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Sobolev inequality

Assume n ≥ 3. Then∫
Rn

|∇u|2dx ≥ Sn
(∫

Rn

|u|2∗dx
)2/2∗

, u ∈ C∞c (Rn),

where

2∗ =
2n

n − 2
(Sobolev exponent)

Talenti (1976): Best constant

Sn = πn(n − 2)
(Γ(n2 )

Γ(n)

) 2
n

Extremal
u(x) =

(
1 + |x |2

)− n−2
2

The best constant remains the same if Rn is replaced by a smaller
domain; but no extremals in this case.
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Hardy inequality

∫
Rn

|∇u|2dx ≥
(n − 2

2

)2
∫
Rn

u2

|x |2
dx , u ∈ C∞c (Rn)

• The power |x |2 is optimal

• The constant
(
n−2

2

)2
is sharp

• No extremals; |x |−
n−2

2 solves the Euler equation

To prove sharpness use

uε(x) =

 |x |
− n−2

2
+ε, |x | < 1,

|x |−
n−2

2
−ε, |x | > 1.
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Interpolation between Sobolev and Hardy inequalities gives that for
any 2 < p < 2∗ there holds

(p−HS)

∫
Rn

|∇u|2dx ≥ Sn,p
(∫

Rn

|x |
p(n−2)

2
−n|u|pdx

)2/p
, u ∈ C∞c (Rn)

Sharp constant computed by Lieb (’83)

Sn,p = 2p
(n − 2

2

) p+2
2

[
2πn/2Γ2( p

p−2 )

(p − 2)Γ(n2 )Γ( 2p
p−2 )

] p−2
p

Extremal
u(x) =

(
1 + |x |

(p−2)(n−2)
2

)− 2
p−2
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Problem: Combine Hardy and Sobolev inequalilties

More specifically: can we improve a Hardy inequality by adding a
Sobolev term to the RHS ?∫

Ω
|∇u|2dx ≥ c∗

∫
Ω

u2

d2
dx +c

(∫
Ω
|u|2∗W (x)dx

)2/2∗

, u ∈ C∞c (Ω)

with d(x) some distance function, W (x) some weight and c∗ the
sharp Hardy constant ?
Most important cases:

(i) d(x) = |x | with 0 ∈ Ω

(ii) d(x) = dist(x , ∂Ω)

(iii) d(x) = |x | with 0 ∈ ∂Ω

−→ a number of such results

We are interested in Sobolev improvements involving explicit/sharp
Sobolev constant c .
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Hardy inequalities involving the distance to the boundary

Ω ⊂ Rn, d(x) = dist(x , ∂Ω)∫
Ω
|∇u|2dx ≥ c

∫
Ω

u2

d2
dx , u ∈ C∞c (Ω)

If Ω is bounded with smooth boundary then the Hardy inequality is
valid and the best constant is ≤ 1/4.

If Ω is convex then the best constant is 1/4.

B., Filippas, Tertikas (’04). If

∆d ≤ 0 , in Ω,

then the best constant is 1/4.
Proof. The function d1/2 is a positive supersolution to the Euler
equation.
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A Hardy-Sobolev inequality. Consider Ω = R3
+. Then∫

R3
+

|∇u|2dx ≥ S3

(∫
R3

+

u6dx
)1/3

, u ∈ C∞c (R3
+)

and ∫
R3

+

|∇u|2dx ≥ 1

4

∫
R3

+

u2

x2
3

dx , u ∈ C∞c (R3
+).

Benguria, Frank, Loss (’08). There holds∫
R3

+

|∇u|2dx ≥ 1

4

∫
R3

+

u2

x2
3

dx + S3

(∫
R3

+

u6dx
)1/3

for all u ∈ C∞c (R3
+) !!
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Proof. Write points in Rn
+ as x = (x , y), x ∈ Rn−1, y ∈ R+. Let

H = −∆− 1
4y2 , a self-adjoint operator on L2(Rn

+).

