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Localized Travelling Waves in nonlocal NLS Lattices

• Discrete nonlinear Schrödinger equation (DNLS) in 1-D

iψ̇n(t) +
ψn+1(t)− 2ψn(t) + ψn−1(t)

h2 + f (ψn+1, ψn, ψn−1) = 0

• General nonlinear term f :
1 Cubic DNLS, f = |ψn|2 ψn

2 Ablowitz-Ladik, f = |ψn|2 (ψn+1 + ψn−1)
3 Salerno model

f = 2α |ψn|2 ψn + (1− α) |ψn|2 (ψn+1 + ψn−1)

4 Saturable nonlinearity

f =
ν |ψn|2

1 + µ |ψn|2
ψn

5 Translationally invariant model

f =α1 |ψn|2 ψn + α2 |ψn|2 (ψn+1 + ψn−1) + α3ψ
2
n
(
ψ̄n+1 + ψ̄n−1

)
. . .+ α10

(
|ψn+1|2 ψn−1 + |ψn−1|2 ψn+1

)
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Localized Travelling Waves in nonlocal NLS Lattices Nonlinear Waves in Discrete NLS

Stationary solutions ψn(t) = φneiωt satisfy the second-order difference map

−ωφn +
φn+1 − 2φn + φn−1

h2 + f (φn+1, φn, φn−1) = 0

Two solutions: on-site and inter-site discrete solitons
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Localized Travelling Waves in nonlocal NLS Lattices Nonlinear Waves in Discrete NLS

• Existence Solitons in DNLS with saturable nonlinearity,
• two types of solutions: periodic and vanishing at infinity,
• Calculus of Variations, Nehari manifolds and Mountain Pass argument.
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Localized Travelling Waves in nonlocal NLS Lattices Nonlinear Waves in Discrete NLS

Problem set-up

Consider the discrete NLS with saturable nonlinearity

iψn + ψn+1 + ψn−1 − 2ψn +
ν |ψn|2

1 + µ |ψn|2
ψn = 0

where µ > 0 and ν 6= 0.
Standing wave solution : ψn = exp(−iωt)un, un ∈ R Then,

−∆un − ωun = f (un), f (u) =
νu3

1 + µu2 .

We consider two types of solutions:

(a) k-periodic, i.e. un+k = un;

(b) vanishing at infinity, i.e. limn→±∞un = 0, un ∈ l2.
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Localized Travelling Waves in nonlocal NLS Lattices Nonlinear Waves in Discrete NLS

Existence Theorem

Theorem
Suppose that either

ω < 0 and ω + ν/µ > 0 or ω > 4 and ω + ν/µ < 4.

Then for every k ≥ 2 there exist two nontrivial k-periodic solutions ±u(k) as well as two
nontrivial solution ±u ∈ l2, of equation

−∆un − ωun = f (un).

If ω < 0, then uk and u are strictly positive. Moreover, the solution u decays
exponentially at infinity, i.e.

|un| ≤ Ce−a|n|,

with C > 0 and a > 0.
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Localized Travelling Waves in nonlocal NLS Lattices Nonlinear Waves in Discrete NLS

Variational Approach

• Introduce functionals Jk and J on the spaces of k-periodic sequences and l2,
respectively, whose critical points are solutions of equation −∆un − ωun = f (un).

• To produce nontrivial critical points, we use Nehari manifold Nk , N. These are C1

submanifolds of the spaces Xk , X .
• On Nehari manifolds Jk and J are bounded below by positive constants.
• We minimize Jk and J over Nk ,N.
• A minimum point of the functional over the Nehari manifold, this is automatically a

solution of equation −∆un − ωun = f (un).

• In the periodic case Nk is finite dimensional. The second part of our Theorem
concerning l2 solutions is more involved because the functional J does not satisfy
the Palais–Smale condition. Our idea is to pass to the limit as k →∞.
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Localized Travelling Waves in nonlocal NLS Lattices Nonlinear Waves in Discrete NLS

Assumptions

We consider the following equation

−∆u − ωu = σf (u), σ = ±1, ω < 0

We suppose that the nonlinearity f (t) satisfies the following assumptions in which

F (t) =

∫ t

0
f (s)ds

is the primitive function of f (t)

(h1) f (t) = o(t) as t → 0,

(h2) limt→±∞
f (t)

t = l <∞,

(h3) f ∈ C1(R) and f (t)t < f ′(t)t2 for t 6= 0,

(h4) lim[ 1
2 f (t)t − F (t)] =∞ as t → ±∞.

