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The linear Euler-Lagrange equation that arises from vibrating of the beam
contains (in the simplest model) derivatives of the 4th and 2nd order

u(4)(x)− cu′′(x) = p(x),

where u(x) denotes the deviation from the equilibrium of the beam at
point x and p(x) is the density of the lateral load at x .
If we consider a suspension bridge as a beam of length L with hinged ends
then downward deflection is measured by u(x , t) that satisfies the equation
of order four (with Navier boundary conditions) :

γuxxxx(x , t) + utt(x , t) = −ku+(x , t) + W + f (x , t),

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0,

where γ,W , k are constants, and f (x , t) is the external forcing term.
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A multidimensional nonlinear beam-equation (see Gazzola and et al,
”Polyharmonic boundary value problems”, Springer, 2010) :

∂2t U(x , t) + ∆2U(x , t) + m(x)U(x , t)|U(x , t)|p = 0,

where p ≥ 0, under time-harmonic assumption U(x , t) = u(x)e−iωt leads
to the biharmonic equation

∆2u(x) + m(x)u(x)|u(x)|p = ω2u(x).

The wave parameter ω is fixed (in general), but nevertheless we can
consider it fixed but very big in order to apply limiting process and
appropriate numerical methods. This allows to consider some scattering
problems with high frequency for this potential equation.
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We deal with quasilinear operators of fourth order of the form

H4u(x) := ∆2u(x)+ ~W (x , |u|)∇u(x)+V (x , |u|)u(x), x ∈ Rn, n = 1, 2, 3,

where ~W and V are complex-valued (in general) and s.t. V (x , 1), ~W (x , 1)
belong to Lp

loc(Rn) with p depending on n, and in addition, for any ρ > 0

|V (x , s1)− V (x , s2)| ≤ CρβV (x)|s1 − s2|,

| ~W (x , s1)− ~W (x , s2)| ≤ CρβW (x)|s1 − s2|, 0 ≤ s1, s2 ≤ ρ,

and both (together with βV , βW ) have behaviour at the infinity

| ~W (x , 1)|, |V (x , 1)| ≤ C

|x |µ
, |x | > R, µ > n.
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These conditions include the power-type nonlinearities of the nonlinear
beam equation described above, and most other physically relevant
nonlinearities, such as the saturation and sinc nonlinearities.
The scattering problems are connected with the special solutions of the
differential equation H4u(x) = k4u(x), i.e., the solutions in the form

u(x , k , θ) = u0(x , k, θ) + usc(x , k , θ), u0(x , k , θ) = e ik(x ,θ), θ ∈ Sn−1,

where u0 is the incident (plane) wave with angle θ and the scattered filed
usc satisfies the Sommerfeld radiation conditions

r
n−1
2

(
∂

∂r
− ik

)
usc(x , k , θ) = o(1), r = |x | → ∞,

r
n−1
2

(
∂

∂r
− ik

)
∆usc(x , k , θ) = o(1), r = |x | → ∞.

These solutions give us the data for inverse problem.
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Under the Sommerfeld radiation conditions these solutions (≡ scattering
solutions) are the unique solutions of the following integral equation
(analogue of the Lippmann-Schwinger equation for linear Schrödinger
operator)

u(x , k , θ) = u0 −
∫
Rn

G+
k (|x − y |)

(
~W (y , |u|)∇+ V (y , |u|)

)
u(y , k , θ) dy ,

where G+
k is the outgoing fundamental solution of the operator ∆2 − k4.

It is the kernel of the integral operator (∆2 − k4 − i0)−1 and it is equal to

G+
k (k |x |) =

i

8k2

(
k

2π|x |

) n−2
2
(

H
(1)
n−2
2

(k |x |) +
2i

π
K n−2

2
(k |x |)

)
, k > 0,

where H
(1)
ν and Kν are the Hankel and Macdonald’s functions of order ν,

respectively. This integral operator maps as follows (due to Agmon’s
estimates for the operator −∆− k2) :

‖(∆2 − k4 − i0)−1f ‖W s
2,−δ
≤ C

k3−s ‖f ‖L2δ , s = 0, 1, 2, δ >
1

2
, k ≥ 1.
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In the linear case these estimates are enough to prove the unique solvability
for such solutions in the spaces W 1

2,−δ(Rn) and obtain the estimates

‖usc‖W 1
2,−δ(R

n) ≤
C

k
, δ >

1

2
, k > 1.

