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1. Introduction

The integro-differential equations: nonlocal consumption of resources,

intra-specific competition. Here 0 < s <
1

4
, b ∈ R, b 6= 0.

∂u

∂t
= −D

(
− ∂2

∂x2

)s

u+ b
∂u

∂x
+

∫ ∞

−∞

K(x− y)g(u(y, t))dy + f(x) (1)

from cell population dynamics. Cell genotype is x, cell density as a

function of the genotype and time is u(x, t). The evolution of cell density

is due to cell proliferation, mutations, transport and cell influx/efflux.

The change of genotype due to small random mutations-anomalous

diffusion term. Large mutations is the integral term. g(u) is the rate of

cell birth, depends on u (density dependent proliferation). K(x− y) is

the proportion of newly born cells changing their genotype from y to x,

depends on the distance between the genotypes. f(x) is the influx/efflux

of cells for different genotypes. We proved the existence of a stationary
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solution in H1(R). The space variable corresponds to the cell genotype.

Without the transport term: V. Vougalter, V. Volpert, Springer (2018)

To the 70th Anniversary of Valentin Afraimovich

Anomalous diffusion problem with

(
− ∂2

∂x2

)s

: defined via the spectral

calculus, namely

f(x) =
1√
2π

∫ ∞

−∞

f̂(p)eipxdp,

(
− ∂2

∂x2

)s

f(x) =
1√
2π

∫ ∞

−∞

|p|2sf̂(p)eipxdp.

Anomalous diffusion: plasma physics and turbulence.

B.Carreras, V.Lynch, G.Zaslavsky, Phys. Plasmas (2001).

Surface diffusion.

J.Sancho, A. Lacasta, K.Lindenberg, I.Sokolov, A.Romero, Phys. Rev.

Lett. (2004).

Semiconductors.
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H.Scher, E.Montroll, Phys. Rev. B (1975).

Physical meaning: the random process occurs with longer jumps in

comparison with normal diffusion.

Normal diffusion: finite moments of jump length distribution.

Anomalous diffusion: not the case.

R. Metzler, J. Klafter, Phys. Rep. (2000).

The existence of stationary solutions

−
(

− d2

dx2

)s

u+ b
du

dx
+

∫ ∞

−∞

K(x− y)g(u(y))dy + f(x) = 0 (2)

with 0 < s <
1

4
as before. Set D = 1, K(x) = εK(x), ε ≥ 0 small

parameter.

The advantages of introducing the transport term

Influx/efflux f(x) ∈ L1(R) ∩ L2(R).
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Do not need to assume now

(
− d2

dx2

) 1

2
−s

f(x) ∈ L2(R).

Kernel K(x) ∈ L1(R) ∩ L2(R).

Do not impose the regularity condition now

(
− d2

dx2

) 1

2
−s

K(x) ∈ L2(R).

Fractional Sobolev norm

‖u‖2H2s(R) := ‖u‖2L2(R) +

∥∥∥∥∥

(
− d2

dx2

)s

u

∥∥∥∥∥

2

L2(R)

, 0 < s ≤ 1.

Particular case of s =
1

2
:

‖u‖2H1(R) := ‖u‖2L2(R) +

∥∥∥∥∥
du

dx

∥∥∥∥∥

2

L2(R)

.
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Standard Sobolev inequality in one dimension

‖u‖L∞(R) ≤
1√
2
‖u‖H1(R).

E. Lieb, M. Loss, Analysis, (1997).

When the parameter ε vanishes, we obtain the generalized Poisson
equation with transport

(
− d2

dx2

)s

u− b
du

dx
= f(x), f(x) ∈ L2(R). (3)

The nonselfadjoint operator in the left side of (3)

Lb,s =

(
− d2

dx2

)s

− b
d

dx
: H1(R) → L2(R), 0 < s ≤ 1

2
,
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Lb,s =

(
− d2

dx2

)s

− b
d

dx
: H2s(R) → L2(R),

1

2
< s < 1.

Its essential spectrum: λb,s(p) = |p|2s − ibp, p ∈ R contains the origin.

Non Fredholm operator.

The standard Fourier transform

φ̂(p) =
1√
2π

∫ ∞

−∞

φ(x)e−ipxdx. (4)

Upper bound

‖φ̂(p)‖L∞(R) ≤
1√
2π

‖φ(x)‖L1(R). (5)

2. Solvability conditions for the linear equation (3).

Sufficient to solve (3) in L2(R). So, u(x) ∈ L2(R) and f(x) ∈ L2(R) as

assumed.
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Then (
− d2

dx2

)s

u− b
du

dx
∈ L2(R).