Xk the space of all k–periodic sequences, X = l2 with (·, ·)k and (·, ·) the natural inner
products.
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Localized Travelling Waves in nonlocal NLS Lattices Nonlinear Waves in Discrete NLS

The functionals J and Jk

• We define the bounded and self-adjoint operator L = −∆− ω acting either on Xk or
on X .
• we introduce the action functionals

Jk (u) =
1
2

( Lu, u )k −
∑
Qk

F (un), Qk =
{

k ∈ Z : −[
k
2

] ≤ n ≤ k − [
k
2

]− 1
}

J(u) =
1
2

( Lu, u )−
∑
Z

F (un)

• Jk , J are C1–functionals and the derivatives are given by

〈 J ′k (u), v 〉 = ( Lu, v )k −
∑
Qk

f (un)vn,

〈 J ′(u), v 〉 = ( Lu, v )−
∑
Z

f (un)vn

for any v ∈ Xk and v ∈ X respectively.
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Localized Travelling Waves in nonlocal NLS Lattices Nonlinear Waves in Discrete NLS

Remark on J and Jk

Critical points of Jk and J are k-periodic and l2-solutions of

−∆u − ωu = σf (u), σ = ±1, ω < 0

• σ = 1, a solution of the difference equation is a ground state solution if it minimizes
the action among all solution of the same type.
• σ = −1 ground states are solutions that maximize the action.
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Localized Travelling Waves in nonlocal NLS Lattices Nonlinear Waves in Discrete NLS

Nehari Manifolds associated with functionals J, Jk

Nehari manifolds are defined as follows

Nk =
{

v ∈ Xk : 〈 J ′k (u), v 〉 = 0, v 6= 0
}
⊂ Xk

N =
{

v ∈ X : 〈 J ′(u), v 〉 = 0, v 6= 0
}
⊂ X

Let Ik (u) = 〈 J ′k (u), v 〉, I(u) = 〈 J ′(u), v 〉 . These are C1 functionals and

〈I′k (u), v〉 = 2( Lu, v )k −
∑
Qk

[f (un) + f ′(un)un]vn,

〈I′(u), v〉 = 2( Lu, v )−
∑
Z

[f (un) + f ′(un)un]vn.

Lemma
The sets Nk and N are nonempty closed C1 submanifolds in Xk and X , respectively. The
derivatives I′k and I′ are nonzero on corresponding Nehari manifolds. Moreover, there
exists β0 > 0 such that ‖u‖k ≥ β0, u ∈ Nk , and ‖u‖ ≥ β0, u ∈ N.
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Localized Travelling Waves in nonlocal NLS Lattices Nonlinear Waves in Discrete NLS

Minimization problem

The tangent spaces TuNk and TuN at u ∈ Nk or u ∈ N, respectively, are

TuNk =
{

v ∈ Xk : 〈 I′k (u), v 〉 = 0
}
, TuN =

{
v ∈ X : 〈 I′(u), v 〉 = 0

}
,

and the line Ru = { tu : t ∈ R } is a transverse line.

Lemma
For u ∈ Nk the function Jk (tu), t > 0, has a unique critical point at t = 1 which is,
actually, a global maximum. The same statement holds for N and J.

Minimum points of Jk and J on corresponding Nehari manifolds are solutions of equation
−∆u − ωu = σf (u). To prove our main result, we consider the following minimization
problems

mk = inf{Jk (v) : v ∈ Nk} and m = inf{J(v) : v ∈ N} .
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Localized Travelling Waves in nonlocal NLS Lattices Nonlinear Waves in Discrete NLS

Minimization results (Pankov & Rothos, 2008)

Theorem
Assume that the nonlinearity satisfies (h1) – (h4) and either σ = 1, ω < 0 and
l + ω > 0, or σ = −1, ω > 4 and −l + ω < 4. Then for every k > 1 equation
Lu = σf (u) possesses a nontrivial k-periodic ground state solution u(k) ∈ Xk . Moreover,
in case when f is odd, i.e. f (−u) = −f (u), and σ = 1 there are two nontrivial ground
states ±u(k) and ±u(k) > 0.

Theorem
• There exists a nontrivial ground state solution u ∈ l2 and u decays exponentially fast

|un| ≤ Ce−α|n|

for some α > 0 and C > 0. Moreover, if f is odd and σ = 1, then −u is also a
ground state solution and ±u > 0.
• Let uk ∈ Xk be the solution obtained in that Theorem. Then there exists a ground

state solution u ∈ l2 and bk ∈ Z such that

‖uk (·+ bk )− u(·)‖k → 0

as k →∞.
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Localized Travelling Waves in nonlocal NLS Lattices Nonlinear Waves in Discrete NLS

Two specific nonlinearities

Two nonlinearities not covered by our results:
•

f (u) =
ν|u|p+1

1 + µ|u|p , p 6= 2

•
f (u) = χ(1− exp(−a|u|p))u χ > 0, p > 0, a > 0.

