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Abstract: We study, from a purely quantitative point of view, the quasi-steady-state assumption
for the fundamental mathematical model of the general enzymatic reaction. In particular, (i) we
introduce a simple, yet generic, algorithm for the proper scaling of the corresponding problem, (ii) we
define the two essential parts (the standard and the reverse) of the quasi-steady-state assumption in a
quantitative fashion, and (iii) we comment on the dispensable, although widely adopted, third part
(the total) of it.
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1. Introduction

The study of the fundamental mathematical model for the kinetics of the general
enzymatic reaction with chemical equation

S + E → E + P, (1)

where S is the substrate, P is the product and E is the enzyme that catalyzes it, has a long
history, which we briefly present below.

In 1894, Fischer [1] derived the lock and key model for the interpretation of biocatalysis.
Before 1901, Brown suggested an intermediate step in the enzymatic reaction that was
described by (1), where the substrate forms a complex with the enzyme before the beginning
of the catalysis, an idea that was eventually published in 1902 [2]. Thus, it had already
been realized by that time, that enzymatic biochemical reactions take place in at least two
stages, and in fact these stages have different time scales. Based on this idea, combined
with conversations he had with Bodenstein, Henri published in 1902 [3] and then in 1903 [4]
an initial version of a reliable differential equation for the description of the kinetics of the
enzyme reaction with the chemical equation given by (1), an idea he had conceived as early
as 1901. A decade later, in 1913, Michaelis and Menten [5] (translated in English in [6])
extracted this equation by using a more detailed and analytical form that made use of the
rapid equilibrium assumption; they interpreted it convincingly and studied it thoroughly. In
particular, using as an example the invertase-catalyzed hydrolysis of sucrose into glucose
and fructose, they studied (1) through the chemical mechanism

S + E
k1⇌

k−1
C

k2Ð→ E + P, (2)
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where k1, k−1, k2 > 0 and C represents the substrate-enzyme complex, and indirectly con-
cluded that, when

[S] = [S]0 ≫ [E]0 = [E] and [C] = [C]0 = 0, for t = 0, (3)

a condition acceptable in enzymatic reactions, then for the rate υ of the enzymatic reaction
with chemical Equation (1) it holds that

υ ≈
υsup[S]

Kdis + [S]
, (4)

where
υsup ∶= k2[E]0 ,

and
Kdis ∶=

k−1

k1
. (5)

Kdis is the constant that is nowadays called the dissociation constant (of the complex).
In contrast, Van Slyke and Cullen, working in parallel with Michaelis and Menten,

but studying urease-catalyzed hydrolysis of urea to ammonia and carbon dioxide, used—
instead of (2)—the chemical mechanism

S + E
k1Ð→ C

k2Ð→ E + P

and concluded in 1914 [7] to

υ ≈
υsup[S]

KVSC + [S]
, (6)

instead of (4), where

KVSC ∶= k2

k1
. (7)

KVSC is a constant that is now known as the Van Slyke–Cullen constant.
In 1925, Briggs and Haldane [8] published a short note where they composed the

ideas of Michaelis & Menten and Van Slyke & Cullen through a raw first version of a
new enzyme kinetics assumption (already used for chemical kinetics in 1913), known
presently as the standard quasi-steady-state assumption. In particular, they improved (4)
and (6), demonstrating that:

υ ≈
υsup[S]

KM + [S]
, (8)

where:
KM ∶= Kdis +KVSC = k−1 + k2

k1
. (9)

It is a standard expression nowadays, that “(8) characterizes the Michaelis–Menten kinetics”,
and the constant (9) is called the Michaelis–Menten constant.

Lineweaver and Burk in 1934 [9] established (8) in the form:

1
υ
≈ 1

υsup
+ KM

υsup

1
[S]

,

as a tool for experimental calculation of the values υsup and KM.
Already since the beginning of the second half of the 20th century and throughout it,

many researchers have dealt with the validity of the quasi-steady-state assumption and the
determination of the two time scales of the model through the application of perturbation
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methods. However, it was much later, in 1988 and in 1989, when Segel [10], and Segel and
Slemrod [11], respectively, showed that if:

(KM + [S]0) ≫ [E]0 and [C]0 = 0, (10)

then there are indeed two time scales, which are recorded as follows:

tC = 1
k1(KM + [S]0)

≪
KM + [S]0

k2[E]0
= tS,

and it holds that:

υ ≈
⎧⎪⎪⎨⎪⎪⎩

0, for times comparable to tC,
as in (8), for times comparable to tS.

(11)

In fact, (10) is more general than (3) since it allows:

[E]0
[S]0

= O(1), as
[E]0

KM + [S]0
→ 0+,

or even:
[E]0 ≫ [S]0.

In 1997, Schnell and Mendoza [12] captured the solution of the Michaelis–Menten
kinetics equation in closed form, by using the Lambert W function, and in particular a
special case of it, which is defined by its inverse as follows:

W−1(x) = x exp{x}, ∀x ≥ 0.

In addition, via the aforementioned work of Segel and Slemrod, an initial form of another
hypothesis was introduced for the first time, the reverse quasi-steady-state assumption, and it
was shown that, when:

[E]0 ≫ KM and [C]0 = 0, (12)

then there are again two time scales:

t̃S = 1
k1[E]0

≪ 1
k2

= t̃C,

and it holds that:

υ ≈
⎧⎪⎪⎨⎪⎪⎩

k1[E]0[S], for times comparable to t̃S,
0, for times comparable to t̃C.

(13)

About a decade later, in 2000, Schnell and Maini [13] found that (12) is not sufficient
for (13) to hold; on the contrary, the new case should have the form:

[E]0 ≫ KM, [E]0 ≫ [S]0 and [C]0 = 0. (14)

Finally, let us mention that in 1996, with the work of Borghans, Boer and Segel [14],
the total substrate concentration, [T] is introduced, i.e., the sum of the concentration of
the unbound/free substrate plus the concentration of the bound substrate in the form of
complex with the enzyme, that is:

[T] ∶= [S]+ [C], (15)

to describe an alleged third hypothesis that shares common ground with both the previous
ones, the so-called total quasi-steady-state assumption, and since then several researchers have
adopted and dealt with this hypothesis.

In this work, our novel results are:
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1. We propose a general and simple algorithm for the proper scaling of every problem
with non negative solutions in a bounded domain, and we employ it, in an essential way,
for the problem considered in the present paper. Until now, only a “rough” rule for
the non dimensionalisation process is utilised in applications, which states that the
scales considered for the variables of a problem are chosen so that they should be
roughly of the same order of magnitude of the respective variables themselves [15].
The proposed procedure is described by the algorithm with the following steps:

A1. Identification of the bounded feasible region—i.e., the range of the dependent
variables—of the problem.