Let GH
par (x, x′, t) be the corresponding parabolic Green function:{
ut = ∆u + 1

4y2 u

u(x, 0) = u0(x)
⇒ u(x, t) =

∫
Rn

+

GH
par (x, x′, t)u0(x ′)dx′

Change variables: u =
√
yv . Then the problem is transformed to{

vt = ∆xv + vyy + 1
y vy

v(x, 0) = v0(x)

This is the heat equation on

Rn+1 = {(x , z) : x ∈ Rn−1 , z ∈ R2}

acting on functions that are radial with respect to z ∈ R2 (so
y = |z |).
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Write v(x , y , t) = v̂(x , z , t) , v̂ radial w.r.t. z ∈ R2. Then

v̂(x , z , t) = (4πt)−
n+1

2

∫
Rn−1

∫
R2

e−
|x−x′|2+|z−z′|2

4t v̂0(x ′, z ′)dx ′dz ′

that is

v(x , y , t) =

= (4πt)−
n+1

2

∫
Rn−1

∫ ∞
0

∫ 2π

0
e−
|x−x′|2+y2+y′2−yy′ cos θ

4t y ′v0(x ′, y ′)dx ′dy ′dθ

Going back to the functions u, u0 this gives

u(x , y , t) =

= (4πt)−
n+1

2

∫
Rn−1

∫ ∞
0

∫ 2π

0

√
yy ′e−

|x−x′|2+y2+y′2−yy′ cos θ
4t u0(x ′, y ′)dx ′dy ′dθ



So

GH
par (x, x′, t) = (4πt)−

n+1
2

√
yy ′e−

|x−x′|2+y2+y′2
4t

∫ 2π

0
e

yy′ cos θ
2t dθ

Hence we can compute the elliptic Green function for H,

GH
ell(x, x

′) =

∫ ∞
0

GH
par (x, x′, t)dt (x, x′ ∈ Rn

+)

= cn
√

yy ′
∫ 2π

0

(
|x − x ′|2 + y2 + y ′2 − 2yy ′ cos θ

)− n−1
2
dθ

Let
G−∆
ell (x, x′) = c ′n|x− x′|2−n , (x, x′ ∈ Rn)

denote the Green function for the Laplacian in Rn. It may be seen
that if n = 3 then

GH
ell(x, x

′) ≤ G−∆
ell (x, x′) , (x, x′ ∈ R3

+)



Completion of proof. The Sobolev inequality in R3 is

〈−∆u, u〉L2(R3) ≥ S3‖u‖2

L
2n
n−2 (R3)

or equivalently S3‖(−∆)−1/2g‖2

L
2n
n−2 (R3)

≤ ‖g‖2
L2(R3)

By duality S3‖(−∆)−1/2g‖2
L2(R3) ≤ ‖g‖

2

L
2n
n+2 (R3)

Let f , g ∈ C∞c (R3
+). Then

|〈f , g〉L2(R3
+)|

2 = |〈H1/2f ,H−1/2g〉L2(R3
+)|

2

≤ 〈Hf , f 〉L2(R3
+)〈H

−1g , g〉L2(R3
+)

≤ 〈Hf , f 〉L2(R3
+)〈(−∆)−1g , g〉L2(R3)

≤ 〈Hf , f 〉L2(R3
+)

1

S3
‖g‖2

L
2n
n+2 (R3

+)

Hence

‖f ‖2

L
2n
n−2 (R3

+)
≤ 1

S3
〈Hf , f 〉L2(R3

+) QED
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Brezis and Vazquez (’97). Let Ω be a bounded domain in Rn,
n ≥ 3, and 2 ≤ p < 2∗. There exists c > 0 such that∫

Ω
|∇u|2dx ≥

(n − 2

2

)2
∫

Ω

u2

|x |2
dx + c

(∫
Ω
|u|pdx

)2/p

Filippas and Tertikas (’02). Let

X (t) :=
1

1− ln t
, t ∈ (0, 1).