Replace

(h4) lim[
1
2

f (t)t − F (t)] =∞, as t → ±∞

by
(h5) the function g(t) = f (t)− lt is bounded.
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Localized Travelling Waves in nonlocal NLS Lattices Nonlinear Waves in Discrete NLS

Results under (h5)

Theorem
Assume that the nonlinearity satisfies (h1) – (h3) and (h5), and either σ = 1, ω < 0,
l + ω > 0 and l + ω 6∈ σk , or σ = −1, ω > 4, −l + ω < 4 and −l + ω 6∈ Xk . Then for
every k > 1 equation Lu = σf (u) possesses a nontrivial k-periodic ground state solution
u(k) ∈ Xk . Moreover, in case when f is odd, i.e. f (−u) = −f (u), and σ = 1 there are two
nontrivial ground states ±u(k) and ±u(k) > 0.

Theorem
Assume that the nonlinearity satisfies (h1) – (h3) and (h5), and either σ = 1, ω < 0 and
l + ω > 0, or σ = −1, ω > 4 and −l + ω < 4. Then there exists a nontrivial ground
state solution u ∈ l2 of equation Lu = σf (u), and u decays exponentially fast

|un| ≤ Ce−α|n|

for some α > 0 and C > 0. Moreover, if f is odd and σ = 1, then −u is also a ground
state solution and ±u > 0.

V.M. Rothos (AUTh) “ Nonlocal NLS” 30 April 2021 17 / 58



Localized Travelling Waves in nonlocal NLS Lattices Travelling Waves in DNLS model

Traveling waves in lattices

DNLS
iψ̇n(t) +

ψn+1(t)− 2ψn(t) + ψn−1(t)
h2 + f (ψn+1, ψn, ψn−1) = 0

Moving into the travelling frame z = hn − 2ct gives a differential advance-delay
equation. If ψn(t) = φ(z)eiωt

2icφ′(z) =
φ(z + h)− 2φ(z) + φ(z − h)

h2 − ωφ(z)

+ f (φ(z + h), φ(z)φ(z − h))

Travelling waves satisfy the constraints:

u1(t) = u0(t − τ)eiθ, u2(t) = u0(t − 2τ)e2iθ, etc.
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Localized Travelling Waves in nonlocal NLS Lattices Travelling Waves in DNLS model

Radiationless Solitons

• Localised solutions to a differential difference equation.
• Waves travel across a lattice without shedding any radiation.
• Homoclinic orbit to the zero state in a travelling frame.
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Localized Travelling Waves in nonlocal NLS Lattices Travelling Waves in DNLS model

Difficulties

• In general, traveling wave solutions are weakly non-local.
• Eigenvalues on the imaginary axis in the linear spectrum give rise to radiation modes.
• Number of eigenvalues is finite for c 6= 0 but increases as c → 0
• In general there is at least one resonance.
• Amplitude of radiation modes are generally exponentially small in terms of a

bifurcation parameter.
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Localized Travelling Waves in nonlocal NLS Lattices Travelling Waves in DNLS model

Reformulation of existence problem

Introduce parameters κ ∈ R+, β ∈ [0, π]

ω =
2
h
βc +

2
h2 (cos(β) cosh(κ)− 1),

c =
1

hκ
sin(β) sinh(κ)

Scale out h using φ(z) = 1
h Φ(Z )eiβZ ,Z = z

h . New differential advance-delay equation

i sin(β)
(

2 sinh(κ)
κ

dΦ(Z )
dZ − Φ(Z + 1) + Φ(Z − 1)

)
+ cos(β)(2 cosh(κ)Φ(Z )− Φ(Z + 1)− Φ(Z − 1))

−f
(
Φ(Z + 1)eiβ ,Φ(Z ),Φ(Z − 1)e−iβ) = 0
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Localized Travelling Waves in nonlocal NLS Lattices Travelling Waves in DNLS model

Linear Spectrum

Dispersion relation for the linear equation is obtained using Φ(Z ) = epZ

D(p;κ, β) ≡ 2 cos(β)(cosh(p)− cosh(κ))

+ 2i sin(β)

(
sinh(p)− sinh(κ)

κ
p
)

