
Hamilton-Jacobi-Bellman-Isaacs equations in
Hilbert spaces with applications in decision making

under uncertainty

A. N. Yannacopoulos
Department of Statistics

Athens University of Economics and Business

with I. Baltas (U. of Aegean) and A. Xepapadeas (AUEB)

A. N. Yannacopoulos, Statistics, AUEB, Greece Athens - One City -Applied Analysis and PDE seminar 19/2/2021



Introduction and fundamental aims

Fundamental questions:
How do we make decisions in stochastic models under uncertainty
concerning the exact stochastic model governing the system?

If the state of the system is distributed in “space” (e.g. as in
systems related to spatial economics, resource management or
other problems related to the physical world) how can be formulate
spatial decision rules which are robust under model uncertainty?

How can the theory of nonlinear PDEs in infinite dimensional
spaces interact with stochastic analysis and provide us with a
concrete framework for the treatment of such problems?

A. N. Yannacopoulos, Statistics, AUEB, Greece Athens - One City -Applied Analysis and PDE seminar 19/2/2021



We will present a general framework which allows us to express
spatially dependent decision problems under model uncertainty as
an infinite dimensional stochastic differential game.

Using dynamic programming techniques we will show that the
value function of the game satisfies a nonlinear PDE on an infinite
dimensional Hilbert space, the solution of which if it exists, will
provide the value function under various scenarios concerning the
initial state of the system.

We will then show existence of a weak type of solutions for this
equation (mild solutions) and connect them with the construction
of robust optimal controls for the system.

These solutions allow us to obtain important information
concerning spatial variability and uncertainty.
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Motivation : Spatial Resource Economics

Consider spatially distributed biomass in an open connected
bounded subset O ⊂ Rd with sufficiently smooth boundary,
representing geographical space, e.g. a fishery, and let y(t, z) be
the biomass density at time t and point z ∈ O.

The spatiotemporal evolution of the biomass density is described
by the reaction diffusion type population dynamics equation

∂

∂t
y(t, z) = D∆y(t, z) + f (y(t, z))− u(t, z) + Ẇ (t, z), (1)

where by ∆ we denote the Laplace operator (with respect to the
variables z), f : R→ R corresponds to a reaction term modelling
the local population dynamics, u(t, z) > 0 is the density of
harvesting activity at time t and point z ∈ Rd , while Ẇ (t, z)
corresponds to spatiotemporal stochastic fluctuations.
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The above equation will be supplemented with an initial condition
y(0, z) = y0(z) for some suitable function y0 ∈ L2(O), and a
suitable boundary condition, which for the sake of this example is
assumed to be either homogeneous Dirichlet or periodic.

The Laplace operator is chosen to model the transport of biomass
in space; clearly another similar operator, perhaps including an
advection field.

Concerning the function f , modelling population dynamics, a
number of choices are possible, one may consider an affine form
f (s) = a0 + a1s, a logistic form f (s) = a0s(1− s

N )a1 , for suitable
constants a0, a1 where N corresponds to the carrying capacity of
the population, or even nonlocal forms such as for instance
f [y ](z) = f ((Sy)(z)) where S is an integral operator of the form
[Sy ](z) =

∫
O k(z , z ′)y(z ′)dz ′ for a suitable kernel k , modeling

some sort of local averaging effect.
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If the probability law for the fluctuations is known the fishery
manager will choose the harvesting protocol u such that she
maximizes intertemporal benefits from the harvest, while keeping
the resource at a required level for sustainability of the fishery,
hence tries to choose u so as to maximize

J(u) = EP [

∫ ∞
0

e−δt
∫
O

{
g(y(t, z)) +

1

1− ν
(u(t, z))1−ν

}
dzdt],

under the state constraint (1).

g is a benefit function which models the benefits from the
remaining biomass after harvesting.

In this case a dynamic programming approach can be used to
provide a framework for the derivation of the optimal harvesting
protocol.
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What if the stochastic model for the fluctuations is not known
exactly and more than one stochastic models may be used to
decribe them?

For instance what if Ẇ (t, z) is not exactly a Wiener process but
allows for spatio-temporal dependent drift υ(t, z)?

If we design our control procedure u under model P (i.e. equiv.
under the assumption the υ(t, z) = 0) and this is not the case,
then clearly our control procedure will underperform leading to
possibly catastrophic results.