A2. Scaling of the dependent variables of the problem by their respective supremum
feasible values—which do exist, since the nonnegative solutions exist in a
bounded domain.

A3. Natural scaling of the independent variables by gathering the remaining terms
of the previous step.

(A)

By this algorithm,

○ the dependent variables are asymptotically comparable with each other, since
they all range onto [0, 1],

○ any scale of the independent variables follows naturally by the process, hence
there is no need of the unjustified approach of considering “an estimate of
the minimum value for which the variable undergoes a significant change in
magnitude” (see, e.g., [10,11,16], which is widely adopted thenceforth), for the
choice of the largest of the two time scales appearing in the present problem,

○ the quantity ε, that characterizes both the standard and the reverse quasi-steady-
state assumptions, arises effortlessly from the problem itself.

2. We clarify the fully justified, purely quantitative nature of the standard and the reverse
quasi-steady-state assumptions. In particular, (sQSSA) and (rQSSA) do not serve
for the validation of the standard and the reverse, respectively, quasi-steady-state
assumptions—as it is done in [10,11] and all their successors—but they define them.

3. We relinquish the, so-called, total quasi-steady-state assumption, by showing that, in fact,
there is no substantive third hypothesis, but only a different approach to the first two (We
note that such a duality, characterized by a positive parameter ε, that either tends to 0
or to ∞, is common in applications, for instance in the study of Hamiltonian systems
possessing either a relatively small or a relatively large Hamiltonian.).

For the sake of brevity, we neither state nor discuss the necessary concepts and
fundamental results on solutions of Cauchy problems for vector first order ODEs, such as:
(i) Existence, uniqueness, extendability, regularity, continuous and smooth dependence
on data, local and global stability. There is a huge literature on these topics; indicatively,
we refer to [17–20]. (ii) Process of matching, where approximate solutions, accurate in one
region of the problem domain, are matched to different approximate solutions, accurate in
another region. This subject is discussed in many books, see, e.g., [15,16,21,22]. Although
we utilize methods of asymptotic analysis, no singular perturbation expansions are used in
the present paper.

2. Principal Analysis of the Problem

In this section, we introduce the main problem and proceed to its basic analysis that
comprises the identification of the feasible regions, the well posedness of the problem,
the determination of the invariant sets and the simplification and stability analysis of
the problem.
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2.1. Cauchy Problem

Employing the chemical mechanism (2) along with the Law of Mass Action [23], we
arrive at the equations:

d[S]
dt

= −k1[S][E]+ k−1[C], (16a)

d[E]
dt

= −k1[S][E]+ (k−1 + k2)[C], (16b)

d[C]
dt

= k1[S][E]− (k−1 + k2)[C], (16c)

d[P]
dt

= k2[C], (16d)

and the corresponding Cauchy problem reads:

Given [S]0, [E]0, [C]0, [P]0 ≥ 0, we seek an interval I ⊆ R with 0 ∈ I, and a
function ([S], [E], [C], [P])∶I → [0,∞)4, such that ([S], [E], [C], [P])

satisfies both (16) in (I ∖ {0})○ and
([S], [E], [C], [P]) = ([S]0, [E]0, [C]0, [P]0), for t = 0.

(SECP)

For a solution of (SECP) it holds that:

d[S]
dt

+ d[C]
dt

+ d[P]
dt

= 0,

or, equivalently,
[S]+ [C]+ [P] = [S]0 + [C]0 + [P]0 =∶ A1, (17)

due to the initial condition of (16), as well as that:

d[E]
dt

+ d[C]
dt

= 0,

or, equivalently,
[E]+ [C] = [E]0 + [C]0 =∶ A2. (18)

From (17) and (18) combined with the non-negativity of the components of the solutions of
(SECP), we conclude that

[S] ≤ A1, [E] ≤ A2, [C] ≤ min{A1, A2} and [P] ≤ A1. (19)

In addition, from (16c) together with the bounds for [S] and [E] in (19) we have that:

[C] ≤ A1 A2

KM
, (20)

where KM is defined as in (9), whereas the rest of the equations of (16) do not include further
related information. Thus, from (19) and (20) we finally get that:

[S] ≤ A1, [E] ≤ A2, [C] ≤ min{A1, A2,
A1 A2

KM
} =∶ A3 and [P] ≤ A1. (21)

In the light of (21), we set:

Ω0 ∶= {(s, e, c, p) ∈ [0, A1]× [0, A2]× [0, A3]× [0, A1] ∣ s + c + p = A1, e + c = A2}
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and we can therefore consider an equivalent to (SECP) problem as follows:

Given [S]0, [E]0, [C]0, [P]0 ≥ 0, we are looking for an interval I ⊆ R with
0 ∈ I and a function ([S], [E], [C], [P])∶I → Ω0, such that
([S], [E], [C], [P]) satisfies both (16) in (I ∖ {0})○ and
([S], [E], [C], [P]) = ([S]0, [E]0, [C]0, [P]0) for t = 0.

Employing standard arguments of the theory of ODEs, we can conclude that (SECP)
is globally well posed, with an infinitely smooth solution in an interval Ĩ ⊆ R, where:

Ĩ = R, or Ĩ = [−a,∞) for some a ∈ [0,∞).

In addition, when A2 = 0, the unique solution is the constant:

([S], [E], [C], [P]) = ([S]0, 0, 0, [P]0), ∀t ∈ R.

Thus, when A2 = 0, Ω0 reduces to:

Ω0 = {(s, 0, 0, p) ∈ [0, A1]× {0}2 × [0, A1] ∣ s + p = A1}

which is invariant (in particular, every singleton {(s, 0, 0, A1 − s)} for s ∈ [0, A1] is invariant),
whereas Ω0 is positively invariant, when A2 > 0.