= 0

• there are finitely many imaginary roots p = ikn, n = 1, . . . ,m, ∀κ > 0 and β ∈ (0, π)

• if κ = 0, there exists a double root k = 0 of D(ik ; 0, β)

• if κ = 0 and β = π/2 the zero root k = 0 is a triple root of D(ik ; 0, β)

• if κ = 0 and β ∈
(
β0,

π
2

)
with β0 ≈ π

13 , there exists only one imaginary root besides
the double zero root.
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Localized Travelling Waves in nonlocal NLS Lattices Travelling Waves in DNLS model

Linear Spectrum
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Localized Travelling Waves in nonlocal NLS Lattices Travelling Waves in DNLS model

Methods

1 Analysis of the normal form near κ = 0 and β = π/2 (D.P.,V.Rothos, Physica D
202, 16 (2005)).

2 Analysis of persistence of homoclinic orbits near the line κ > 0 and β = π/2
(D.P.,T.Melvin, A. Champneys, Physica D 236, 22 (2007)).

3 Stokes constant computation. Analysis of Stokes phenomena in a beyond all orders
expansion for κ = 0 and β 6= π/2 (O. Oxtoby, I. Barashenkov, nlin/0610059 (2006)).

4 Pseudo-spectral decomposition (for FK-model (Rothos et al Physica D 2003))
Numerical solutions of the differential advance-delay equation for κ > 0 and any β
(D.P.,T.Melvin, A. Champneys, Physica D 236, 22 (2007)).
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Localized Travelling Waves in nonlocal NLS Lattices Quasi-Periodic Travelling Waves in nonlocal DNLS

• Problem set-up
• Variational Methods to prove the existence of periodic traveling waves
• Bifurcation of periodic traveling waves in nonlocal DNLS equations
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Localized Travelling Waves in nonlocal NLS Lattices Quasi-Periodic Travelling Waves in nonlocal DNLS

Problem set-up. Advance-Delay Eqn

In some approximation the equation of motion is the nonlocal discrete NLS

ıu̇n =
∑
m 6=n

Jn−m(un − um) + |un|2un, n ∈ Z , (1.1)

where the long-range dispersive coupling is taken to be either exponentially Jn = Je−β|n|

with β > 0, or algebraically Jn = J|n|−s with s > 0, decreasing with the distance n
between lattice sites. In both cases the constant J is normalized such that

∑∞
n=1 Jn = 1,

for all β or s. The parameters β and s are introduced to cover different physical
situations from the nearest-neighbor approximation (β →∞, s →∞) to the
quadrupole-quadrupole (s = 5) and dipole-dipole (s = 3) interactions.
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Localized Travelling Waves in nonlocal NLS Lattices Quasi-Periodic Travelling Waves in nonlocal DNLS

The Hamiltonian H and the number of excitations N

H =
1
2

∑
n,m∈Z

Jn−m|un − um|2 −
1
2

∑
n∈Z

|un|4, and N =
∑
n∈Z

|un|2 (1.2)

are conserved quantities corresponding to the set of (1.1).
It should be also noted that the derivation of a discrete equation from the
Gross-Pitaevskii equation produces at the intermediate step a fully nonlocal discrete NLS
equation for the coefficients of the wave function expansion over the complete set of the
Wannier functions. (Panayotaros et al, 2014)

V.M. Rothos (AUTh) “ Nonlocal NLS” 30 April 2021 27 / 58



Localized Travelling Waves in nonlocal NLS Lattices Quasi-Periodic Travelling Waves in nonlocal DNLS

We consider the DNLS equation with nonlocal linear part:

iu̇n =
∑
j∈N

aj ∆jun + f (un+1, un, un−1), un : R+ → C, n ∈ Z (1.3)

where f ∈ C(R+,R) for R+ := [0,∞), f (0) = 0. ∃ s > 0, µ > 1, c1 > 0, c2 > 0 and
r̄ > 0 such that

(H1) |f (w)| ≤ c1(ws + 1), c2(ws+1 − 1) ≤ F (w), µF (w)− r̄ < f (w)w

for any w ≥ 0, where F (w) =
w∫
0

f (z)dz. Furthermore, lim supw→0+
f (w)/w s̃ <∞ for a

constant s̃ > 0.
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Localized Travelling Waves in nonlocal NLS Lattices Quasi-Periodic Travelling Waves in nonlocal DNLS

Furthermore, (1.3) can be rewritten into a standard form

iu̇n =
∑
m 6=n

a|m−n| (um − un) + f (|un|2)un, n ∈ Z. (1.4)

It is well known that (1.4) conserves two dynamical invariants∑
n∈Z

|un|2 − the norm,

∑
n∈Z

−1
2

∑
m 6=n

a|m−n| |um − un|2 + F (|un|2)

 − the energy.