Can we design an optimal control procedure which will be robust
under such model uncertainty?
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Robust control theory

Suppose that given that a model P can describe well the behaviour
of a system and given that a control procedure u is adopted the
performance of the system is given by J(u; P) = EP [J(u)].

If we are sure about the probability model P then we simply
choose u so as to solve maxu EP [J(u)].

Suppose now that there is a family of alternative models Q which
may describe the phenomenon.

One way to make a decision is to use a minimax criterion
(Gilboa-Schmeidler) and solve the problem

max
u

min
P∈Q

EP [J(u)]
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This will give you a decision that will keep you even at the worst
case scenario for the choice of P.

However, it may be that some of the probability models in Q are
not as highly possible as some others.

For instance some of these may correspond to very extreme
scenarios.

To this end we may choose to penalize some of these probability
laws, using a convex penalty term a :M(Ω)→ R which takes very
large values for the improbable models.

We may then try to make a decision using

max
u

min
P∈M(Ω)

[EP [J(u)] + a(P)].
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This approach has become very popular in economic theory
recently.

Hansen and Sargent (Nobel Prize Economics 2013, 2011)
developed a theory for economic problems in the temporal domain
along these lines using the Kulback-Leibler entropy for a.

Marinacci and coworkers, have developed a general axiomatic
framework for decision making for general convex function a, called
variational preferences.

In the context of risk management similar ideas have been
formulated by Arzner and Fölmer and Shied, leading to the
development of the concept of convex risk measures which is
gaining a lot of popularity in both academia and business.
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These ideas have been extended in spatially extended systems by
Brock, Xepapadeas and Yannacopoulos, requiring techniques from
the theory of infinite dimensional stochastic dynamical systems.

Importantly the minimax nature of the decision theoretic model
gives it a game theoretic flavour, where player A (decision maker)
plays against a malevolent player B (nature) and the robust
decision rule can be expressed as a Nash equilibrium.

Will A decide ignoring B
and face destiny?

OR

.

Will A decide robustly
taking B into consider-
ation and flourish?
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The robust control model

Consider the following controlled system in H :

dX (t) = (AX (t) + F (X (t)) + Bu(t))dt + CdW (t)

X (0) = x ∈ H,
(2)

where A : D(A) ⊂ H→ H is a possibly unbounded linear operator,
B : H→ H and C : H→ H are linear operators, F : H→ H is a
non-linear mapping and W is a H-valued cylindrical Wiener
process, with respect to the stochastic basis (Ω,F , (Ft)t∈R+ ,P)

The control procedure u(·) is assumed to be an H-valued process
such that u(·) ∈ Uad where Uad is the set of all admissible control
processes. A possible choice for Uad is the set of all processes
u(·) ∈ H := L2

Ft
(0,+∞;H) such that |u(s)|H ≤ Kα for some

Kα > 0 and every s ≥ 0, but of course other choices are also
possible.
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Definition

We say that the Cauchy problem (2) admits a mild solution, if and
only if there exists a Ft measurable and square integrable
stochastic process X with values in H, such that

X (t) = etAx +

∫ t

0

e(t−s)A
[
F (X (s)) + Bu(s)

]
ds +

∫ t

0

e(t−s)ACdW (s).

We also need to define the generator operator for the uncontrolled
(B = 0) state process (2)

Definition

The operator LF : D(L) ⊂ Cb(H)→ Cb(H) defined by

LFV (x) := 〈Ax + F (x),DV (x)〉H +
1

2
Tr
[
CC ∗D2V (x)

]
, (3)

will be called the generator operator for the uncontrolled state
process (2), (B = 0).
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Let us now envision a decision maker who controls the system (2) by
choosing the stochastic process u(·) ∈ Uad .

If the agent was certain that the stochastic process X (t) is indeed
modelled by the probability law induced on H by the state equation (2) (or
equivalently that the reference probability model P can indeed be trusted),
she could try to choose the control process u ∈ Uad optimally so as to
solve a maximization problem of the form

sup
u(·)∈H

EP

[∫ ∞
0

e−δt (g(X (t)) + K (u(t))) dt

]
, (4)

where δ > 0, is a discount factor, g : H→ R is a utility function modelling
the instantaneous satisfaction derived by the agent if the system is in state
X (t) at time t and K : H→ R+ is a profit function associated with the
choice of the control process.

g ,K strictly concave and usc functions, g ∈ UCb(H), including a suitable
penalization term which ensures that u(·) ∈ Uad ⊂ H.
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We assume that the decision maker is uncertain about the true model P
under which the state process follows the law induced by (2).