Let Ω be a bounded domain and D = supΩ |x |. Then there exists
c > 0 such that∫

Ω
|∇u|2dx ≥

(n − 2

2

)2
∫

Ω

u2

|x |2
dx+c

(∫
Ω
X

2(n−1)
n−2 (|x |/D)|u|2∗dx

)2/2∗

for all u ∈ C∞c (Ω). The exponent of X is sharp.
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Adimurthi, Filippas and Tertikas (’09). Let Ω be a bounded
domain in Rn, n ≥ 3, and D = supΩ |x |. There holds∫

Ω
|∇u|2dx ≥

(n − 2

2

)2
∫

Ω

u2

|x |2
dx

+(n − 2)−
2(n−1)

n Sn
(∫

Ω
X

2(n−1)
n−2 (

|x |
D

)|u|2∗dx
)2/2∗

for all u ∈ C∞c (Ω). The constant is the best possible.

Our aim: Find an explicit Sobolev improvement for a sharp Hardy
inequality

We obtain such improvements in three different contexts:

1. Point singularity in Euclidean space

2. Point singularity in hyperbolic space

3. Boundary point singularity in Euclidean space
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Poincaré-Sobolev inequality∫

Hn

|∇Hnv |2dV ≥
(n − 1

2

)2
∫
Hn

v2dV

+Sn,p

(∫
Hn

(sinh ρ)
p(n−2)

2
−n|v |pdV

)2/p
, v ∈ C∞c (Hn)

Note. The positivity of Sn,p follows from the positivity of Sn,2∗

(Mancini and Sandeep ’08)



The function Y (t).

Consider the following two auxiliary problems:{
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and, for n ≥ 3,{
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Then define a function ρ = ρ(t) by∫ ρ(t)
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ds

g(s)2
, t > 0.
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The precise value of Sn,p is not known.∫
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In case n = 3 the result is sharp also with the logarithmic function
X .
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The constant S3,p is sharp for all 0 < α ≤ α3.
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3. Boundary point singularity in Euclidean space

Let Ω be a domain in Rn and assume that 0 ∈ ∂Ω. We are
interested in the Hardy inequality∫

Ω
|∇u|2dx ≥ c

∫
Ω

u2

|x |2
dx , u ∈ C∞c (Ω)

and related Sobolev improvements.

What about the best constant c? We know that

c =
(n − 2

2

)2

works, but can we do better ? The geometry plays a role.

I. Cones
II. Bounded domains with nice boundary
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Part I. Cones.

A. Nazarov (’06). Let CΣ be a finite (or infinite) cone with vertex
at zero:

CΣ = {rω : ω ∈ Σ , 0 < r < 1 (or r > 0) }

where Σ an open subset of Sn−1.
Let µ1(Σ) be the first eigenvalue of the Dirichlet Laplacian on Σ.
Then ∫

CΣ

|∇u|2dx ≥
[(n − 2

2

)2
+ µ1(Σ)

] ∫
CΣ

u2

|x |2
dx ,

for all u ∈ C∞c (CΣ). Moreover the constant is the best possible.

Proof. The function

φ(x) = r−
n−2

2 ψ1(ω)

is a positive solution to the Euler equation.
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Q: Is it possible to improve the above inequality by adding more
terms ?
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What about Sobolev improvements?

Theorem (B., Filippas, Tertikas ’18). Let n ≥ 3. There exists a
positive constant C = C (Σ) such that∫

CΣ

|∇u|2dx ≥
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2

)2
+ µ1(Σ)

] ∫
CΣ

u2

|x |2
dx

+C (Σ)

(∫
CΣ

X
2n−2
n−2 (|x |)|u|2∗dx

)2/2∗

,

for all u ∈ C∞c (CΣ). Moreover

(i) The exponent (2n − 2)/(n − 2) of X (|x |) is the best possible.
(ii) For the best constant C (Σ) we have

C (Σ) ≤ Cn|Σ|
2
n ;

in particular it cannot be taken to be independent of Σ.



What about additional improvements ?
Define X1(t) = X (t) and for k ≥ 2

Xk(t) = X1(Xk−1(t)), t ∈ (0, 1).