We are interested in the existence of traveling wave solutions un(t) = U(n − νt)e it of
(1.3) or (1.4) with a quasi periodic function U(z), z = n − νt and some ν 6= 0.
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Localized Travelling Waves in nonlocal NLS Lattices Quasi-Periodic Travelling Waves in nonlocal DNLS

• We study the existence of traveling wave solutions of the form un(t) = U(n− νt)e it ,
i.e. we are interested in the equation

− ν iU ′(z) =
∑
j∈N

aj∂jU(z) + f (|U(z)|2)U(z) , (1.5)

where z = n − νt , ν 6= 0 and ∂jU(z) := U(z + j) + U(z − j)− 2U(z). We are
interested in the existence of quasi periodic solutions U(z) of (1.5).
• We introduce a function

Φ(x) :=
4
x

∑
j∈N

aj sin2
[x

2
j
]
.

where Φ ∈ C(R \ {0},R), Φ is odd, and Φ(x)→ 0 as |x | → ∞.
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Localized Travelling Waves in nonlocal NLS Lattices Quasi-Periodic Travelling Waves in nonlocal DNLS

Critical Point Theory

Let H be a Hilbert space and let J ∈ C1(H,R). Suppose H = H1 ⊕ H2 for closed linear
subspaces, and let e1, e2, · · · be the orthonormal basis of H1.
Let us put H1

n := span {e1, e2, · · · , en} and Hn := H1
n ⊕ H2.

Let Pn be the orthogonal projection of H onto Hn. Set Jn := J/Hn - the restriction of
functional J on subspace Hn - and so ∇Jn(x) = Pn∇J(x) if x ∈ Hn.
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Localized Travelling Waves in nonlocal NLS Lattices Quasi-Periodic Travelling Waves in nonlocal DNLS

Definition
If there are two positive constants α and β such that

J(x) ≥ 0 ∀x ∈ {x ∈ H1 | ‖x‖ ≤ β} ,
J(x) ≥ α ∀x ∈ {x ∈ H1 | ‖x‖ = β} ,
J(x) ≤ 0 ∀x ∈ {x ∈ H2 | ‖x‖ ≤ β} ,

J(x) ≤ −α ∀x ∈ {x ∈ H2 | ‖x‖ = β} ,

then J is said to satisfy the local linking condition at 0.
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Localized Travelling Waves in nonlocal NLS Lattices Quasi-Periodic Travelling Waves in nonlocal DNLS

Definition
We shall say that J satisfies the Palais-Smale (PS)∗-condition if any sequence {xn}n∈N in
H such that xn ∈ Hn, J(xn) ≤ c <∞ and Pn∇J(xn) = ∇Jn(xn)→ 0 as n→∞,
possesses a convergent subsequence.

Theorem (Li & Szulkin, J Diff Eqn 112, 1994)
Suppose

(I1) J ∈ C1(H,R) satisfies (PS)∗-condition.

(I2) J satisfies the local linking condition at 0.

(I3) ∀n, Jn(x)→ −∞ as ‖x‖ → ∞ and x ∈ Hn.

(I4) ∇J = A + C for a bounded linear self-adjoint operator A such that AHn ⊂ Hn,
∀n ∈ N and C is a compact mapping.

Then J possesses a critical point x̄ with |J(x̄)| ≥ α.
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Existence Results

Theorem (Feckan & Rothos, 2009)
Let (H1) hold and T > 0. Then for almost each ν ∈ R \ {0} and any rational
r ∈ Q ∩ (0, 1), there is a nonzero periodic traveling wave solution un(t) = U(n − νt)e it

of (1.3) with U ∈ C1(R,C) and such that

U(z + T ) = e2πr iU(z), ∀z ∈ R . (1.6)

Moreover, for any ν ∈ R \ {0} there is at most a finite number of r̄1, r̄2, · · · , r̄m ∈ (0, 1)
such that equation

−ν = Φ

(
2π
T

(r̄j + k)

)
has a solution k ∈ Z. Then for any r ∈ (0, 1) \ {r̄1, r̄2, · · · , r̄m} there is a nonzero quasi
periodic traveling wave solution un(t) = U(n − νt)e it with the above properties. In
particular, for any |ν| > R̄ and r ∈ (0, 1), there is such a nonzero quasi periodic traveling
wave solution.
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Bifurcation Results

When a nonresonance condition of Theorem 2 fails, then we have the following
bifurcation results.