In this framework, there is a set P of possible probability models for the
law of the state X (t), which if the data of the problem (A,F ,B,C ,X (0)),
are assumed to be well specified can be attributed to possible
mispecifications of the stochastic factor term W introducing stochastic
fluctuations into the state equation (2).

A plausible strategy for the decision maker would be to solve a robust
optimal contol problem of the form

sup
u(·)∈H

inf
P̃∈P

EP̃

[∫ ∞
0

e−δt (g(X (t)) + K (u(t))) dt

]
, (5)

where now the agent chooses to maximize the output for the worst
case scenario, concerning the stochastic factor, out of all plausible
probability models P̃ ∈ P.
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Clearly, the dynamic constraint (2) will have to be modified
accordingly, taking into account the particular probability model P̃
chosen by the agent.

We will restrict our attention to models which are absolutely
continuous with respect to a reference probability measure P. We
further parameterize the density in terms of a Hilbert space valued
stochastic process υ(·), taking values in a subset Vad ⊂ H in terms
of the exponential process

M(t) = exp

(∫ t

0
〈υ(s), dW (s)〉H−

1

2

∫ t

0
|υ(s)|2Hds

)
, t > 0, (6)

with Vad chosen so as to guarantee the integrability of the process
and its martingale properties (usually expressed in terms of the
Novikov condition).
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The set of allowable probability measures is then characterized by
the allowed H-valued processes υ(·), in the sense that there is an
one to one correspondence between any stochastic process
υ(·) ∈ Vad and any probability measure P̃ ∈ P, denoted by P̃(υ(·)),
with υ(·) = 0 corresponding to the reference measure.

If υ(·) deviates from zero, by the representation (6) for the
exponential density we note that the chosen measure P̃ will deviate
from the reference measure, so that large values of υ(·) will extend
the set P of allowable models.

This is bound to cause some discomfort to an uncertainty averse
agent, who will try to penalize such values of υ by a penalty
function T : H → R which will be chosen to be strictly convex and
lower semicontinuous, and such that υ(·) ∈ Vad ⊂ H.
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We assume a general penalty function of the form

T (υ(·)) =

∫ ∞
0

e−δtT`(υ(s))ds, (7)

where T` : H→ R is a strictly convex lower semicontinuous function. The
special choice T (υ) := 1

2 |υ|
2
H corresponds to the case of entropic

constraints.

Assuming that a choice of υ(·) has been made by the agent, then a
corresponding probability measure P̃, denoted by P̃(υ(·)) to emphasize the
dependence on the choice of υ(·), has been selected as a possible model
for the state process (2).

Using the Girsanov theorem the controlled system (2) under the equivalent
probability measure P̃ ∈ P(υ(·)) satisfies the SDE in H:

dX (t) = (AX (t) + F (X (t)) + Bu(t) + Cυ(t))dt + CdW̃ (t)

X (0) = x ∈ H.
(8)

where is
{

W̃ (t), t ≥ 0
}

is a H-valued (F , P̃) cylindrical Wiener process,

the mild solution of which will be denoted by X (t; u, υ).
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This implies that given the agent trusts the probability model
P̃ ∈ P(υ(·)), will solve the optimal control problem

sup
u(·)∈H

EP̃(υ)

[∫ ∞
0

e−δt (g(X (t)) + K (u(t))) dt

]
, (9)

subject to dynamic constraints given by (8).

Being uncertain about the choice of υ(·), she must then scan all
available choices for υ(·), as allowed by the penalty function T , or
equivalently T , and choose a policy u that will maximize this utility
function assuming the worst possible scenario over all possible υ(·).
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This leads to the minimax problem

sup
u(·)∈H

inf
υ(·)∈H

J(x ; u(·), υ(·)) :=

sup
u(·)∈H

inf
υ(·)∈H

EP̃(υ(·))

[∫ ∞
0

e−δt (g(X (t)) + K (u(t)) + θT (υ(t))) dt

]
,

(10)
subject to the dynamic constraint (8), where θ denotes the
preference for the robustness parameter, and the function T may
also include a penalty term so as to ensure that υ(·) ∈ Vad ⊂ H, in
the standard practice used in convex analysis.
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This problem is in the form of a zero sum stochastic differential
game with two players: the decision maker (choosing u) and a
fictitious adversarial agent, who is commonly referred to, as Nature
(choosing υ).