But in the nonlinear case we need to prove the solvability in the different
type of spaces, namely in the Sobolev space W 1

∞(Rn) (due to nonlinearity).

Theorem (Direct problem)

Suppose that ~W (·, 1),V (·, 1), βW , βV belong to Lp
loc(Rn), n = 1, 2, 3,

max{1; n
2} < p ≤ ∞, and have special behaviour at the infinity as

O
(

1
|x |µ

)
, µ > n. Then for any ρ > 0 there exists k0 > 0 such that for all

k ≥ k0 the Lippmann-Schwinger equation w.r.t. usc has a unique solution
in the ball Bρ(0) = {f ∈W 1

∞(Rn) : ‖f ‖W 1
∞
≤ ρ} and

‖usc‖L∞(Rn) ≤
C

k
5−n
2

, ‖∇usc‖L∞(Rn) ≤
C

k
3−n
2

for all k ≥ k0. For n = 1 we may consider p = 1.
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In addition, the following asymptotic representation for these solutions as
|x | → ∞ holds

u(x , k, θ) = u0 + Cn
k

n−7
2 e ik|x |

|x |
n−1
2

A(k , θ, θ′) + o

(
1

|x |
n−1
2

)
.

Here the function A(k , θ, θ′) is called the scattering amplitude and is
defined by

A(k , θ, θ′) =

∫
Rn

e−ik(θ
′,y)
(
~W (y , |u|)∇+ V (y , |u|)

)
u(y , k , θ) dy ,

where θ′ = x
|x | is the angle of observation.
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The first result which concerns the inverse problems is the analogue of
famous Saito’s formula which was proved originally by Y. Saito for linear
Schrödinger operator with smooth potentials.

Theorem (Saito’s formula)

Suppose that ~W (·, 1),V (·, 1), βW , βV belong to Lp
loc(Rn), n = 2, 3

n < p ≤ ∞, and have special behaviour at the infinity mentioned above. In
addition we assume that ∇ ~W (·, 1) ∈ Lp

loc(Rn), n < p ≤ ∞ and has special
behaviour at the infinity mentioned above. Then the limit

lim
k→+∞

kn−1
∫

Sn−1

∫
Sn−1

e−ik(θ−θ
′,x)A(k , θ, θ′) dθ dθ′ =

=
(2π)n

π

∫
Rn

V (y , 1)− 1
2∇ ~W (y , 1)

|x − y |n−1
dy

holds uniformly for n = 2 and in the sense of tempered for n = 3.

In 1D it is also valid under special interpretation of the left-hand side.
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In 1D case uniformly in x ∈ R we have that

lim
k→+∞

[
e−2ikx

∫
R

e iky
(
W (y , |u+|)u′+ + V (y , |u+|)u+

)
dy+

e2ikx
∫
R

e−iky (W (y , |u−|)u′− + V (y , |u−|)u−) dy+

∫
R

e−iky (W (y , |u+|)u′+ + V (y , |u+|)u+) dy+

∫
R

e iky (W (y , |u−|)u′− + V (y , |u−|)u−) dy
]

=

∫
R

(V (y , 1)− 1

2
W ′(y , 1)) dy ,

where u± are the scattering solutions of H4u = k4u that behave as
u±(y , |u±|) ≈ e±iky with u′±(y , |u±|) ≈ ±ike±iky when k → +∞.
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The significance of Saito’s formula for inverse scattering problems is
apparent from its corollaries.

Corollary (Uniqueness)

Let ~W1,V1 and ~W2,V2 be as in Saito’s formula. If the corresponding
scattering amplitudes A1(k, θ, θ′) and A2(k, θ, θ′) coincide for some
sequence kj → +∞ and for all angles θ, θ′, then V1(·, 1)− 1

2∇ ~W1(·, 1) =

= V2(·, 1)− 1
2∇ ~W2(·, 1) in the sense of tempered distributions (a.e. in Rn).