Theorem (Feckan & Rothos, 2012)
Suppose f ∈ C2(R+,R) with f (0) = 0. If there are r̄1 ∈ (0, 1), ν ∈ RΦ \ {0} and T > 0
such that all solutions k1, k2, · · · , km1 ∈ Z of equation

−ν = Φ

(
2π
T

(r̄1 + k)

)
are either nonnegative or negative, and m1 > 0. Then for any ε > 0 small there are m1

branches of nonzero quasi periodic traveling wave solutions un,j,ε(t) = Uj,ε(n − νεt)e it of
(1.3) with Uj,ε ∈ C1(R,C), j = 1, 2, · · · ,m1, and nonzero velocity νε satisfying
Uj,ε(z + T ) = e2πr̄1ßUj,ε(z), ∀z ∈ R along with νε → ν and Uj,ε ⇒ 0 uniformly on R as
ε→ 0.
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Suppose that aj is decaying exponentially to 0. Let aj = e−j , hence we have the discrete
Kac-Baker interaction kernel. Then∑

j∈N

e−jexjı =
∑
j∈N

e(x i−1)j =
ex i−1

1− ex i−1

=
cos x + i sin x

e − cos x − i sin x
=

e cos x − 1 + e i sin x
e2 + 1− 2e cos x

.

Then, we derive

Φ(x) =
2
x

∑
j∈N

e−j − e cos x − 1
e2 + 1− 2e cos x

 =
2e(e + 1)(1− cos x)

(e − 1)x(e2 + 1− 2e cos x)
.

Applying our results for the specific function Φ we could prove the existence of
quasi-periodic traveling waves for DNLS equation with Kac-Baker interaction kernel.
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Nonlocal NLS equation: Problem set-up

The 1d nonlocal NLS equation (cubic and quintic terms):

i∂tψ + µψ = Lψ + sC[ψ, ψ̄]ψ + δQ[ψ, ψ̄]ψ (2.1)

C[ψ, ψ̄] :=

∫ +∞

−∞
R1(x − x ′)|ψ(x ′)|2dx ′, Q[ψ, ψ̄] :=

∫ +∞

−∞
R2(x − x ′)|ψ(x ′)|4dx ′ (2.2)

with s, δ = ±1 and the linear operator will be of the standard Schrödinger type

L = −(1/2)∂2
x + V (x).

This encompasses the double-well potential of the form:

V (x) = (1/2)Ω̂2x2 + V0sech2(x/ω)

with Ω̂ being the normalized strength of the parabolic trap and it is Ω̂� 1 in a quasi-1d
situation in BECs.
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Nonlocal NLS equation

• The competition of cubic and quintic terms can be systematically quantified.
• Fully nonlocal interactions both for the cubic and the quintic terms, rendering the

local case a straightforward special-case scenario.

For the kernels R1, R2 we will focus our considerations on either the Gaussian

Ri (x) =
1

σ
√
π

exp(−x2

σ2 )

or the exponential

Ri (x) =
1

2σ
exp(−|x |

σ
).

While the latter is more specifically relevant to the thermal nonlocal (optical) media and
to quadratic nonlinear materials, we also use the former due to the mathematical
simplicity of its kernel.
The key parameter here is the range of the nonlocal interaction parametrized by σ.
Notice that both kernels in the limit of σ → 0 tend to a genuinely local interaction (i.e.,
Ri (x)→ δ(x)).
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Two-mode Approximation

We develop the two-mode approximation in order to obtain a decomposition of the
solution ψ over the minimal basis of fundamental states.
We use an orthonormal basis composed by the wave functions

{φL, φR} ≡ {(u0 − u1)/
√

2, (u0 + u1)/
√

2},

where u0 and u1 are the ground state and the first excited state, respectively,
corresponding to the first two eigenvalues of L that are ω0 = 0.13282 and ω1 = 0.15571
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Figure: The ground state u0 and first excited state u1 of the potential are shown in the top
panel. The rotated orthonormal basis of φL and φR (with support, respectively, on the left and
right well) is shown in the bottom panels.
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The two-mode approximation is then defined as

ψ(x , t) = cL(t)φL(x) + cR(t)φR(x) (2.3)

where cL and cR are complex time-dependent amplitudes and the approximation consists
of the truncation of the higher modes within the expansion.
We notice that the action of the linear operator L on our basis elements is as follows:

Lψ = (ΩcL − ωcR)φL + (ΩcR − ωcL)φR

where Ω = (ω0 + ω1)/2 and ω = (ω1 − ω0)/2 are linear combinations of the two
eigevalues of L respectively to the solutions u0, u1.
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Nonlocal NLS equation

i ċLφL + i ċRφR = (ΩcL − µcL − ωcR)φL + (ΩcR − µcR − ωcL)φR +N (φL, φR)

Project the above equation onto the bases of φL,R . This involves some intgralls which
play a fundamental role.