The value of the game (in the Nash sense), if it exists, is given by
the value function V : H→ R defined by

V(x) := sup
u(·)∈H

inf
υ(·)∈H

J(x ; u, υ). (11)

We say that a control pair (u∗(·), υ∗(·)) ∈ H ×H is an optimal
control pair, if

V(x) = J(x ; u∗(·), υ∗(·)),

and that it is a saddle point equilibrium, if

J(x ; u(·), υ∗(·)) ≤ J(x ; u∗(·), υ∗(·)) ≤ J(x ; u∗(·), υ(·)),

∀ (u(·), v(·)) ∈ H ×H.
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It is well known that for some cases the value function for a stochastic
differential game can be characterized in terms of a non-linear partial
differential equations known as the Hamilton-Jacobi-Belman-Isaacs (HJBI)
equation (see e.g. Fleming and Souganidis).

The study of the infinite dimensional stochastic differential game (10)
(related to the robust control problem (5)) in terms of the corresponding
infinite dimensional HJBI equation is the main objective of this paper.

In particular, in the rest of the paper, our plan is to (i) derive the HJBI
equation associated with the stochastic differential game (10) (ii) prove
that the HJBI equation admits a unique solution (in some appropriate
sense) (iii) prove that this solution coincides with the value function of the
problem (11) and finally (iv) to derive, in feedback form, an optimal
control pair for the problem which is also a saddle point equilibrium.
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Standing Assumptions

Assumption

We shall assume that:

(i). A : D(A) ⊂ H→ H is a densely defined linear operator, generator of
a strongly continuous semigroup of contractions

{
etA, t ≥ 0

}
on H.

(ii) B,C ∈ L(H), esACC ∗esA
∗ ∈ L1(H), for every s > 0, while∫ t

0 Tr(esACC ∗esA
∗
)ds is of trace class for every t ≥ 0 so that the

family of operators {Qt : t ≥ 0} defined by

Qt :=

∫ t

0
esACC ∗esA

∗
ds, (12)

is of trace class for every t ≥ 0.

(iii) etA(H) ⊂ Q
1/2
t (H) for every t > 0 so that the operator

Γ(t) := Q
−1/2
t etA ∈ L(H) and we further assume that the function

t 7→ ‖Γ(t)‖ is integrable in a right neighbourghood of 0 (e.g.
‖Γ(t)‖ ≤ c max(1, t−ρ), t > 0, ρ > 0).
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Assumption

(iv). F : H→ H is non-linear mapping such that F ∈ C 1
b (H;H), whereas

g : H→ R is a strictly concave function, with g ∈ UCb(H).
(v). K : H→ R is a strictly concave function, with concave conjugate

K? : H→ R defined by

K?(x∗) := inf
x∈H

[
〈x∗, x〉H − K (x)

]
, for every x∗ ∈ H, (13)

being a Lipschitz function with Lipschitz constant ‖K?‖L.
(vi). T : H→ R is a strictly convex function, and for any θ > 0 we define

the family of modified convex conjugate T ∗θ : H→ R defined by

T ?
θ (x∗) := sup

x∈H

[
〈x∗, x〉H − θT (x)

]
, for every x∗ ∈ H, (14)

being a Lipschitz function, with Lipschitz constant ‖T ?
θ ‖L. For θ = 1

the modified convex conjugate function coincides with the standard
definition of the convex conjugate, T ∗.
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The HJBI equation

We are now in position to derive the HJBI equation associated
with the stochastic differential game (10), which in our case is an
elliptic partial differential equation on the infinite dimensional
separable Hilbert space H, by applying standard dynamic
programming techniques.

Theorem

The HJBI equation associated with the stochastic differential game
(10) is the infinite dimensional elliptic partial differential equation

δV (x) = LFV (x)− K? (−B∗DV (x))− T ?
θ (−C∗DV (x)) + g(x),

x ∈ H, (15)

where LF is the linear operator defined in (3) and K? and T ?
θ are

as in (13) and (14) respectively.
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(Skech of proof) Assuming for the time being sufficient regularity
of the value function, it is well known by the theory of stochastic
differential games that the value function can be characterized in
terms of the HJBI equation

δV (x) = sup
u∈H

inf
υ∈H

H(x ,V (x); u, υ), (16)

where H is the pre-Hamiltonian defined by

H(x ,V (x); u, υ) = LFV (x) + H1(V (x); u) + H2(V (x); υ) + g(x),

where

H1(V (x); u) := 〈Bu,DV (x)〉H + K (u)

H2(V (x); υ) := 〈Cυ,DV (x)〉H + θT (υ).