2.2. A Simpler Equivalent Problem

Given that (17) and (18) hold, we conclude that system (16) can be equivalently reduced to:

d[S]
dt

= −k1 A2[S]+ k1[S][C]+ k−1[C], (22a)

d[C]
dt

= k1 A2[S]− k1[S][C]− (k−1 + k2)[C]. (22b)

Let us now study the above subsystem. Using (22b) combined with the bound of [S]
in (21) we have that:

[C] ≤ A1 A2

KM + A1
. (23)

Therefore, from the bound of [C] in (21) and from (23) we eventually get that:

[C] ≤ min{A1, A2,
A1 A2

KM
,

A1 A2

KM + A1
} = min{A1,

A1 A2

KM + A1
} =∶ A4. (24)

In fact, key to what follows are the immediately verifiable inferences:

A2 ≤ KM + A1 ⇒ A4 =
A1 A2

KM + A1
, (25)

and on the other hand:
A2 ≥ KM + A1 ⇒ A4 = A1 . (26)

Now, in the light of the bound for [S] in (21) and of (24), we set:

Ω1 ∶= {(s, c) ∈ [0, A1]× [0, A4] ∣ s + c ≤ A1}

and so we can consider the equivalent, to (SECP), problem as follows:

Given [S]0, [E]0, [C]0, [P]0 ≥ 0, we seek an interval I ⊆ R with 0 ∈ I, and a
function ([S], [C])∶I → Ω1, such that ([S], [C]) satisfies both (22) in

(I ∖ {0})○, and ([S], [C]) = ([S]0, [C]0) for t = 0.
(SC)
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The determination of the feasible region Ω1 constitutes the fulfillment of the first step, A1,
of algorithm (A).

2.3. Stability Analysis

The context of this subsection is sine qua non, since we perform—later in the paper—
numerical simulations, that need to be well established.

First, we can easily deduce that:

⎧⎪⎪⎨⎪⎪⎩

(s, 0, 0, A1 − s) where s ∈ [0, A1], when A2 = 0,
(0, e, 0, A1) where e ∈ [0, A2], when A2 > 0,

are the steady states of (SECP). However, we immediately conclude that it makes sense to
study their stability only for the non-trivial case, where:

A1 > 0 and A2 > 0.

It is sufficient though to study the stability of (0, 0), as a steady state of (SC), when A1 > 0
and A2 > 0.

As for the local stability of (0, 0), we calculate the Jacobi matrix:

J(s, c) = (k1(c − A2) k1s + k−1
k1(A2 − c) −k1s − (k−1 + k2)

).

Its eigenvalues at (0, 0), are:

λ± =
1
2
(−k1 A2 − (k−1 + k2)± ((k1 A2 + (k−1 + k2))2 − 4k1k2 A2)

1
2 ).

Since:
(k1 A2 + (k−1 + k2))2 − 4k1k2 A2 = (k1 A2 + (k−1 − k2))2 + 4k−1k2 ≥ 0,

the origin (0, 0) is locally asymptotically stable for (SC), since:

λ± < 0.

In fact, we can also find, as usually, a local approach to the solution close to (0, 0); we omit
it for the sake of brevity, since it has no direct connection with what follows.

As for the global stability of (0, 0), we can apply the Bendixson–Dulac Negative
Criterion with:

g ∶ (R+)2 → (0,∞)

(s, c)↦ g(s, c) = 1
sc

,

thereby obtaining the absence of limit cycles, since in (Ω1)
○ it holds that:

div[(−k1 A2

[C]
+ k1 +

k−1

[S]
,

k1 A2

[C]
− k1 −

(k−1 + k2)
[S]

)] = − k−1

[S]2 −
k1 A2

[C]2 < 0,

which, in view of a well known corollary of the Poincaré–Bendixson Theorem in R2, gives
us the desired result.

3. The Standard Quasi-Steady-State Assumption

The standard quasi-steady-state assumption is:

A1 > 0 and 0 < A2 ≪ KM + A1 , (sQSSA)
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or, equivalently:

A1 > 0 and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 < A2 ≪ KM, or
0 < A2 ≪ A1, or
the above two holding simultaneously,

and provided that it holds, we study (SC).
We consider two approaches for examining the assumption, the free substrate ap-

proach, where the concentration dynamics of the unbound substrate, [S], is studied, and
the total substrate approach, where the concentration dynamics of the total substrate, [T],
is studied, as defined in (15).

3.1. Free Substrate Approach

Using only (sQSSA) we will show that:

1. Problem (SC), and therefore problem (SECP) as well, has inherently two time scales
which we will determine. In fact, (sQSSA) owes its name to the existence of the above
time scales. In particular, except for a short initial time interval, where the enzymatic
reaction with chemical Equation (1) is not evolving, i.e., υ ≈ 0, during the rest of the
time the enzymatic reaction is at a “steady state”, in which (8) holds.

2. There is a good uniform approximation in closed form to the solution of (SC), and
therefore to (SECP) as well, which we will determine.

To highlight the above time scales, the first and basic step is scaling (SC). Thus, according to
the second step, A2, of algorithm (A), in view of the bound of [S] in (21) and the relation (24),
we select the dimensionless dependent variables as:

Sα(tα) ∶=
1

A1
[S]( t

t∗
) and Cα(tα) ∶=

1
A4

[C]( t
t∗

),

where we have chosen an arbitrary, for the time being, time scale t∗ > 0 for the scaling, i.e.:

tα ∶=
t

t∗
,

the determination of which will arise in a natural manner during the process. We note,
however, that—given (sQSSA)—it follows from (25) that:

A4 = εA1 ≪ A1

and:
Cα(tα) =

1
εA1

[C]( t
t∗

),

where:

0
(sQSSA)

< ε ∶= A2

KM + A1

(sQSSA)
≪ 1, (27)

i.e., equivalently:
0 < ε ≈ 0. (28)

A first conclusion is that the possible change of [S] is much larger than the corresponding
one of [C]. Now, (22) will take the following form:

dSα

dtα
= k1 A2t∗(−Sα +

σ

1+ σ
SαCα +

ρ

(1+ ρ)(1+ σ)
Cα), (29a)

dCα

dtα
= k1(KM + A1)t∗(Sα −

σ

1+ σ
SαCα −

1
1+ σ

Cα), (29b)
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where :
σ ∶= A1

KM
and ρ ∶= Kdis

KVSC
= k−1

k2
, (30)

where Kdis and KVSC are as in (5) and (7), respectively.
According to the third step, A3, of algorithm (A), in view of (29) we define:

1
k1(KM + A1)

=∶ t1
(27)
≪ t1

ε
= 1

k1 A2
=∶ t2, (31)

to conclude that:

t∗ = t1 ⇒
⎧⎪⎪⎨⎪⎪⎩

k1 A2t∗ = ε,
k1(KM + A1)t∗ = 1,

and t∗ = t2 ⇒
⎧⎪⎪⎨⎪⎪⎩

k1 A2t∗ = 1,
k1(KM + A1)t∗ = 1

ε ,

and so (29) takes the following form:

• If tα =
t
t1

, then:

dSα

dtα
= ε(−Sα +

σ

1+ σ
SαCα +

ρ

(1+ ρ)(1+ σ)
Cα), (32a)

dCα

dtα
= Sα −

σ

1+ σ
SαCα −

1
1+ σ

Cα. (32b)

• If tα =
t
t2

, then:

dSα

dtα
= −Sα +

σ

1+ σ
SαCα +

ρ

(1+ ρ)(1+ σ)
Cα, (33a)

dCα

dtα
= 1

ε
(Sα −

σ

1+ σ
SαCα −

1
1+ σ

Cα). (33b)

Setting (see Figure 1):

Ωε ∶= {(s, c) ∈ [0, 1]2 ∣ s + εc ≤ 1},

the scaled version of (SC) is:

Given [S]0, [C]0, [P]0 ≥ 0 and ε > 0, we seek an interval I ⊆ R with 0 ∈ I , and

a function (Sα, Cα)∶I → Ωε, such that (Sα, Cα) satisfying both (32) if tα =
t
t1

or (33) if tα =
t
t2

in (I ∖ {0})○ and (Sα, Cα) = (
[S]0
A1

,
[C]0
εA1

), for tα = 0.

(SCαs)
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Figure 1. The invariant set Ωε of problem (SCαs). We notice that Ωε → [0, 1]2 as ε → 0+.

We study separately each of the two versions of (SCαs) to find an inner and outer, re-
spectively, approximation to the solution ([S], [C]) of (SC), i.e., one approximation for times
comparable to t1 and another one for times comparable to t2, respectively. In more detail:

• Looking at (SC) as a perturbed problem, with perturbation ε > 0 close to 0, we have the
following information on (32a)

dSα

dtα
= ε

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−Sα +
σ

1+ σ
SαCα +

ρ

(1+ ρ)(1+ σ)
Cα

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=O(1) uniformly (with respect to tα) as ε→0+,

since (Sα ,Cα ,)=O(1) uniformly as ε→0+,
since (Sα ,Cα) ∈Ωε ∀ε>0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=O(ε) uniformly as ε→0+

,

as well as

dSα

dtα
±

=O(1) uniformly as ε→0+,
when tα =O(1) uniformly as ε→0+,
since Sα =O(1) uniformly as ε→0+

combined with the definition of the derivative

= . . .
°

=O(ε) uniformly as ε→0+

,

thus
dSα

dtα
±

=O(ε) uniformly as ε→0+,
when tα =O(1) uniformly as ε→0+

.

Thus, due to (28) it follows that:

dSα

dtα
≈ 0, when ∃B > 0 independent of ε, such that: ∣tα∣ ≤ B, (34)
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and due to the initial condition of (SCαs) we eventually have that:

Sα ≈
[S]0
A1

, when ∃B > 0 ∶ ∣tα∣ ≤ B.

If we insert the above approximate equality in (32b), then the later becomes an approx-
imate linear differential equation, the solution of which is:

Cα ≈
(1+ σ)Sα

1+ σSα
+ (

[C]0
εA1

− (1+ σ)Sα

1+ σSα
) exp{−1+ σSα

1+ σ
tα},

when ∃B > 0 ∶ ∣tα∣ ≤ B,

given the initial condition of (SCαs).
Therefore, the inner approximation, ([S]in, [C]in), of the solution ([S], [C]) of (SC),
i.e., the approximation for those t for which it holds that:

∃B > 0 independent of ε, such that: ∣t∣ ≤ Bt1 ,

is:

[S]in = [S]0,

[C]in =
A2[S]0

KM + [S]0
+ ([C]0 −

A2[S]0
KM + [S]0

) exp{−k1(KM + [S]0)t}.

• For (33b) we have that:

dCα

dtα
= 1

ε

⎛
⎜⎜⎜⎜⎜
⎝

Sα −
σ

1+ σ
SαCα −

1
1+ σ

Cα

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=O(1) uniformly as ε→0+

⎞
⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=O

⎛

⎝

1
ε

⎞

⎠
uniformly as ε→0+

as well as:
dCα

dtα
±

=O(1) uniformly as ε→0+,
when tα =O(1) uniformly as ε→0+

= . . .
°

=O
⎛

⎝

1
ε

⎞

⎠
uniformly as ε→0+

,

therefore, the stronger relation:

Sα −
σ

1+ σ
SαCα −

1
1+ σ

Cα

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=O(ε) uniformly as ε→0+,

when tα =O(1) uniformly as ε→0+

,

holds. Thus, it follows that:

ε
dCα

dtα
= Sα −

σ

1+ σ
SαCα −

1
1+ σ

Cα ≈ 0,

when ∃B > 0 independent of ε, such that: ∣tα∣ ≤ B,
(35)

i.e.:

Cα ≈
(1+ σ)Sα

1+ σSα
, when ∃B > 0 independent of ε, such that: ∣tα∣ ≤ B.
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If we insert the above approximate equality in (33a), then the later becomes an approx-
imate separable nonlinear differential equation, i.e.:

dSα

dtα
≈ − Sα

(1+ ρ)(1+ σSα)
,

when ∃B > 0 independent of ε, such that: ∣tα∣ ≤ B,
(36)

the solution of which is:

Sα ≈
1
σ

W(σ` exp{σ` − 1
1+ ρ

tα}), when ∃B > 0 ∶ ∣tα∣ ≤ B,

where W is the aforementioned Lambert function, and ` ≥ 0 is a constant that remains
to be determined.
Therefore, the outer approximation, ([S]out, [C]out), of the solution ([S], [C]) of (SC),
i.e., the approximation for those t for which it holds that:

∃B > 0 independent of ε, such that: ∣t∣ ≤ Bt2 ,

is:

[S]out = KMW( `A1

KM
exp{ 1

KM
(`A1 − k2 A2t)}),

[C]out =
A2W( `A1

KM
exp{ 1

KM
(`A1 − k2 A2t)})

1+W( `A1
KM

exp{ 1
KM

(`A1 − k2 A2t)})
.

We can now utilize the matching technique in order to find a uniform approximation
of the solution ([S], [C]) of (SC) from the individual approximations ([S]in, [C]in) and
([S]out, [C]out). First, choosing a time scale between t1 and t2, e.g.:

t1

ε
1
2
∈ (t1, t2),

we find easily that the common limit resulting from the matching condition of the two
individual solutions should be:

L ∶= ([S]0,
A2[S]0

KM + [S]0
).