By means of the Fourier transform (4)

(|p|2s − ibp)û(p) ∈ L2(R).

Hence ∫ ∞

−∞

(|p|4s + b2p2)|û(p)|2dp <∞.

Let 0 < s ≤ 1

2
. Clearly

∫ ∞

−∞

p2|û(p)|2dp <∞.

Thus
du

dx
∈ L2(R) and u(x) ∈ H1(R). Similar argument for

1

2
< s < 1.
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Uniqueness of solutions of linear problem (3)

Let 0 < s ≤ 1

2
. Similar reasoning for

1

2
< s < 1.

Suppose u1,2(x) ∈ H1(R) both solve (3). The difference

w(x) = u1(x)− u2(x) ∈ H1(R) satisfies

(
− d2

dx2

)s

w − b
dw

dx
= 0.

Operator Lb,s : no nontrivial zero modes in H1(R). Hence w(x) ≡ 0 on

the real line.

Apply Fourier transform (4) to linear equation (3).

û(p) =
f̂(p)

|p|2s − ibp
, p ∈ R, 0 < s < 1.

Evidently
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û(p) =
f̂(p)

|p|2s − ibp
χ{|p|≤1} +

f̂(p)

|p|2s − ibp
χ{|p|>1}.

Second term
∣∣∣∣∣

f̂(p)

|p|2s − ibp
χ{|p|>1}

∣∣∣∣∣ ≤
|f̂(p)|√
1 + b2

∈ L2(R).

First term
∥∥∥∥∥

f̂(p)

|p|2s − ibp
χ{|p|≤1}

∥∥∥∥∥

2

L2(R)

≤
‖f(x)‖2

L1(R)

π(1− 4s)
<∞, 0 < s <

1

4
.

Argument above: unique solution u(x) ∈ H1(R) of (3). For 0 < s <
1

4
the

orthogonality conditions are not needed in the work.

Case
1

4
≤ s < 1 is more singular, need f̂(0) = 0 for the solvability.

Orthogonality condition: (f(x), 1)L2(R) = 0.
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Unique, nontrivial solution of linear equation (3)

u0(x) ∈ H1(R), 0 < s <
1

4
.

No transport term:

u0(x) ∈ H2s(R), 0 < s <
1

4
,

so that u0(x) ∈ H1(R) under extra regularity assumption on influx/efflux

f(x).

3. Fixed point argument

Seek the resulting solution of the stationary nonlinear problem (2) as

u(x) = u0(x) + up(x). (6)

Perturbative equation with 0 < s <
1

4
:

12



✬

✫

✩

✪

(
− d2

dx2

)s

up − b
dup

dx
= ε

∫ ∞

−∞

K(x− y)g(u0(y) + up(y))dy. (7)

The Fixed Point argument in a closed ball in the Sobolev space:

Bρ = {u(x) ∈ H1(R) | ‖u‖H1(R) ≤ ρ}, 0 < ρ ≤ 1. (8)

Seek the solution of (7) as the fixed point of the auxiliary nonlinear

problem with 0 < s <
1

4
(

− d2

dx2

)s

u− b
du

dx
= ε

∫ ∞

−∞

K(x− y)g(u0(y) + v(y))dy, (9)

in ball (8). Non Fredholm operator in the left side of (9)

Lb,s : H
1(R) → L2(R).

No bounded inverse.

V.V., V.Volpert, Doc. Math. (2011),
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V.V., V.Volpert, Anal. Math. Phys. (2012)

relied on the orthogonality relations.

V.V., Math. Model. Nat. Phenom., (2010).

The fixed point technique to estimate the perturbation to the standing

solitary wave

ψ(x, t) = φ(x)eiωt

of the Nonlinear Schrödinger equation

i
∂ψ

∂t
= −∆ψ + V (x)ψ + F (|ψ|2)ψ

when small perturbation is applied either to the potential or to the

nonlinear term. The Schrödinger operator involved had the Fredholm

property.

When K(x) = δ(x) is Dirac’s delta measure, standard nonlinear heat
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equation.

The existence of stationary solutions in the case of the standard

Laplacian, no transport in H3(R5).

V.V., V. Volpert, Dyn. Partial Differ. Equ. (2015).

The operator Tg via the auxiliary nonlinear problem (9), such that

u = Tgv, u is a solution. Our main result is as follows.

