter do not display a turning point (12.5%).

With respect to the importance of each parameter, the presence of HC is insignificant (having an index less than 0.3
throughout the whole gestation) in 20% of the formulas that it appears in, BPD in 33%, AC in 4%, and FL in 38%. On
the contrary, only 2 of the formulas (7%) have a consistently dominant index, with values greater than 0.7 throughout
the gestation. Specifically, HC is dominant in Weiner II (1985) and AC is dominant in Merz (1988).

As far as the uncertainty of the estimates is concerned, the length of the 95% CI is generally narrow, indicating a precise
estimate. However, some formulas have a more broad 95% CI during weeks 10 to 15, such as INTERGROWTH-21
(2017) and Shepard I (1982), as well as during weeks 41 and 42, such as INTERGROWTH-21 (2017) and Halaska
(2006).

4 Discussion

4.1 Summary of key findings

This study demonstrated that nearly half of the formulas under investigation include at least one parameter which admits
a very low Sobol’ index. This indicates that a considerable number of the formulas are not parsimonious, as they utilize
more parameters than are necessary to make a prediction for the EFW. Similar findings have been observed in previous
studies, such as the insignificance of HC in Hadlock III (1985) [11].
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Figure 4: Comparison of the first-order Sobol’ index (measure of parameter significance) of different fetal weight
estimation models over gestational week 10 through 42. The figure presents an estimate of the median (solid markers)
and a 95% CI (error bars) of the mean Sobol’ index computed for each formula and gestational age, for various datasets.
Each panel corresponds to a different formula, with the equation used for estimation displayed at the top of each plot.
The color legend indicates the biometric parameters used in the models: biparietal diameter (BPD, pink), abdominal
circumference (AC, green), femur length (FL, yellow), and head circumference (HC, purple). The indices for each
individual dataset are illustrated in each panel as scatter plots, utilizing a low alpha value. The data suggest varying
trends across models, with some showing diverging patterns of relative contribution from different parameters.
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AC is considered to be a crucial parameter in fetal weight estimation [67–71]. After all, it is included in all the studied
formulas. The results of the present study highlight the importance of AC, however, just like all the tested parameters,
its contribution depends on both the choice of the formula and the gestation age.

Furthermore, two-thirds of the formulas exhibit a crossover effect, with at least two of the parameters overtaking each
other over time. This noteworthy phenomenon can be attributed to various factors. To begin with, as can be seen from
Figure 3, during week 10 the aggregate measurements of all the biometric parameters show a standard deviation of
around 2 cm. This standard deviation continues to increase throughout gestation, reaching about 15.5 cm by the 42nd
week. The substantial increase in the variation of inter-parameter values may elucidate the crossover effect observed in
the indices, given the considerable differences in parameter sizes. Another potential explanation lies in the way the
formulas are generated. The regression analysis employed for the creation of the formulas does not take into account
the temporal dependencies of the parameters. A thorough search of the relevant literature yielded no formulas that
are produced utilizing time series regression, and it would be worthwhile to examine if such a model could admit
time-stable indices.

Regarding the second-order Sobol’ indices, they measure the degree of interaction between the associated parameters.
The term “interaction” is used to describe a situation in which the effect of one variable on an outcome depends on the
level of another variable. Consequently, if the second-order index between two parameters of a formula were to be
identified as significant, it could, for instance, signify that one of the parameters must be above or below a specific
threshold in order for the other to be taken into account. This scenario would be incongruent with the objective of fetal
weight estimation, as the larger the value of a biometric parameter is, the larger the EFW should be, irrespective of
the value of the remaining parameters. Hence, since none of the formulas under investigation admitted a significant
higher-order Sobol’ index, they are all well-defined.

An explanation for this phenomenon may be the bounds of the parameters. As depicted in Figure 3, the parameters have
different magnitudes, which can lead to the dominance of some of them in interaction terms. An example of this is
Woo (1986), in which EFW depends exclusively on the interactions of BPD, AC and FL, yet admits small higher-order
Sobol’ indices.

This study indicated that the uncertainty associated with the estimates is characterized by generally narrow 95% CIs,
although exceptions were observed during early and late stages of gestation.

One potential explanation for the broader estimates is the smaller number of data points available for analysis in those
weeks. As can be seen in Table 2, most of the datasets utilized do not provide data for the aforementioned stages of
gestation. This results in the bootstrap estimate being less reliable, thereby increasing the uncertainty, due to the smaller
sample size. Another potential reason for this could be the variability of the data in those weeks. During early gestation,
particularly between weeks 10 and 15, the fetus is still small, which can make accurate measurements of the parameters
difficult [72], thus, influencing the 10th and 90th percentile charts on which this study’s approach relies on.

4.2 Interpretations of results

To facilitate the interpretation of the results, some examples are in order. The following examples use data from
Papageorghiou et al.. [62], and concern week 38, during which it is important to estimate fetal weight.

Assuming a fetus with the median biometric parameters, Hadlock III (1985) calculates the EFW to be 2990.54 g. When
HC lies at the 90th percentile, with the remaining parameters lying at the median, then the EFW is 3102.99 g (3.75%
increase). Doing the same for AC results in the EFW to be 3376.14 g (12.88% increase), whereas for FL is 3123.26 g
(4.43% increase). The respective first-order Sobol’ indices for HC, AC and FL are 0.076, 0.82 and 0.105. It is obvious
that the most substantial change occurs when AC is altered, followed by FL, and then HC.