We then perform the static optimizations required.
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The smoothness condition referred to in the proof of the theorem are needed
for the application of Itō’s lemma, which allows us to pass from the dynamic
programming principle to the HJBI equation (16), which are typically second
order continuous differentiability conditions.

Under these a priori assumptions on the value function V , the theorem
guarantees that the value function will be a solution of the infinite
dimensional elliptic equation (15).

However, typically elliptic equations of the form (15) do not admit smooth
solutions, for general data, thus posing some questions regarding Theorem 5.

For this reason a variety of weaker solutions for equations of the form (15)
can be defined, such as for instance viscosity (typically just continuous
solutions) or mild solutions (typically just once continuously differentiable
solutions), and it may be shown that eventhough the derivation in the proof
of the Theorem is formal, still the weak solution of the HJBI is the value
function of the stochastic differential game.
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Mild solutions

The following concepts play an important role in the study of the
HJBI equation:

R(δ, L) is the resolvent operator of the so called
Ornstein-Uhlenbeck (O-U) transition semigroup, defined as

[Ptϕ](x) := EP

[
ϕ(etAx +

∫ t

0
e(t−s)ACdW (t))

]
=

∫
H
ϕ
(

etAx + y
)
NQt (dy), for any ϕ ∈ UCb(H),

where {W (t), t ≥ 0} is a Wiener process under the measure P,
and NQt is a centered Gaussian measure on H with covariance
operator Qt .
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This semigroup enjoys some very important properties,
fundamental for the study of the HJBI

Proposition

Under the standing assumptions it holds that:

(i) ψ := R(δ, L)ϕ =
∫∞

0 e−δtPtϕ(x)dt is the unique solution to
the infinite dimensional elliptic system (δI − L)ψ = ϕ.

(ii) For any ϕ ∈ Bb(H) and any t > 0, we have that
Ptϕ ∈ UC∞b (H), and in particular for any n ∈ N there exists a
constant cn > 0 such that
‖DnPtϕ(x)‖ ≤ cn‖Q−1/2

t etA‖n‖ϕ‖0, t > 0, x ∈ H.

(iii) For any δ > 0, there exists some positive constant c such that

|DR(δ, L)ϕ(x)|H ≤ cf (δ) ‖ϕ‖0 , (17)

where f (δ) = δ
γ−1

2 and γ ∈ [0, 1).
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Definition (Mild solutions for the HJBI equation)

The nonlinear integral equation

V (x) =

∫ ∞
0

e−δtPt

[
− 〈F ,DV 〉H − K? (−B∗DV )

−T ?
θ (−C ∗DV ) + g

]
(x)dt. (18)

is called the mild form of the HJBI equation (15).
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Existence of mild solutions for the HJBI equation

Our main result is the following:

Theorem

Let the standing assumptions hold. Define the family of functions

Fθ : H→ R by Fθ(p) := K?(B∗p) + T ?
θ (C ∗p),

and let

θ0 := inf{θ > 0 : ∂+Fθ(p) 6= ∅, ∀ p ∈ H, s.t ∂+Fθ(p) bounded},

where

∂+Fθ(p) := {q ∈ H : Fθ(p′)− Fθ(p) ≤ 〈q, p′ − p〉, ∀ p′ ∈ H}

denotes the superdifferential of the function Fθ at p ∈ H, assumed to be
uniformly bounded in θ.
Ťhen, for θ > θ0 the HJBI equation (15) admits a unique mild solution in
UC 1(H) for all δ > 0.
Ǐf θ < θ0 then the HJBI equation (15) admits a unique mild solution in
UC 1(H) for all δ > δ0, where the critical value

δ0 :=

(
c ‖F‖0 + ‖B∗‖ ‖K?‖L + ‖C‖ supθ>θ0

‖T ?
θ ‖L

) 2
1−γ

.
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Sketch of proof

Step 1: Show existence of solution for large δ using a contraction
mapping principle in UC 1

b (H).