Theorem (B., Filippas, Tertikas ’18). There holds∫
CΣ

|∇u|2dx ≥
[(n − 2

2

)2
+ µ1(Σ)

] ∫
CΣ

u2

|x |2
dx

+
1

4

∞∑
i=1

∫
CΣ

u2

|x |2
X 2

1 X
2
2 . . .X

2
i dx ,

for all u ∈ C∞c (CΣ).
The inequality is sharp at each step.

Proof. For each fixed m, the function

φ(x) = r−
n−2

2 X1(r)−1/2 . . .Xm(r)−1/2ψ1(ω)

is a positive solution to the mth-improved Hardy inequality.
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What about Sobolev improvements for the mth improved Hardy
inequality?

Theorem Let n ≥ 3. There exists a constant C that depends only
on Σ such that for any m ∈ N∫

CΣ

|∇u|2dx ≥
[(n − 2

2

)2
+ µ1(Σ)

] ∫
CΣ

u2

|x |2
dx

+
1

4

m∑
i=1

∫
CΣ

u2

|x |2
X 2

1 . . .X
2
i dx

+C

(∫
CΣ

(X1 . . .Xm+1)
2n−2
n−2 |u|

2n
n−2 dx

) n−2
n

,

for all u ∈ C∞c (CΣ). The inequality is sharp.



Part II. General bounded domains

Let Ω be a domain with nice boundary and with 0 ∈ ∂Ω. We are
interested in the Hardy inequality∫

Ω
|∇u|2dx ≥ c

∫
Ω

u2

|x |2
dx , u ∈ C∞c (Ω)

Consider the half-space Rn
+ = {xn > 0}.

This is a special case of a cone, hence the Hardy constant is(n − 2

2

)2
+ µ1(Sn−1

+ ) =
(n − 2

2

)2
+ (n − 1) =

n2

4

This is the ‘right’ constant locally for a domain with smooth
boundary.



Part II. General bounded domains

Let Ω be a domain with nice boundary and with 0 ∈ ∂Ω. We are
interested in the Hardy inequality∫

Ω
|∇u|2dx ≥ c

∫
Ω

u2

|x |2
dx , u ∈ C∞c (Ω)

Consider the half-space Rn
+ = {xn > 0}.

This is a special case of a cone, hence the Hardy constant is(n − 2

2

)2
+ µ1(Sn−1

+ ) =
(n − 2

2

)2
+ (n − 1) =

n2

4

This is the ‘right’ constant locally for a domain with smooth
boundary.



M.M. Fall (’12) Let Ω be bounded Lipschitz boundary and assume
that ∂Ω is C 2 near the origin. There exists an r = r(Ω) such that
for all u ∈ C∞c (Ω ∩ Br ) there holds∫

Ω∩Br

|∇u|2dx ≥ n2

4

∫
Ω∩Br

u2

|x |2
dx

+C

∫
Ω∩Br

u2

|x |2
X 2

1 dx

Theorem (B., Filippas, Tertikas ’18). Let Ω ⊂ Rn, n ≥ 2, be a
bounded domain with 0 ∈ ∂Ω admiting an exterior ball of radius ρ
at 0. Let D = supΩ |x |. There exist σn > 0 such that if ρ ≥ D/σn
then ∫

Ω
|∇u|2dx ≥ n2

4

∫
Ω

u2

|x |2
dx

for all u ∈ C∞c (Ω).

If in addition Ω satisfies an interior ball condition at 0 then the
constant is sharp.
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Theorem. Let Ω ⊂ Rn, n ≥ 2, be a bounded domain with 0 ∈ ∂Ω
having an exterior ball of radius ρ at 0. Let D = supΩ |x |. There
exist σn > 0 and κ > 0 such that if ρ ≥ D/σn then∫

Ω
|∇u|2dx ≥ n2

4

∫
Ω

u2

|x |2
dx +

1

4

∞∑
i=1

∫
Ω

u2

|x |2
X 2

1 . . .X
2
i dx ,

for all u ∈ C∞c (Ω); here Xi = Xi (σn|x |/(3κD)).