Corollary (representation formula)

Under the same assumptions as in Saito’s formula

V (x , 1)− 1

2
∇ ~W (x , 1) =

=
1

2n+1π2n−2
lim

k→+∞
kn

∫
Sn−1

∫
Sn−1

e−ik(θ−θ
′,x)|θ − θ′|A(k , θ, θ′) dθ dθ′

in the sense of tempered distributions.
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In the linear case (i.e., in the case when no dependence on |u| in V and
~W ) we can use different type of data for inverse problem. Namely, the

estimates for the operator
(
∆2 − k4 − i0

)−1
can be applied to the

operator
(
H4 − k4 − i0

)−1
. This operator exists as the limit

lim
ε→+0

(
H4 − k4 − iε

)−1
in the operator topology from L2

δ(Rn) to

W 1
2,−δ(Rn) (with the same δ as above) with the norm estimate

‖
(
H4 − k4 − i0

)−1
f ‖W 1

2,−δ
≤ C

k2
‖f ‖L2δ .

Moreover, this operator is an integral operator with the kernel G (x , y , k)
which satisfies the integral equation

G (x , y , k) = G+
k (|x−y |)−

∫
Rn

G+
k (|x−z |)

(
~W (z)∇z + V (z)

)
G (z , y , k) dz .

The solvability of this equation (in the weighted Sobolev spaces) for k big
enough follows from the norm estimate (see above). But even more is
true, the following solvability result holds in ”L∞” space.
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We consider now n = 3 (for simplicity)

Proposition

Under the same assumption for ~W and V as in Saito’s formula there is a
constant k0 > 1 such that the function G (x , y , k) can be defined by the
series of iterations

G (x , y , k) =
∞∑
j=0

G (j)(x , y , k), G (0) = G+
k

which solves this integral equation uniquely, when k ≥ k0, and

|G (x , y , k)− G+
k (x , y , k)| ≤ c0

4π2k3|x − y |
,

|∇G (x , y , k)−∇G+
k (x , y , k)| ≤ c0

2π2k2|x − y |
.
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The knowledge of G (x , y , k) for large values of k , x , y leads to the result.

Theorem

Let ξ ∈ R3 be arbitrary and fixed. Assume that ~W and V are as above.

Then for ξ = −k
(

x
|x | + y

|y |

)
F−1

(
V − 1

2
∇ ~W

)
(ξ) =

= 32
√

2π lim
x ,y ,k→∞

k4|x ||y |e−ik(|x |+|y |)
(
G+
k (|x − y |)− G (x , y , k)

)
,

where F−1 denotes the inverse Fourier transform in R3.

As an immediate corollary we have the uniqueness result for this inverse
scattering problem. If G1(x , y , k) and G2(x , y , k) are two kernels which
correspond to two pairs ~W1,V1 and ~W2,V2 and if G1(x , y , k) and
G2(x , y , k) coincide for all x , y , k big enough then V1 − 1

2∇ ~W1 =

= V2 − 1
2∇ ~W2 a.e. in R3.
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In the inverse scattering theory (for linear equations) there is very effective
and very applicable approximate method which is called the Born
approximation. We consider this method for the backscattering problem,
i.e., for the problem when the angle of observation θ′ is equal to minus
angle of incident wave θ, θ′ = −θ. It can be proved in this case that

A(k , θ,−θ) ≈ −1

2
F(∇ ~W )(2kθ) + F(V )(2kθ), k → +∞.

This fact justifies the following definition

Definition

The inverse backscattering Born approximation V b
B(x) for the operator H4

is defined as

V b
B(x) := F−1

(
A

(
k

2
, θ,−θ

))
(x) =

=
1

(2π)n

∫
R+×S2

k2e−ik(x ,θ)A

(
k

2
, θ,−θ

)
dθ dk.
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In the absence (in general) of uniqueness of inverse backscattering problem
the following result is valid.

Theorem (Reconstruction of singularities)

Suppose that ~W belongs to the weighted Sobolev space W 1
p,δ(R3) and V

belongs to Lp
δ (R3) where 3 < p <∞ and δ > 3

p′ . Then the difference

V b
B(x)−

(
V (x)− 1

2
∇ ~W (x)

)
∈W t

2 (R3) (modC∞(R3))

for any t < 3
2 .