Use the linear elliptic equation

(δI − L)u = ψ, ψ ∈ UCb(H),

as starting point and setting

φ = −V , F1(Dφ) = K∗(B∗Dφ), F2(Dφ) = T ∗θ (C ∗Dφ),

rewrite the HJBI as a nonlinear integral equation

φ = R(δ, L)(〈F ,Dφ〉H +
2∑

i=1

Fi (Dφ)− g), (19)

where R(δ, L)ψ = u is the solution of (δI − L)u = ψ.
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Use the new variable ψ := δφ− Lφ, express the HJBI in terms of

ψ − 〈F ,DR(δ, L)ψ〉H −
2∑

i=1

Fi (DR(δ, L)ψ) + g = 0,

which may be written as the nonlinear operator equation

ψ − Γδψ = 0

and construct the fixed point scheme

ψ(m+1) − 〈F ,DR(δ, L)ψ(m)〉H −
2∑

i=1

Fi (DR(δ, L)ψ(m)) + g = 0

By the smoothing properties of the OU-semigroup, this maps
UC 1

b (H) into itself and for δ > δ0 this is a contraction, hence a
unique fixed point – which is a mild solution of HJBI – exists.

A. N. Yannacopoulos, Statistics, AUEB, Greece Athens - One City -Applied Analysis and PDE seminar 19/2/2021



Step 2: Continue this solution for any δ > 0.

This requires techniques from nonlinear analysis, and in particular the
theory of maximal monotone operators.

Express the HJBI as the nonlinear operator equation

δφ− Nφ = ψ,

Nφ = Lφ+ F1(Dφ) + F2(Dφ), ψ = −g

Definition (Dissipative, m-dissipative and maximal dissipative
operators)

A ( possibly nonlinear) operator N : D(N) ⊂ X→ X is called

(i) dissipative if 〈z∗,N(x1)− N(x2)〉 ≤ 0 for all x1, x2 ∈ D(N) and
some z∗ ∈ J(x1 − x2),

(ii) m-dissipative, if it is dissipative and R(I − N) = X,
(iii) maximal dissipative, if it is dissipative and does not admit any

proper dissipative extension.
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The following proposition collects some well known properties of
dissipative operators that will be used in the treatment of the HJBI
equation.

Proposition

The following are true.

(i) The operator N : D(N) ⊂ X→ X is dissipative if and only if
there exists a λ > 0, such that

‖x1 − x2‖X ≤
1

λ
‖(λx1 − N(x1))− (λx2 − N(x2))‖X,

∀ x1, x2 ∈ D(N). (20)

If the above property holds for some λ > 0 then it holds for all
λ > 0.

(ii) The dissipative operator N : D(N) ⊂ X→ X is m-dissipative if
and only if there exists a λ > 0, such that R(λI − N) = X. If
this property holds for some λ > 0, then it holds for all λ > 0.

(iii) Assume that the operator N1 is m-dissipative on X and let N2

be an operator with dom(N1) ⊂ dom(N2) which is continuous
on dom(N1). If N1 + N2 is dissipative then it is m-dissipative.
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Based on the above, since we have a solution for δ > δ0 i.e.

R(δI − N) = X, δ > δ0,

if N is dissipative then it is also m-dissipative so a solution exists
for all δ > 0.

It thus suffices to show the dissipativity of N.

N is the perturbation of an infinite dimensional elliptic operator
plus a nonlinear part.

Showing dissipativity requires the use of a maximum priciple, for
the linear elliptic part, which will allow us the comparison of two
solutions of the HJBI equation for different choices of ψ1 = −g1,
ψ2 = −g2.
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Such a maximum principle can be obtained for finite dimensional
approximations of the elliptic equation, which is an elliptic
equation on Rn (Galerkin approximation) , of the form

Aφ(x) = Lnφ(x) := 〈Anx ,Dφ(x)〉Rn+
1

2
Tr
[
CnC ∗n D2φ(x)

]
, x ∈ Hn ' Rn,

where CnC ∗n is the n × n covariance matrix obtained by the
projection of the covariance operator CC ∗ to Hn.