If in addition Ω satisfies an interior ball condition at 0 then the
estimate is sharp at each step.



What about Sobolev improvements?

Theorem (Hardy-Sobolev inequality) Let Ω ⊂ Rn, n ≥ 2, be a
bounded domain with 0 ∈ ∂Ω having an exterior ball of radius ρ at
0. There exist σn,Cn > 0 such that if ρ ≥ D/σn then∫

Ω
|∇u|2dx ≥ n2

4

∫
Ω

u2

|x |2
dx + Cn

(∫
Ω
X

2n−2
n−2 |u|

2n
n−2 dx

) n−2
n

,

for all u ∈ C∞c (Ω); here X = X (|x |/3D).

If in addition Ω satisfies an interior ball condition at 0 then the
estimate is sharp.
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for all u ∈ C∞c (Ω); here X = X (|x |/3D).

If in addition Ω satisfies an interior ball condition at 0 then the
estimate is sharp.



A natural question:

In order to have the Hardy inequality with constant n2/4 is it
necessary that the exterior ball is large compared to D = supΩ |x | ?



Example. For ρ ∈ (0, 1/2) and θ ∈ (0, π/2) define

Aρ,θ = {x = (x ′, xn) ∈ B1 : xn < cot θ|x ′| and |x − ρen| > ρ}.

Let Ω ⊃ Aρ,θ having B(ρen, ρ) as largest exterior ball at 0. Let
λ1(n, θ) be the first Dirichlet eigenvalue of the Laplace operator on
the spherical cap

Σθ = {(x ′, xn) ∈ Sn−1 : xn < cot θ |x ′|}.

If

ρ <
1

2 cos θ
e
− π√

n−1−λ1(n,θ) ,

then the best Hardy constant of Ω is strictly smaller than n2/4.



Back to Hardy-Sobolev inequalities with explicit constants.

Let n ≥ 3, 0 ≤ γ < n/2 and 2 < p ≤ 2∗. We define S∗n,p,γ to be
the best constant for the inequality∫

Rn
+

|∇u|2dx − γ(n − γ)

∫
Rn

+

u2

|x |2
dx

≥ S∗n,p,γ

(∫
Rn

+

|x |
p(n−2)

2
−n|u|pdx

)2/p

for all u ∈ C∞c (Rn
+).
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Theorem. Let Ω ⊂ Rn, n ≥ 3, be a bounded domain with 0 ∈ ∂Ω
and let D = supΩ |x |. Assume that Ω satisfies an exterior ball
condition at zero with exterior ball Bρ(−ρen). Then for any
2 < p ≤ 2∗ and any γ ∈ [0, n/2) there exist an rn,γ and α∗n,γ in
(0, 1) such that, if the radius ρ of the exterior ball satisfies
ρ ≥ D/rn,γ then for all 0 < α ≤ α∗n,γ there holds∫

Ω
|∇u|2dx ≥ n2

4

∫
Ω

u2

|x |2
dx

+(n − 2γ)−
p+2
p S∗n,p,γ

(∫
Ω
|x |

p(n−2)
2
−n
( |x + 2ρen|

2ρ

) p(n−2)
2
−n

X
p+2

2 |u|pdx
) 2

p

,

for all u ∈ C∞c (Ω); here X = X (α|x |/D).

But no sharpness...
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About the proof.

For interior point singularity: Change variables so that the two
infima are directly comparable. For example the best constant Sn,p

we have

Sn,p = inf

∫ ∞
0

∫
Sn−1

h(ρ)2
(
w2
ρ +

1

sinh2ρ
|∇ωw |2

)
dS dρ(∫ ∞

0

∫
Sn−1

(sinh ρ)−
p+2

2 h(ρ)p|w |pdS dρ
)2/p

.

The term involving ∇ω can be ignored by symmetrization.

For boundary point singularity: use in addition a conformal map
from Rn

+ onto B(ρ)c .
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The end