Therefore:

` =
[S]0
A1

and thus a uniform approximation ([S]un, [C]un), of ([S], [C]) is:

([S]un, [C]un) = ([S]in, [C]in)+ ([S]out, [C]out)− L,

i.e., in more detail:

[S]un = KMW(
[S]0
KM

exp{ 1
KM

([S]0 − k2 A2t)}),

[C]un =
A2W( [S]0

KM
exp{ 1

KM
([S]0 − k2 A2t)})

1+W( [S]0
KM

exp{ 1
KM

([S]0 − k2 A2t)})
+

+ ([C]0 −
A2[S]0

KM + [S]0
) exp{−k1(KM + [S]0)t}.

(37)
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3.2. Total Substrate Approach

Since ([S], [C]) ∈ Ω1, then [T] ≤ A1, where [T] is as in (15). Thus, we introduce,
according to the third step, A3, of algorithm (A), the dimensionless dependent variable

Tα(tα) ∶=
1

A1
([S]+ [C])(tα) = (Sα + εCα)(tα).

The time scales t1 and t2 of the second step, A2, of algorithm (A) have already been
determined, thus (32) and (33) take the following forms:

• If tα =
t
t1

, then:

dTα

dtα
= − ε

(1+ ρ)(1+ σ)
Cα, (38a)

dCα

dtα
= εσ

1+ σ
Cα

2 − ( 1
1+ σ

+ ε)Cα −
σ

1+ σ
CαTα + Tα. (38b)

• If tα =
t
t2

, then:

dTα

dtα
= − 1

(1+ ρ)(1+ σ)
Cα, (39a)

dCα

dtα
= σ

1+ σ
Cα

2 − ( 1
ε(1+ σ)

+ 1)Cα −
σ

ε(1+ σ)
CαTα +

1
ε

Tα. (39b)

So we have the following scaled problem:

Given [S]0, [C]0, [P]0 ≥ 0 and ε > 0, we seek an interval I ⊆ R with 0 ∈ I , and
a function (Tα, Cα)∶I → [0, 1]2, such that (Tα, Cα) satisfies both (38) if

tα =
t
t1

, or (39) if tα =
t
t2

in (I ∖ {0})○, and (Tα, Cα) = (
[S]0
A1

+
[C]0
εA1

,
[C]0
εA1

),

for tα = 0.

(TCαs)

Working as with problem (SCαs), we conclude for problem (TCαs) now, the following:

• (38a) gives that:

dTα

dtα
≈ 0, when ∃B > 0 independent of ε, such that: ∣tα∣ ≤ B,

and due to the initial condition of (TCαs) we have that:

Tα ≈
[S]0
A1

+
[C]0
εA1

, when ∃B > 0 ∶ ∣tα∣ ≤ B.

Inserting the above approximate equality into (38b), which in turn takes the following
approximate form:

dCα

dtα
≈ −( σ

1+ σ
Tα +

1
1+ σ

)Cα + Tα,

when ∃B > 0 independent of ε, such that: ∣tα∣ ≤ B,
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then the later becomes an approximate linear differential equation, the solution of
which is:

Cα ≈
(1+ σ)Tα

1+ σTα
+ (

[C]0
εA1

− (1+ σ)Tα

1+ σTα
) exp{−1+ σTα

1+ σ
tα},

when ∃B > 0 ∶ ∣tα∣ ≤ B,

given the initial condition of (TCαs).
Therefore, the inner approximation, ([T]in, [C]in), of ([T], [C]) is:

[T]in = [T]0,

[C]in =
A2[T]0

KM + [T]0
+ ([C]0 −

A2[T]0
KM + [T]0

) exp{−k1(KM + [T]0)t},

where:
[T]0 ∶= [S]0 + [C]0.

• From (39b) we get that:

ε(dCα

dtα
− σ

1+ σ
Cα

2 +Cα) = −
1

1+ σ
Cα −

σ

1+ σ
CαTα + Tα ≈ 0,

when ∃B > 0 independent of ε, such that: ∣tα∣ ≤ B,

i.e.:

Cα ≈
(1+ σ)Tα

1+ σTα
, when ∃B > 0 independent of ε, such that: ∣tα∣ ≤ B.

If we insert the above approximate equality into (39a), then the later becomes an
approximate separable nonlinear differential equation, namely:

dTα

dtα
≈ − Tα

(1+ ρ)(1+ σTα)
,

when ∃B > 0 independent of ε, such that: ∣tα∣ ≤ B,

the solution of which is:

Tα ≈
1
σ

W(σ` exp{σ` − 1
1+ ρ

tα}), when ∃B > 0 ∶ ∣tα∣ ≤ B,

where ` ≥ 0 is a constant that remains to be determined. Therefore, the outer approxi-
mation ([T]out, [C]out) of ([T], [C]), is:

[T]out = KMW( `A1

KM
exp{ 1

KM
(`A1 − k2 A2t)}),

[C]out =
A2W( `A1

KM
exp{ 1

KM
(`A1 − k2 A2t)})

1+W( `A1
KM

exp{ 1
KM

(`A1 − k2 A2t)})
.

Finally, with a similar reasoning as for the uniform approximation of the solution of
(SC), we have that:

` =
[T]0
A1
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and also that the uniform approximation, ([T]un, [C]un), of ([T], [C]) is:

[T]un = KMW(
[T]0
KM

exp{ 1
KM

([T]0 − k2 A2t)}),

[C]un =
A2W( [T]0

KM
exp{ 1

KM
([T]0 − k2 A2t)})

1+W( [T]0
KM

exp{ 1
KM

([T]0 − k2 A2t)})
+

+ ([T]0 −
A2[T]0

KM + [T]0
) exp{−k1(KM + [T]0)t}.

(40)

3.3. Conclusions

We showed that given (sQSSA) there is a t1 > 0 such that:

d[S]
dt

≈ 0, when ∃B > 0 independent of ε, such that: ∣t∣ ≤ Bt1,

which arises directly from (34), as well as that there is a t2 ≫ t1 such that:

d[C]
dt

≈ 0, when ∃B > 0 independent of ε, such that: ∣t∣ ≤ Bt2,

which in turn results from (35).
In fact, due to (36) it holds that:

d[S]
dt

≈ − k2 A2[S]
KM + [S]

, when ∃B > 0 ∶ ∣t∣ ≤ Bt2.

Hence, we can conclude that:

υ ≈
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, when ∃B > 0 ∶ ∣t∣ ≤ Bt1,
k2 A2[S]
KM + [S]

, when ∃B > 0 ∶ ∣t∣ ≤ Bt2,

where υ is the rate of the chemical reaction with chemical Equation (1) (see Figure 2),
i.e., nontrivial kinetics occur only in the outer layer (for t comparable to t2). The above
approximation for the outer layer is none other than the Michaelis–Menten approximation
for the kinetics of the aforementioned chemical reaction, as already commented in (8).