This theorem means that using the inverse backscattering Born
approximation we can uniquely determine all main singularities of the
combination V (x)− 1

2∇ ~W (x) since

W
3
2
2 (R3) ⊂W

3
p
p (R3), 3 < p <∞.

Moreover, any smooth bounded domain (p =∞) can be uniquely
determined using this Born approximation.
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Especially transparent (and in what sense final) results are obtained in the
one-dimensional case. We have in this case the equation

Hku(x) := u(4)(x) + q1(x , |u|)u′(x) + q0(x , |u|)u(x) = k4u(x), x ∈ R,

where u(x) denotes, for example, the deflection (displacement) at the
point x of the ideal beam, k 6= 0 is real number and the nonlinear
potentials q1 and q0 are complex-valued (in general) functions which are
integrable in the space coordinate and they are Lipschitz in the space of
nonlinearities.
We use the usual Lebesgue Lp(R) spaces and Sobolev spaces Hs(R), with
the norm

‖f ‖2Hs(R) =

∞∫
−∞

(1 + |ξ|2)s |F f (ξ)|2 dξ,

where F f is the Fourier transform of f

F f (ξ) =
1√
2π

∞∫
−∞

e ixξf (x) dx .
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In the problems which we consider the main role is played by the special
solutions of the equation H4u = k4u, i.e., the solutions of the form

u(x , k) = e ikx + usc(x , k),

where the scattered part usc satisfy the Sommerfeld radiation conditions at
the infinity in the one-dimensional case. In that case usc is the unique
solution of the so-called Lippmann-Schwinger integral equation

usc = −
∞∫
−∞

G+
k (|x − y |)(q1(y , |u|)u′(y) + q0(y , |u|)u(y)) dy ,

where G+
k is the outgoing fundamental solution of the one-dimensional

be-Helmholtz operator d4

dx4
− k4, i.e., the kernel of the integral operator

(
d4

dx4
− k4 − i0)−1 =

1

2k2

(
(− d2

dx2
− k2 − i0)−1 − (− d2

dx2
+ k2)−1

)
.
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This function G+
k (|x |) is equal to

G+
k (|x |) =

ie i |k||x | − e−|k||x |

4|k |3
.

The derivative of G+
k with respect to x can be calculated as

(G+
k (|x |))′x =

−e i |k||x | + e−|k||x |

4k2
sign(x), x 6= 0.

It can be mentioned here that G+
k satisfies for any k > 0 the

one-dimensional Sommerfeld radiation conditions at the infinity in the form(
∂

∂|x |
− ik

)
G+
k (|x |) = o(1), |x | → ∞,

(
∂

∂|x |
− ik

)
d2

dx2
G+
k (|x |) = o(1), |x | → ∞.

This function G+
k (|x |) and its derivative satisfy the following uniform

estimates

|G+
k (|x |)| ≤ 1

2|k|3
, |(G+

k (|x |))′x | ≤
1

2k2
.
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Using these estimates for G+
k we can prove that for |k| ≥ k0 there is a

unique solution of this Lippmann-Schwinger equation as the limit in

W 1
∞(R) of usc = lim

j→+∞
u
(j)
sc , where uj = u0 + u

(j)
sc and

u
(j)
sc = −

∞∫
−∞

G+
k (|x − y |)(q1(y , |uj−1|)u′j−1 + q0(y , |uj−1|)uj−1) dy ,

for j = 1, 2, ... and u
(0)
sc = 0. This solution satisfies the estimates

‖u − uj‖L∞(R) ≤
Cj

|k |2+j
, ‖u′ − u′j‖L∞(R) ≤

Cj

|k |j+1

uniformly in |k| ≥ k0, where k0 depends on the norm in L1(R) of the
potentials q0 and q1 in the space coordinate uniformly in |u| in some range
of its changes. In particular,

‖usc‖W 1
∞(R) ≤

2C0

|k |
.