η0 =

∫ ∫
R1(x − x ′)φ2

L(x ′)φ2
L(x)dx ′dx ,

η1 =

∫ ∫
R1(x − x ′)φ2

L(x ′)φ2
R(x)dx ′dx ,

η2 =

∫ ∫
R1(x − x ′)φ2

L(x ′)φL(x)φR(x)dx ′dx ,

η3 =

∫ ∫
R1(x − x ′)φL(x ′)φR(x ′)φL(x)φR(x)dx ′dx ,

η4 =

∫ ∫
R2(x − x ′)φ4

L(x ′)φ2
L(x)dx ′dx ,
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Figure: The overlap integrals η4,5,...,11 are given here as a function of the interaction range σ, for
the two kernels in order to appreciate the dominance of η4 with respect to the remaining terms
for the range σ < σc , where the term with prefactor η4 is not negligible with respect to the
overall dominant term η0.
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Figure: The overlap integrals η0, η1, η2, η3 and η4 are shown as a function of the interaction
range σ for the Gaussian (left) and exponential (right) kernels.
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Case I: The terms η0 and η4 are considered for
σ < σb = 2.96 (for Gaussian kernel)

i ċL = (Ω− µ)cL − ωcR + sη0|cL|2cL + δη4|cL|4cL

i ċR = (Ω− µ)cR − ωcL + sη0|cR |2cR + δη4|cR |4cR ,

or in action-angle decomposition
ρ̇L = ωρR sin θ

θ̇L = µ− Ω + ω ρR
ρL

cos θ − sη0ρ
2
L − δη4ρ

4
L,

 (2.4)

for θ = 0 (symmetric) and θ = π asymmetric solutions one has to solve (N = ρ2
L + ρ2

R)

δ3η3
4N4 + 3sη2

4η0N3 + (3δη4η
2
0 − η2

4(µ− Ω))N2 +

+(s3η3
0 − 2sδη0η4(µ− Ω))N − δη4ω

2 − η2
0(µ− Ω) = 0.
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Case II. σ > σb the integrals η0, η1, η4


ρ̇L = ωρR sin θ

θ̇L = µ− Ω + ω ρR
ρL

cos θ − sη0ρ
2
L − sη1ρ

2
R − δη4ρ

4
L.


θ = 0 (symmetric), θ = π (asymmetric) will be given by

δ3η3
4N4 + (3sη2

4η − sη2
4η1)N3 + (3δη4η

2 − η2
4(µ− Ω)− 2δη4ηη1)N2 +

+(s3η3 − 2sδηη4(µ− Ω)− sη1η
2
4)N − δη4ω

2 − η2(µ− Ω) = 0

with η here standing for ∆η = η0 − η1.
Case III. σ > σc the effect of the quintic terms is deemed to be negligible.

V.M. Rothos (AUTh) “ Nonlocal NLS” 30 April 2021 46 / 58



Nonlocal NLS equation

The Bifurcation Analysis
We introduce the population imbalance between the two wells,

z = (NL − NR)/N = (|cL|2 − |cR |2)/N, (2.5)

where NL,R = |cL,R |2 = ρ2
L,R and N = NL + NR . The reduced system is Hamiltonian with

H = 2ω
√

1− z2 cos θ − 1
2

sηNz2 − 1
2
δη4N2z2.

Note that η stands either for η0 (σ < σb) or for ∆η = η0 − η1 (σb < σ < σc).
Critical points (z, θ) = (0, 0) (symmetric) and (0, π) (asymmetric).
The stationary solutions representing the asymmetric branches are given by:

z2 = 1− 4ω2

(sηN + δη4N2)2 , θ = 0, π.