Furthermore, comparing the approximate solution of the free substrate ([S]un, [C]un)
of (37) with the approximate solution of the total substrate ([T]un, [C]un) of (40), these two
should be in agreement. Indeed, it is sufficient to observe that:

[T] ≈ [S],

as:
Tα = Sα + εCα

(28)
≈ Sα ⇒ T ≈ S.
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Figure 2. An approximation for the kinetics of the chemical reaction (1) given that (sQSSA) holds, for
times in the outer layer.

3.4. Numerical Verification

We numerically verify the above results, as shown in Figures 3–5. For the numerical
values of the constants and the initial conditions, we follow the work of Segel in 1988 [10];
these values are given in the following table .

Parameter Value Unit
k−1 25 s−1

k1 4× 106 M−1s−1

k2 15 s−1

[S]0 10−5 M
[E]0 10−8 M
[C]0 0 M
[P]0 0 M

In view of these:

KM = [S]0 = A1 and A2 = [E]0 = 10−3[S]0 = 10−3 A1,

i.e.:
ε = 5 × 10−4

and:
t1 = 1.25 × 10−2s and t2 = 25s.
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Figure 3. Plot of [S], [E], [C] and [P] of problem (SECP) for non-negative times, given that (sQSSA)
holds. We see that [S] and [C] are of different order of magnitude, as well as that there are two
distinct phases of the evolution of the phenomenon.
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Figure 4. Plots of Sα and Cα of problem (SCαs) for non-negative times, given that (sQSSA) holds.
In (a) and (b) time is measured based on t1, whereas in (c) and (d) based on t2.
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Figure 5. Plots of the inner and outer approximations of [S] and [C] of problem (SECP), for non-
negative times, given that (sQSSA) holds.

4. The Reverse Quasi-Steady-State Assumption

The reverse quasi-steady-state assumption is the following:

A1 > 0 and A2 ≫ KM + A1 , (rQSSA)

or, equivalently:
A1 > 0, A2 ≫ KM and A2 ≫ A1,

and given that this holds we study problem (SC).
We notice that the inequality A2 ≫ KM + A1 of (rQSSA) is the reverse of the one

corresponding to (sQSSA), hence the name of the first. As for the analysis of (sQSSA),
here, as well, we consider two approaches for the study of case (rQSSA), the free substrate
approach and the total substrate approach.

4.1. Free Substrate Approach

Using only (rQSSA) we will show that:

1. Problem (SC), and therefore problem (SECP) as well, has inherently two time scales
which we will determine. In particular, except for a short initial time interval where
the enzymatic reaction with chemical Equation (1) is evolving with rate υ, showing
approximately linear behavior with respect to [S], and υ ≈ k1 A2[S] as in (13), during
the rest of the time the enzymatic reaction does not evolve, i.e., υ ≈ 0.

2. There is a good uniform approximation in closed form to the solution of (SC), and
therefore to (SECP) as well, which we will determine.
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According to the second step, A2, of algorithm (A), we use the dimensionless depen-
dent variables:

Sα(tα) ∶=
1

A1
[S]( t

t∗
) and Cα(tα) ∶=

1
A4

[C]( t
t∗

),

where we have chosen an arbitrary, for the time being, time scale t∗ > 0 for the scaling.
We notice, however, that given (rQSSA) it follows from (26) that:

A4 = A1

and:
Cα(tα) =

1
A1

[C]( t
t∗

).

A first conclusion is that the possible change of [S] is comparable to the corresponding
of [C].
We set:

0
(rQSSA)

< η ∶= A1

A2
< KM + A1

A2
= 1

ε

(rQSSA)
≪ 1, (41)

where ε is as in (27), i.e., equivalently:

0 < η < 1
ε
≈ 0, (42)

and so (22) will take the following form:

dSα

dtα
= k1(KM + A1)A2

A1
t∗(−

σ

1+ σ
Sα +

ησ

1+ σ
SαCα +

ηρ

(1+ ρ)(1+ σ)
Cα), (43a)

dCα

dtα
= k1(KM + A1)A2

A1
t∗(

σ

1+ σ
Sα −

ησ

1+ σ
SαCα −

η

1+ σ
Cα), (43b)

where σ and ρ are as in (30).
According to the third step, A3, of algorithm (A), in view of (43) we define:

A1

k1(KM + A1)A2
=∶ t1

(41)
≪ t1

η
= 1

k1(KM + A1)
=∶ t2, (44)

to conclude that:

t∗ = t1 ⇒
k1(KM + A1)A2

A1
t∗ = 1 and t∗ = t2 ⇒

k1(KM + A1)A2

A1
t∗ =

1
η

,

so as (43) gets the following forms:

• If tα =
t
t1

, then:

dSα

dtα
= − σ

1+ σ
Sα +

ησ

1+ σ
SαCα +

ηρ

(1+ ρ)(1+ σ)
Cα, (45a)

dCα

dtα
= σ

1+ σ
Sα −

ησ

1+ σ
SαCα −

η

1+ σ
Cα. (45b)
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• If tα =
t
t2

, then:

dSα

dtα
= − σ

η(1+ σ)
Sα +

σ

1+ σ
SαCα +

ρ

(1+ ρ)(1+ σ)
Cα, (46a)

dCα

dtα
= σ

η(1+ σ)
Sα −

σ

1+ σ
SαCα −

1
1+ σ

Cα. (46b)

Setting (see Figure 6):

Ω ∶= {(s, c) ∈ [0, 1]2 ∣ s + c ≤ 1},

the scaled version of (SC) will be as follows:

Given [S]0, [C]0, [P]0 ≥ 0 and η > 0, we seek an interval I ⊆ R with 0 ∈ I , and

a function (Sα, Cα)∶I → Ω, such that (Sα, Cα) satisfies both (45) if tα =
t
t1

, or

(46) if tα =
t
t2

in (I ∖ {0})○, and (Sα, Cα) = (
[S]0
A1

,
[C]0
A1

), for tα = 0.

(SCαr)

Figure 6. The invariant set Ω of problem (SCαr).

We study each of two versions of (SCαr) separately:

• From (45a), which due to (42) takes the approximate linear form:

dSα

dtα
≈ − σ

1+ σ
Sα, when ∃B > 0 independent of η, such that: ∣tα∣ ≤ B, (47)

we get, due to the initial condition of (SCαr), that:

Sα ≈
[S]0
A1

exp{− σ

1+ σ
tα}, when ∃B > 0 ∶ ∣tα∣ ≤ B.