V.Serov (University of Oulu) 20 / 33



These solutions for fixed positive k ≥ k0 admit the following asymptotical
representations when x → ±∞ :

u(x , k) = a(k)e ikx + o(1), u(x , k) = e ikx + b(k)e−ikx + o(1),

respectively, where the coefficients a(k) and b(k) are defined as

a(k) = 1− i

4k3

∞∫
−∞

e−iky (q1(y , |u|)u′(y) + q0(y , |u|)u(y)) dy

b(k) = − i

4k3

∞∫
−∞

e iky (q1(y , |u|)u′(y) + q0(y , |u|)u(y)) dy

and they are called the ”transmission” and the ”reflection” coefficients,
respectively. Defining the solution u(x , k) for negative k as
u(x , k) := u(x ,−k) with u′(x , k) := u′(x ,−k) we obtain that
a(k) = a(−k) and b(k) = b(−k) for negative k.
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Thus, for negative values of k ≤ −k0

a(k) = 1− i

4k3

∞∫
−∞

e−iky (q1(y , |u|)u′(y) + q0(y , |u|)u(y)) dy

b(k) = − i

4k3

∞∫
−∞

e iky (q1(y , |u|)u′(y) + q0(y , |u|)u(y)) dy

We are interested further only the reflection coefficient. We put b(k) = 0
for |k | < k0. Hence, we have well-defined the reflection coefficient b(k) for
all k ∈ R. The inverse problem that considered here is to extract some
information about the potentials q0 and q1 (more precisely, about q0(x , 1)
and q1(x , 1)) by the knowledge of the reflection coefficient b(k).
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The properties of u(x , k) (usc → 0) allow us to conclude that for k → +∞

b(k) ≈ − i

4k3

∞∫
−∞

e i2ky (ikq1(y , 1) + q0(y , 1)) dy .

Using integration by parts in the latter formula we obtain the
approximation

b(k) ≈ − i
√

2π

4k3
F(β)(2k)

or

b

(
k

2

)
≈ − i2

√
2π

k3
F(β)(k),

where β(y) = −q′1(y ,1)
2 + q0(y , 1). This asymptotic leads to the direct Born

approximation

uB(x , k) = e ikx − i
√

2π

4k3
F(β)(2k)e−ikx ,

i.e., we may substitute our scattering solution by this formula which
includes only the potential β.
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The asymptotical representations for u(x , k) for large x can be considered
as the analogue of the one-dimensional Sommerfeld radiation conditions
for this operator of order 4. But what is more important, the asymptotic of
u(x , k) (or of b) for large k justifies the following definition which plays
the crucial role in the inverse scattering problem.

Definition

The inverse scattering Born approximation VB(x) of the potential β is
defined by

VB(x) := F−1
(

i

2
√

2π
k3b

(
k

2

))
,

where F−1 denotes the inverse Fourier transform on the line.

This equality must be considered in the sense of tempered distributions.
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Since u = lim
j→+∞

uj in W 1
∞(R) we may introduce a sequence for the inverse

Born approximation VB by

VB,j := F−1
(

i

2
√

2π
k3bj

(
k

2

))
, j = 0, 1, 2, ...

where the approximation for reflection coefficient is defined for positive
and negative k as

bj(k) = − i

4k3

∞∫
−∞

e iky (q1(y , |uj |)u′j(y) + q0(y , |uj |)uj(y)) dy , k > 0,

and

bj(k) = − i

4k3

∞∫
−∞

e iky (q1(y , |uj |)u′j(y) + q0(y , |uj |)uj(y)) dy , k < 0,

respectively.
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Then the reflection coefficient b(k) can be obtained as the limit

b(k) = lim
j→∞

bj(k)

uniformly in |k| ≥ k0. But it is more remarkable that

VB(x)− VB,j(x) ∈ Hs(R), j = 0, 1, 2, ...,

for any s < j + 1
2 . There is also the following formula (it can be easily

checked) :

VB,0(x) = <(β)(x) +
1

π
p.v .