For such operators it can be proved (Cerrai 2001) that for any
function φ ∈

⋂
p≥1 W 2,p

loc (Rn) ∩ Cb(Rn) and any λ > 0 such that
(λI −A)φ ∈ Cb(Rn), we have that

‖φ‖0 ≤
1

λ
‖λφ−Aφ‖0.
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Use the finite dimensional approximation of the HJBI and consider
two functions g1, g2 and their corresponding finite dimensional
approximations g1,n, g2,n.

For δ > δ0 it holds that

λ(φ1,n − φ2,n)− Ln(φ1,n − φ2,n) = −(g1,n − g2,n) + (21)

〈F ,D(φ1,n − φ2,n) + Fθ(Dφ1,n)〉 − Fθ(Dφ2,n).

Since θ > θ0, for any x there exists q(x) with the property
F(Dφ1,n(x))− F(φ2,n(x)) ≤ 〈q(x),D(φ1,n(x)− φ2,n(x))〉, with
q(x) bounded.
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Substituting this estimate in (21) and denoting by Lq,n a similar
operator with modified drift in terms of q, we obtain the inequality

λ(φ1,n − φ2,n)− Lq,n(φ1,n − φ2,n) ≤ −(g1,n − g2,n), (22)

which implies

‖λ(φ1,n − φ2,n)− Lq,n(φ1,n − φ2,n)‖0 ≤ ‖g1,n − g2,n‖0

On the other hand by the maximum principle of Cerrai (2001) for
any φi ,n ∈

⋂
p≥1 W 2,p

loc (Rn) ∩ Cb(Rn) and any λ > 0 such that
(λI − Lq,n)φi ,n ∈ Cb(Rn), i = 1, 2 it holds that

‖φ1,n − φ2,n‖0 ≤
1

λ
‖λ(φ1,n − φ2,n)− Lq,n(φ1,n − φ2,n)‖0. (23)
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We now pass to the limit as n→∞ in
‖φ1,n − φ2,n‖0 ≤ 1

λ‖g1,n − g2,n‖0 taking into account that
φi ,n → φi , where φi is the solution of (δI − N)φi = −gi , i = 1, 2.

Since by construction gi ,n → gi , i = 1, 2, we have that

‖φ1 − φ2‖0 ≤
1

λ
‖g1 − g2‖0 =

1

λ
‖φ1 − φ2 − λ(N(φ1)− N(φ2))‖0,(24)

where for the last equality we used the fact that φi solve
(δI − N)φi = −gi , i = 1, 2.

Inequality (24) is condition (20) for the operator N, hence the
operator N is dissipative and this concludes the proof. QED
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To recap ...

Therefore, if θ is such that condition (A) holds, we have a solution
for all δ > 0 by the m-dissipativity argument.

If θ is such that condition (A) does not hold, then, we only have
solution for δ > δ0 using the contraction mapping principle.

Condition (A) cannot hold if T satisfies a scaling law of the form
T ?
θ (p) = θ−αT ?(p), as θ → 0, for some α ≥ 0, where T ? is a

proper lower semicontinuous convex function, then in the case
where α > 0, unless θ > θ0 > 0!

Importantly for an entropic constraint this is the case with α > 0
and the above result indicates possible breakdown of solutions of
the robust control procedure in the limit of large uncertainty.
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The next more useful
thing to a solution

can be

its breakdown!
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The value function and construction of optimal controls

Theorem

Let (u∗(·), υ∗(·)) ∈ Uad × Vad be such that with X ∗(t) := X (x ; u∗, v∗),
the mild solution of (8) for the choice u = u∗ and υ = υ∗, and let V be
the mild solution of the HJBI equation. Then, we have that

u∗(t) ∈ argminu∈H

[
〈u(t),−B∗DV (X ∗(t))〉H − K (u(t))

]
,

υ∗(t) ∈ argmaxυ∈H

[
〈υ(t),−C ∗DV (X ∗(t))〉H − θT (υ(t))

]
,

a.e. t ∈ [0,∞), P̃− a.s, with the above sets being singletons if K and T
are strictly concave and convex respectively.
Then, the triple (X ∗(·), u∗(·), υ∗(·)) is optimal in the sense of (12).
Furthermore, the optimal value function V of the stochastic differential
game (10) coincides with the unique mild solution V of the HJBI equation
(15)
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This allows one to construct feedback control strategies which will
provide the optimal control procedure in terms of the state of the
system, leading to a closed feedback loop in the form

dX (t) = (AX (t) + F (x) + Bu∗ + Cv∗)dt + CdW̃ (t), X (0) = x ,

with u∗, v∗ chosen such that

− u∗(X (t)) ∈ ∂+K?(B∗DV (X (t))

υ∗(X (t)) ∈ ∂T ?
θ

(
−θ−1C ∗DV (X (t)

)
,

where V is the mild solution of the HJBI equation
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Sketch of proof

Proof follows by the fundamental identity

J(x ; u, υ)− V (x) =

EP̃

[∫ ∞
0

e−δt
(

K?