If we insert the above approximate equality in (45b), which will now have the approxi-
mate form:

dCα

dtα
≈ σ

1+ σ
Sα, when ∃B > 0 ∶ ∣tα∣ ≤ B,

then we get that:

Cα ≈
[C]0
A1

+
[S]0
A1

(1− exp{− σ

1+ σ
tα}), when ∃B > 0 ∶ ∣tα∣ ≤ B,
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given the initial condition of (SCαr). Therefore, the inner approximation, ([S]in, [C]in),
of ([S], [C]) is:

([S]in, [C]in) = ([S]0 exp{−k1 A2t}, [C]0 + [S]0(1− exp{−k1 A2t})).

• From (46a) we have that:

η(dSα

dtα
− σ

1+ σ
SαCα −

ρ

(1+ ρ)(1+ σ)
Cα) = − σ

1+ σ
Sα ≈ 0,

when ∃B > 0 independent of η, such that: ∣tα∣ ≤ B,
(48)

i.e.:
Sα ≈ 0, when ∃B > 0 ∶ ∣tα∣ ≤ B,

thus:
dSα

dtα
≈ 0, when ∃B > 0 ∶ ∣tα∣ ≤ B.

If we insert the above approximate equality in the sum of (46a) and (46b), then the
following approximate linear differential equation arises:

dCα

dtα
≈ − 1

(1+ ρ)(1+ σ)
Cα,

when ∃B > 0 independent of η, such that: ∣tα∣ ≤ B,

the solution of which is:

Cα ≈ ` exp{− 1
(1+ ρ)(1+ σ)

tα}, when ∃B > 0 ∶ ∣tα∣ ≤ B,

where ` ≥ 0 a constant that remains to be determined. Therefore, the external approxi-
mation, ([S]out, [C]out), of ([S], [C]) is:

([S]out, [C]out) = (0, `A1 exp{−k2t}).

Finally, as usual, we find that:

` =
[S]0
A1

+
[C]0
A1

,

as well as that the uniform approximation, ([S]un, [C]un), of ([S], [C]) is:

[S]un = [S]0 exp{−k1 A2t},

[C]un = [C]0 exp{−k2t}+ [S]0(exp{−k2t}− exp{−k1 A2t}).
(49)

4.2. Total Substrate Approach

Since ([S], [C]) ∈ Ω1, we have that [T] ≤ A1. Thus, we introduce, according to the
second step, A2, of algorithm (A), the dimensionless dependent variable:

Tα(tα) ∶=
1

A1
([S]+ [C])(tα) = (Sα +Cα)(tα).

The time scales t1 and t2 of the third step, A3, of algorithm (A) have already been determined,
thus (45) and (46) get the following forms:
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• If tα =
t
t1

, then:

dTα

dtα
= −

η

(1+ ρ)(1+ σ)
Cα, (50a)

dCα

dtα
=

ησ

1+ σ
Cα

2 −
η + σ

1+ σ
Cα −

ησ

1+ σ
CαTα +

σ

1+ σ
Tα. (50b)

• If tα =
t
t2

, then:

dTα

dtα
= − 1

(1+ ρ)(1+ σ)
Cα, (51a)

dCα

dtα
= σ

1+ σ
Cα

2 −
η + σ

η(1+ σ)
Cα −

σ

1+ σ
CαTα +

σ

η(1+ σ)
Tα. (51b)

So we have the following scaled problem:

Given [S]0, [C]0, [P]0 ≥ 0 and η > 0, we seek an interval I ⊆ R with 0 ∈ I , and
a function (Tα, Cα)∶I → [0, 1]2, such that (Tα, Cα) satisfies both (50) if

tα =
t
t1

, or (51) if tα =
t
t2

in (I ∖ {0})○, and (Tα, Cα) = (
[T]0
A1

,
[C]0
A1

), for

tα = 0.

(TCαr)

Working as with problem (SCαr), we conclude, now for problem (TCαr), the following:

• (50a) gives that:

dTα

dtα
≈ 0, when ∃B > 0 independent of η, such that: ∣tα∣ ≤ B,

and due to the initial condition of (TCαr) we have that:

Tα ≈
[T]0
A1

, when ∃B > 0 ∶ ∣tα∣ ≤ B.

If we insert the above approximate equality into (50b), which will now have the
approximate linear form:

dCα

dtα
≈ − σ

1+ σ
Cα +

σ

1+ σ
Tα,

when ∃B > 0 independent of η, such that: ∣tα∣ ≤ B,

then we will get:

Cα ≈ Tα + (
[C]0
A1

− Tα) exp{− σ

1+ σ
tα}, when ∃B > 0 ∶ ∣tα∣ ≤ B,

given the initial condition (TCαr).
Therefore, the initial condition, ([T]in, [C]in), of ([T], [C]) is:

([T]in, [C]in) = ([T]0, [T]0 + ([C]0 − [T]0) exp{−k1 A2t}).
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• From (51b) we obtain that:;

η(dCα

dtα
− σ

1+ σ
Cα

2 + 1
1+ σ

Cα −
σ

1+ σ
CαTα) =

σ

1+ σ
(−Cα + Tα) ≈ 0,

when ∃B > 0 independent of η, such that: ∣tα∣ ≤ B,

i.e.,
Tα ≈ Cα, when ∃B > 0 independent of η, such that: ∣tα∣ ≤ B.

If we insert the above approximate equality in (51a), then the later becomes an approx-
imate linear differential equation, which is none other than:

dTα

dtα
≈ − 1

(1+ ρ)(1+ σ)
Tα,

when ∃B > 0 independent of η, such that: ∣tα∣ ≤ B,

the solution of which is

Tα ≈ ` exp{− 1
(1+ ρ)(1+ σ)

tα}, when ∃B > 0 ∶ ∣tα∣ ≤ B,

where ` ≥ 0 a constant that remains to be determined. Therefore, the outer approxima-
tion, ([T]out, [C]out), of ([T], [C]) is

([T]out, [C]out) = (`A1 exp{−k2t}, `A1 exp{−k2t}).

Finally, as usually, we find that

` =
[T]0
A1

,

as well as that the uniform approximation, ([T]un, [C]un), of ([T], [C]) is

[T]un = [T]0 exp{−k2t},

[C]un = [T]0 exp{−k2t}+ ([C]0 − [T]0) exp{−k1 A2t}.
(52)

4.3. Conclusions

Although for the previous analysis it was used that 0 < η ≈ 0, i.e.,

A1 ≪ A2,

nevertheless we emphasize that also the relation:

KM ≪ A2, (53)

even though it does not directly appear in the appropriately scaled Equations (45) and
(46) (as well as in (50) and (51)), it plays an essential role in distinguishing (rQSSA) from
(sQSSA). Indeed, let:

KM È A2,

i.e.:
KM ≫ A2, or KM ≈ A2.