Assuming a fetus with the median biometric parameters, Hadlock IV (1985) computes the EFW to be 3049.05 g . When
BPD lies at the 90th percentile, with the remaining parameters lying at the median, then the EFW is 3116.23 g (2.22%
increase). Doing the same for HC results in the EFW to be 3116.92 g (2.22% increase), whereas for AC the result is
3444.67 g (12.98% increase) and for FL is 3173.29 g (4.07% increase). The respective first-order Sobol’ indices for
BPD, HC, AC and FL are 0.027, 0.028, 0.854 and 0.09. It is evident that the most significant change occurs when AC is
altered, followed by FL, and then BPD and HC, which both affect EFW similarly.

The results of the above practical examples demonstrate complete alignment with the findings of the present study.

4.3 Implications

The findings of the present study facilitate the development of personalized and adaptive techniques for the estimation of
fetal weight. Different clinical situations can affect the accuracy of certain biometric measurements. For example, there
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are cases where the fetus head can be challenging to be measured, especially during the later stages of pregnancy [8–10].
Therefore, to minimize the error in predictions, it is recommended to use a formula with small first-order indices for
the head parameters (BPD and HC), during the later stages of gestation. Additionally, the presence of insignificant
parameters affects clinical situations, particularly in the ability to perform a rough but precise estimate in emergency
contexts. For instance, a sonographer aiming to conduct an urgent assessment of the EFW utilizing INTERGROWTH-21
(2017) at around the 33rd week of gestation could derive predictions comparable to those obtained from measuring both
abdominal AC and HC by relying solely on the AC measurement, while offering a rough estimate for HC or even using
the median value from a pertinent percentile chart.

Furthermore, personalized medicine can be easier to be implemented, particularly for fetuses with anatomical anomalies
or asymmetrical growth. For instance, in cases of skeletal dysplasia [73], clinicians should avoid formulas with a high
first-order index for FL. Similarly, in hydrocephalus [74], reliance on formulas with a high first-order index for HC can
lead to overestimations of the EFW. This level of adaptability guarantees that the EFW accurately represents the fetus’s
actual condition, rather than being skewed by formulaic inaccuracies.

Another key implication of this study is the ability to refine training and quality control measures for sonographers.
Assuming that a clinic uses some particular formulas for estimating fetal weight, and those formulas are highly
dependent on a specific parameter, then training programs should aim to improve sonographers’ skills in acquiring
accurate and consistent measurements of that parameter.

4.4 Strengths and limitations

A notable strength of this study is its minimal reliance on a single, specific dataset of measurements, which could
potentially be biased towards particular values, due to the ethnicity of the mother, operator variability, and technical
factors of ultrasound equipment, among others. On the contrary, it relies solely on the estimates of the 10th and 90th
percentile charts, allowing it to investigate the entire parameter space evenly, ensuring that the results are objective and
impartial. Furthermore, the results are based on a bootstrap estimate of numerous datasets, with participants of various
ethnicities, which provides additional assurance regarding the reliability of the findings.

A limitation of this study is the exclusion of outlier measurements from the explored parameter range. The omission of
measurements scoring below the 10th and above the 90th percentile ensures the validity of the results for appropriate
for gestational age fetuses. However, it should be noted that the respective indices for small and large for gestational
age fetuses may vary from those presented in the current article. Hence, the dependence of fetal weight on individual
biometric parameters for such cases could be explored in a future study. An additional limitation of this study is the
Sobol’ method’s inability to account for parameter correlations. Despite the findings being in agreement with prior
studies and being practically sound as outlined through Section 4, it would be valuable to explore the conclusions reached
by utilizing alternative sensitivity analysis methods, such as Shapley effects [75], derivative based global sensitivity
measure (DGSM) [76], Borgonovo’s indices [77], etc., in a future study.

5 Conclusions

This study applied global sensitivity analysis using the Sobol’ method to evaluate how different biometric parameters
influence the estimation of the fetal weight produced by utilizing a range of ultrasound formulas throughout pregnancy.
Our findings demonstrate that not only does the importance of specific measurements change with gestational age, but
it also varies significantly from one formula to another.

Across many formulas, AC generally stands out as a dominant parameter, especially during later gestation. However, the
degree of reliance on AC—just like the rest of the parameters—differs among formulas. For instance, some formulas
may be highly sensitive to changes in AC, while others might show a greater dependence on FL or even display a
balanced contribution from several parameters during early gestation.

These variations imply that clinicians and sonographers should interpret fetal weight estimates in a stage-specific and
formula-specific context. In practice, this means that when a particular formula is used, the corresponding sensitivity
to its biometric inputs should guide both the measurement focus and the interpretation of the estimated fetal weight.
Tailoring the approach in this way can improve the accuracy of assessments and enhance decision-making in prenatal
care.

Future research could further investigate these differences and work towards refining existing formulas or developing
new ones that utilize the methodology of this study in order to generate models, customized to address the unique
characteristics of specific scenarios.
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