Taking z = 0, we get that

N = (−sη ±
√
η2 + 8δη4ω)/2δη4, N = (−sη ±

√
η2 − 8δη4ω)/2δη4. (2.6)

with Ncr
0 , Ncr

2 (correspond to the (-) signs in the left and right expressions of Eq. (2.6),),
Ncr

1 and Ncr
3 (correspond to the (+) signs).
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Figure: The critical values Ncr
0 , Ncr

1 (left panel) and Ncr
2 , Ncr

3 (right panel) whenever
(s, δ) = (1,−1) show when the bifurcations appear. More specificaly, the left panel corresponds
to the bifurcations that occur on the symmetric branch σ < 7.52 and the right panel for those
that occur on the antisymmetric one σ ≥ 7.52.
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From the Hamiltonian system

H = 2ω
√

1− z2 cos θ − 1
2

sηNz2 − 1
2
δη4N2z2,

one can reduce the dynamical evolution to a single second-order ODE:

z̈ = −4ω2z − (sηNz + δη4N2z)
√

4ω2 − 4ω2z2 − ż2

Figure: TThe phase space diagrams of the Hamiltonian system when s = 1 and δ = −1 with the
Gaussian kernel, for σ = 1, N = 5, and with Ncr

1 = 4.9862 (after the new fixed points are created
at (±0.4318, 0)). The left panel displays the region of phase space near the symmetric solution
(0, 0) (saddle) and the center panel the one near one of the asymmetric fixed points (0.4318, 0)
(center). The right panel shows the full phase space diagram of the system for N = 5.
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Numerical Simulations
The linear stability is analyzed by considering the standard linearization around the
stationary solutions ψ0 in the form

ψ(x , t) = ψ0 + ε(a(x)eλt + b∗(x)eλ
∗t ).

This yields the eigenvalue problem(
L1 L2

−L∗2 −L∗1

)(
a
b

)
= iλ

(
a
b

)
,

where the operators are defined as

L1φ =
[
L − µ+ sC[ψ0, ψ̄0] + δQ[ψ0, ψ̄0]

]
φ+ s

∫ +∞

−∞
K (x − x ′)ψ0(x)ψ∗0 (x ′)φ(x ′)dx ′

+2δ
∫ +∞

−∞
K (x − x ′)ψ0(x)ψ0(x ′)ψ∗0

2
(x ′)φ(x ′)dx ′

and

L2φ = s
∫ +∞

−∞
K (x − x ′)ψ0(x ′)ψ0(x)φ(x ′)dx +

2δ
∫ +∞

−∞
K (x − x ′)ψ0(x)ψ∗0 (x ′)ψ2

0(x ′)φ(x ′)dx ′

for any real function φ.
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Figure: The stationary solution branches for the case s = 1, δ = −1 when the interaction range is
σ = 0.1 expressed in terms of the normalized N as a function of µ. The analytical predictions are
denoted with the purple dash–dotted line while the numerically determined solutions are denoted
with the solid line that is blue when it is stable and red otherwise. The top left panel shows the
symmetric solutions, while the top right presents the antisymmetric ones, both including the
asymmetric bifurcations that emerge from them. The bottom panel presents a detail of the
symmetry-breaking effect, showcasing the quality of its approximation by the two-mode
expansion.
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Figure: This figure shows the same features as the previous one for the symmetric branch (top
left panel), the anti-symmetric branch (top right panel) and a zoom-in of the symmetry breaking
(bottom panel). However, the interaction range here is an order of magnitude larger, namely
σ = 1.
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Figure: Same as the previous two figures, but now for large nonlocality interaction range in the
case of σ = 8.
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Figure: Spatio-temporal contour plot of the density of the unstable solutions when σ = 1, for
s = 1 and δ = −1. In both cases, the weak perturbation added on top of the exact numerical
solution in the initial conditions has a projection along the unstable eigenmode. This projection,
for sufficiently long times (about 200 in the left panel and about 100 in the right panel), gets
amplified and eventually leads to a visible symmetry breaking in the profile of the state, µ = 0.19
and 0.25 (left and right, respectively).
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Figure: The numerically obtained trajectory of the solution for µ = 0.19, for times between 0 and
1500.
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Figure: The profiles of the solution for t = 100, 250 (first row), 500, 750 (second row), 1000 and
1500 (third row).
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Conclusions

Conclusions

• Discrete Solitons for Discrete NLS with saturable nonlinearities (Variational
Methods)
• Periodic Traveling Waves in Discrete NLS (Variational and Topological Methods)
• NLS with nonlocal cubic and quintic terms

• We systematically developed (two-mode approximation) two cubic-quintic ordinary
differential equations and assess the contributions of the long-range interactions in
each of the relevant prefactors, gauging how to simplify the ensuing dynamical system.

• We proceed to a dynamical systems analysis of the resulting pair of ordinary
differential equations.

• The relevant bifurcations, the stability of the branches and their dynamical
implications are examined both in the reduced (ODE) and in the full (PDE) setting.
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