Then, given that we have A1 ≪ A2, we conclude that:

⎧⎪⎪⎨⎪⎪⎩

A2 ≪ KM + A1, if KM ≫ A2 ≫ A1, or
A2 ≈ KM + A1, if KM ≈ A2 ≫ A1.
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The first case falls into (sQSSA), while the second represents neither (rQSSA) nor (sQSSA).
We note that the above—easily explained—role of (53) in distinguishing the aforementioned
assumptions, has been recently studied in a—rather complex—context of geometric singular
perturbation theory (see, e.g., [24,25] and the references therein).

In addition, we showed that given (rQSSA) there is t1 > 0 such that:

d[S]
dt

≈ −k1 A2[S], when ∃B > 0 independent of η, such that: ∣t∣ ≤ Bt1,

which arises directly from (47), as well as that there is t2 ≫ t1 such that;

d[S]
dt

≈ [S] ≈ 0, when ∃B > 0 independent of η, such that: ∣t∣ ≤ Bt2,

which in turn results from (48). I.e., we can conclude that:

υ ≈
⎧⎪⎪⎨⎪⎪⎩

k1 A2[S], when ∃B > 0 ∶ ∣t∣ ≤ Bt1,
0, when ∃B > 0 ∶ ∣t∣ ≤ Bt2,

where υ stands for the rate of the chemical reaction with chemical Equation (1), as we have
already mentioned (see Figure 7), i.e., non trivial kinetics occur only in the inner layer (for t
comparable to t1).

Figure 7. An approximation for the kinetics of the chemical reaction (1) given that (rQSSA) holds, for
times in the inner layer.

Finally, comparing the approximate solution of the free substrate ([S]un, [C]un) of (49)
with the approximate solution of the total substrate ([T]un, [C]un) of (52), we easily observe
by definition in (15) that they are in agreement.

4.4. Numerical Verification

We numerically verify the above results, as shown in Figures 8–10. For the numerical
values of the constants and the initial conditions we follow the work of Segel in 1988 [10];
these values are given in the following table .
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Parameter Value Unit
k−1 25 s−1

k1 4 × 106 M−1s−1

k2 15 s−1

[S]0 10−5 M
[E]0 10−2 M
[C]0 0 M
[P]0 0 M

In view of these,

KM = [S]0 = A1 and A2 = [E]0 = 103[S]0 = 103 A1,

i.e.,

ε = 500,
1
ε
= 2× 10−3 and η = 10−3

and
t1 = 1.25× 10−5s and t2 = 1.25× 10−2s.

0 5.×10-5 1.25×10-4
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[·
]
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) [E]

0 5.×10-5 1.25×10-4
0

2.×10-6

4.×10-6

6.×10-6

8.×10-6

1.×10-5

t (s)

[·
]
(M

)
[S]

[C]

[P]

0 0.2 0.4 0.6 0.8 1
9.99×10-3

9.992×10-3

9.994×10-3

9.996×10-3

9.998×10-3

1.×10-2

t (s)

[·
]
(M

) [E]

0 0.2 0.4 0.6 0.8 1
0

2.×10-6

4.×10-6

6.×10-6

8.×10-6

1.×10-5

t (s)

[·
]
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)
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[C]

[P]

Figure 8. Plots of [S], [E], [C] and [P] of problem (SECP) for times, given that (rQSSA) holds. We
see that [S] and [C] are of the same order of magnitude, as well as that there are two distinct phases
of the evolution of the phenomenon.
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Figure 9. Plots of Sα and Cα of problem (SCαr) for non-negative times, given that (rQSSA) holds.
In (a) and (b) time is measured based on t1, whereas (c) and (d) based on t2.
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Figure 10. Plots of the inner and outer approximations of [S], [E] and [C] of problem (SECP), for
non-negative times, given that (sQSSA) holds. The inner and outer approximation of [E] are given
by the relations [E]in = A2 − [C]in and [E]out = A2 − [C]out, respectively, due to (18).
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5. Discussion

• We repeatedly (i.e., Sections 2.2, 3.1, 3.2, 4.1 and 4.2) employed the scaling algorithm
(A) for the rigorous treatment of the quasi-steady-state assumption. We note that
such an algorithm can be utilised in all problems having non-negative solutions in a
bounded domain. Another typical such example is the simple classical SIR problem of
Epidemiology

dS
dt

= −βSI,

dI
dt

= −γI + βSI,

dR
dt

= γI,

for β, γ > 0, where the feasible region is the set

{(s, i, r) ∈ [0, N0]3 ∣ s + i + r = N0},

(first step, A1, of algorithm (A)), hence every dependent variable, S, I and R, is scaled
by N0 (second step, A2, of algorithm (A)), and the above system then becomes

1
γ

dSα

dt
= −

βN0

γ
Sα Iα,

1
γ

dIα

dt
= −Iα +

βN0

γ
Sα Iα,

1
γ

dRα

dt
= Iα.

By such an approach we naturally obtain the time scale to be
1
γ

(third step, A3, of

algorithm (A)) and, using the well known non dimensionalized quantity

R0 =
βN0

γ
,

the fully scaled equations finally get the form

dSα

dtα
= −R0Sα Iα,

dIα

dtα
= −Iα +R0Sα Iα,

dRα

dtα
= Iα.

• From the basic mathematical analysis of (SECP), we were able to generate in an
elegant way the quantity ε that characterises both (sQSSA) and (rQSSA). Moreover,
we determined, in a natural way, two pairs of distinctive time scales, each pair of
which is characteristic for each one of the aforementioned two assumptions.

• We obtained a good approximation of the solution in closed form, for both the cases
where ε → 0+ and ε →∞, which we can communally write as

ε

1+ ε
× (approximation for ε →∞) + (1− ε

1+ ε
)× (approximation for ε → 0+).

We emphasize that the above linear combination is far from being a good approxima-
tion of the solution for the case where ε ∼ 1, as it is illustrated in Figure 11. Such an
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approximation requires a much more sophisticated extrapolation technique, the study
of which lies beyond the scope of the present work.
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Figure 11. For a good approximation of the solution of (SECP) for the case where ε ∼ 1, a sophisticated
extrapolation technique is required, than just a linear combination of the approximations of the
solution for (sQSSA) and (rQSSA).
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