∞∫
−∞

=(β)(y)

x − y
dy (modC0(R)),

where C0(R) denotes the set of all continuous functions that vanish at the
infinity. The same formula holds also for VB,1 but it is more involved and
we need more conditions for the nonlinearities.
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We assume now that

q0(x , 1 + s) = q0(x , 1) + q∗0(x , s∗0 )s,

q1(x , 1 + s) = q1(x , 1) + q∗1(x , s∗1 )s + q∗∗1 (x , s∗1 )s2, |s∗0 |, |s∗1 | < |s|,

where q0(x , 1), q1(x , 1) belong to L1(R) and W 1
1 (R), respectively, and

|q∗0(x , s∗0 )| ≤ h0(x), |q∗∗1 (x , s∗1 )| ≤ h1(x)

with h0 and h1 from L1(R) and with q∗1(x , 1) from L1(R)∩ Lp(R) for some
p > 1. Under these conditions we have also that

VB,1(x) = <(β)(x) +
1

π
p.v .

∞∫
−∞

=(β)(y)

x − y
dy (modC0(R)).
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We are in the position now to formulate the main result.

Theorem

If q0(x , |u|) (q0(x , 1) ∈ L1) and q1(x , |u|)(q1(x , 1) ∈W 1
1 ) are as before

then the inverse scattering Born approximation VB admits the
representation

VB(x) = <(β)(x) +
1

π
p.v .

∞∫
−∞

=(β)(y)

x − y
dy (modC0(R))

where β(x) = −q′1(x ,1)
2 + q0(x , 1).

Corollary

If q0, q1 and β are as in Theorem and in addition are real-valued, then the
difference

VB(x)− β(x) ∈ C0(R).
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In order to obtain this result we were needed to calculate precisely the
so-called ”first” nonlinear term in the Born sequence and investigate its
smoothness (using this precise form). Without it we are not able to obtain
the required result. Indeed, let us substitute u(x , k) = e ikx + usc(x , k) into
b(k) then it can be easily seen that

VB(x) = β(x) + Vrest(x) (mod C∞(R)).

In order to estimate the smoothness of Vrest we first remark that

|k3bsc(k)| ≤ C

|k|
, |k | ≥

√
2c0,

where bsc is a part of b(k) which corresponds to usc . This implies that

‖Vrest‖2Ht(R) ≤ C

∞∫
√
2c0

(1 + k2)t

k2
dk <∞

for any t < 1
2 . Using then Sobolev imbedding theorem we obtain that for

arbitrary positive ε (small enough)

Vrest(x) ∈W
1
p
−ε

p (R), 2 ≤ p <∞.
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There is an explanation why we need to investigate the first nonlinear term
in the Born series (in addition). The smoothness of Vrest shows that we
are not able to consider p =∞. It means that if we do not use the first
nonlinear term then it is possible to reconstruct any singularity from Lp

with p <∞ but not from L∞ (i.e., jumps).
There is one more corollary.

Corollary

If q0, q1 and β are as in Theorem and =(β) ∈ H r (R) for r > 1
2 , then the

difference
VB(x)−<(β)(x) ∈ C0(R).

Remark

According to these corollaries, if q1 is smooth enough (or =(β) in the
complex case), then we can recover any local Lp-singularities and any
jumps of the unknown potential q0(x , 1) using the Born approximation.
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Let us consider now linear one-dimensional 4th order equation in the
self-adjoint form

u(4)(x) + 2iq(x)u′(x) + iq′(x)u(x) + V (x)u(x) = k4u(x), x ∈ R,

where q and V are real-valued functions. In that case we can prove the
following result (which is much better than the previous theorem and
corollaries w.r.t. the reconstruction of the singularities of unknowns)

Theorem

Assume that the potentials q(x) and V (x) belong to the Sobolev space
W 1

1 (R) and the Lebesgue space L1(R), respectively. Then

VB(x)− V (x) ∈ C0(R),

i.e. the difference is continuous everywhere.
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Remark

This theorem shows that all singularities and all jumps of the unknown
potential V (x) can be obtained exactly by the inverse scattering Born
approximation. In particular (this is the most practical application of this
result), we can prove that for the function V (x) being the characteristic
function of an interval on the line, this interval is uniquely determined by
the scattering data. Moreover, in the class of such potentials we have
uniqueness result of the inverse scattering problem.
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Thanks very much for your attention !
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