Theorem 1. Under our technical assumptions problem (9) defines the

map Tg : Bρ → Bρ, which is a strict contraction for all 0 < ε ≤ ε∗ for a

certain ε∗ > 0. The unique fixed point up(x) of the map Tg is the only

solution of problem (7) in Bρ.

The resulting stationary solution of (2) given by (6) is nontrivial: the

source term f(x) is nontrivial and g(0) = 0 as assumed.

Proof. Choose arbitrarily v(x) ∈ Bρ, denote G(x) := g(u0(x) + v(x)).
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Apply the standard Fourier transform (4) to (9). Thus

û(p) = ε
√
2π

K̂(p)Ĝ(p)

|p|2s − ibp
.

The norm

‖u‖2L2(R) = 2πε2
∫ ∞

−∞

|K̂(p)|2|Ĝ(p)|2
|p|4s + b2p2

dp ≤ 2πε2
∫ ∞

−∞

|K̂(p)|2|Ĝ(p)|2
|p|4s dp

as before. Express

∫ ∞

−∞

dp =

∫

|p|≤R

dp+

∫

|p|>R

dp with R ∈ (0,+∞),

estimate and minimize over R. We derive

‖u‖H1(R) ≤ εC ≤ ρ (10)

for all ε > 0 small enough, such that u(x) ∈ Bρ as well.

Uniqueness.

Suppose for some v(x) ∈ Bρ there are two solutions u1,2(x) ∈ Bρ of (9).
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Their difference w(x) := u1(x)− u2(x) ∈ H1(R) solves
(

− d2

dx2

)s

w − b
dw

dx
= 0, 0 < s <

1

4
.

Lb,s : H
1(R) → L2(R) no nontrivial zero modes, w(x) ≡ 0 on R.

Then (9) defines a map Tg : Bρ → Bρ for all ε > 0 small enough.

To show that this map is a strict contraction.

Choose arbitrarily v1,2(x) ∈ Bρ. Then u1,2 := Tgv1,2 ∈ Bρ as well when

ε > 0 is sufficiently small. For 0 < s <
1

4
(

− d2

dx2

)s

u1 − b
du1

dx
= ε

∫ ∞

−∞

K(x− y)g(u0(y) + v1(y))dy,

(
− d2

dx2

)s

u2 − b
du2

dx
= ε

∫ ∞

−∞

K(x− y)g(u0(y) + v2(y))dy.
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Introduce G1(x) := g(u0(x) + v1(x)), G2(x) := g(u0(x) + v2(x)). Apply

the standard Fourier transform (4) to equations above. Arrive at

û1(p) = ε
√
2π

K̂(p)Ĝ1(p)

|p|2s − ibp
, û2(p) = ε

√
2π

K̂(p)Ĝ2(p)

|p|2s − ibp
.

Write the norm

‖u1 − u2‖2L2(R) = ε22π

∫ ∞

−∞

|K̂(p)|2|Ĝ1(p)− Ĝ2(p)|2
|p|4s + b2p2

dp ≤

≤ ε22π

∫ ∞

−∞

|K̂(p)|2|Ĝ1(p)− Ĝ2(p)|2
|p|4s dp

as before. Express
∫ ∞

−∞

dp =

∫

|p|≤R

dp+

∫

|p|>R

dp,
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estimate, minimize over R ∈ (0,+∞). Upper bound on the norm

‖u1 − u2‖H1(R) ≤ εC‖v1 − v2‖H1(R).

The map Tg : Bρ → Bρ defined by (9) is a strict contraction for all ε > 0

small enough. Unique fixed point up(x), the only solution of the

perturbative equation (7) in Bρ. By means of (10)

‖up(x)‖H1(R) ≤ εC → 0, ε→ 0.

The resulting solution of the stationary problem (2):

u(x) = u0(x) + up(x) ∈ H1(R),

where u0(x) solves the linear equation (3).

Also proved: u(x) is continuous in the H1(R) norm with respect to the

nonlinear, twice continuously differentiable rate of cell birth function g(z).
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4. Discussion of the possible future work.

1. To study the convergence of the solutions u(x, t) of problem (1) to the

equilibrium.

2. To generalize the results above to the case when the normal diffusion

is combined with the anomalous diffusion in a single integro-differential

equation or a system of coupled integro-differential equations.

M.Efendiev, V.V., J. Differential Equations (2021).

3. To perform the iterations of the kernels of an integro-differential

equation and to show the existence of its stationary solution in the sense

of sequences.

4. To work on the preservation of the nonnegativity of solutions of the

systems of parabolic equations. M.Efendiev, V.V., Springer chapters

(2021).
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