(
− B∗DV (X (t))

)
− [〈u(t),−B∗DV (X (t))〉H − K (u(t))]

)
dt

]
+EP̃

[∫ ∞
0

e−δt
(

T ?
θ

(
− C ∗DV (X (t))

)
− [〈υ(t),−C ∗DV (X (t))〉H − θT (υ(t))]

)
dt

]
.

(25)
which is derived by an appropriate finite dimensional approximation
using Itō’s lemma and passing to the limit.
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Example : The spatial resource problem revisited

The biomass equation

∂

∂t
y(t, z) = D∆y(t, z) + f (y(t, z))− u(t, z) + Ẇ (t, z),

will be understood as the stochastic SDE

dX (t) = (AX (t) + F (X (t))− u(t))dt + CdW (t), X0 = x ,

on H = L2(O), with

A = ∆, D(A) = W 1,2
0 (O) ∩W 2,2(O)

and C is an operator such that CC ∗ corresponds to the spatial covariance
structure of the stochastic fluctuations, driven by the Wiener process
{W (t) : t ≥ 0} on H.

Model uncertainty corresponds to different possible models for W ,
parameterized by different possible drifts υ ∈ H and the payoff of the
related differential game will be

J(x ; u; υ) =

∫ ∞
0

e−δt
∫
O

{
g(y(t, z)) +

1

1− ν
(u(t, z))1−ν +

θ

p
|υ(t, z)|p

}
dzdt,
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Assuming that allowed controls are such that 0 ≤ u(x) ≤ R, R1 ≤ υ ≤ R2

we see that the value function for the game V is the mild solution of the
HJBI equation

δV (x)− LV (x) = 〈F (x),DV (x)〉H + Φ1(DV (x)) + Φ2((C ∗DV )(x)) + g(x),

for any x ∈ H, with

Φ1(p) =

∫
{z: p(z)<R−ν}

(
1

1− ν
R1−ν − Rp(z)

)
dz

+
ν

1− ν

∫
{z: p(z)≥R−ν}

(p(z))−
1−ν
ν dz .

and

Φ2(q) =

∫
{z: q(z)<−θR2}

(
θ

2
R2

2 + R2q(z)

)
dz −

∫
{z: −θR2<q(z)<−θR1}

1

2θ
|q(z)|2dz

+

∫
{z: q(z)>−θR1}

(
θ

2
R2

1 + R1q(z)

)
dz .
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The general results presented here guarantee the existence of a mild
solution for the HJBI and having obtained this the optimal feedback laws
are given in terms of

u∗(x(z)) = R 1{z : DV (x(z)<R−ν}

+(DV (x(z)))−1/ν1{z : DV (x(z)≥R−ν},

v∗(x(z)) = R1 1{z : C∗DV (z)<θ2R1}

+
1

θ2
C ∗DV (x(z))1{z : θ2R1≤C∗DV (z)≤θ2R2}

+R21{z : C∗DV (z)>θ2R2}

The optimal state will be given by the solution of the SPDE closed loop
system

dtX (t, z) = (∆zX (t, z) + F (X (t, z))− u∗(X (t, z)) + Cv∗(X (t, z)))dt + CdW (t, z)

The limit as θ → 0 (deep uncertainty limit) is singular.
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Conclusions and open problems

We have provided a framework for treating spatially extended stochastic
optimal control systems under model uncertainty using dynamic
programming.

The well posedeness of such problems and the characterization of the
Nash equilibrium as well as the optimal control strategy is characterized in
terms of mild solutions of nonlinear elliptic equations on Hilbert spaces.

This approach provides also interesting qualitative information on the
nature of solutions, such as the breakdown of the robust control procedure
in the limit of deep uncertainty (θ → 0).

Future challenges involve the numerical treatment of this problem based
on the finite dimensional approximation of the HJBI equation used in the
existence theorem and the generalization to more general fully nonlinear
equations of the HJBI equation.
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