Optimal management of stochastic shallow lakes

Michail Loulakis

School of Applied Mathematical and Physical Sciences, NTUA and Institute of Applied and Computational Mathematics, FORTH

joint with G. Kossioris (Crete), A. Koutsibela (NTUA) & PE Souganidis (Chicago)

Athens, May 7, 2021

oligotrophic vs eutrophic lakes

The nutrient content is usually measured in terms of P concentration.

```
\begin{split} \dot{P}(t) &= L(t) & \text{(P loading by natural and human activity)} \\ &- sP(t) & \text{(sedimentation, outflow)} \\ &+ \Phi\big(P(t)\big) & \text{(recycling from sediments)} \end{split}
```

Modelling the nutrient content

The nutrient content is usually measured in terms of P concentration.

$$\begin{split} \dot{P}(t) &= L(t) & \text{(P loading by natural and human activity)} \\ &- sP(t) & \text{(sedimentation, outflow)} \\ &+ \Phi\big(P(t)\big) & \text{(recycling from sediments)} \end{split}$$

Limnologists take Φ to be a sigmoid function, typically

$$\Phi(x) = r \frac{x^2}{m^2 + x^2}.$$

[Carpenter, Ludwig, Brock 1999]

Modelling the nutrient content

The nutrient content is usually measured in terms of P concentration.

$$\begin{split} \dot{P}(t) &= L(t) & \text{(P loading by natural and human activity)} \\ &- sP(t) & \text{(sedimentation, outflow)} \\ &+ \Phi \big(P(t) \big) & \text{(recycling from sediments)} \end{split}$$

Limnologists take Φ to be a sigmoid function, typically

$$\Phi(x) = r \frac{x^2}{m^2 + x^2}.$$

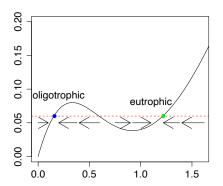
[Carpenter, Ludwig, Brock 1999]

With a change of variables $(x = \frac{P}{m}, \ a = \frac{L}{r}, \ b = \frac{sm}{r})$ the equation becomes

$$\dot{x}(t) = a(t) - bx(t) + \frac{x^2(t)}{1 + x^2(t)}.$$

$$\dot{x}(t) = a(t) - bx(t) + \frac{x^2(t)}{1 + x^2(t)}.$$

When b is not too high the lake may have 2 stable equilibria.



Solid black line: $y = bx - \frac{x^2}{1+x^2}$.

Dashed red line: y = a.

A welfare function

Farmers or industry have an interest to increase P loading, a.

Visitors prefer a clean lake, i.e. small x.

Suppose a community balances these needs and assigns value to the state of the lake

$$U(a,x) = \ln a - cx^2.$$

Given the current P concentration x, we are interested in the optimal loading $\{a(t): t \geq 0\}$ to maximise the welfare function

$$J(x, a(\cdot)) = \int_0^\infty e^{-\rho t} U(a(t), x(t)) dt$$

where $\{x(t): t \geq 0\}$ solves

$$\dot{x}(t) = a(t) - bx(t) + \frac{x^2(t)}{1 + x^2(t)}, \qquad x(0) = x.$$

Add multiplicative noise

[Grass, Kiseleva, Wagener 2015]

$$\begin{cases} dx(t) = \left(u(t) - bx(t) + \frac{x^2(t)}{x^2(t) + 1}\right) dt + \sigma x(t) dW(t), \\ x(0) = x \end{cases}$$
 (1)

and the value function

$$V(x) = \sup_{u \in \mathfrak{U}_x} \mathbb{E}\left[\int_0^\infty e^{-\rho t} \left[\ln u(t) - cx^2(t)\right] dt\right].$$

Admissible controls $u\in\mathfrak{U}_x$ should be positive, adapted processes in some filtered probability space such that

$$\mathbb{E}\left[\int_0^\infty e^{-\rho t} \ln u(t) dt\right] < \infty$$

and (1) has a unique strong solution.

DPP and HJB equation

The tool to characterise the value function V is the Dynamic Programming Principle (DPP):

$$V(x) = \sup_{u \in \mathfrak{U}_x} \mathbb{E}\left[\int_0^{\theta_u} e^{-\rho t} \left(\ln u(t) - cx^2(t)\right) dt + e^{-\rho \theta_u} V(x(\theta_u))\right].$$

 $\mathsf{DPP} + \mathsf{regularity}$ of V shows that V satisfies a HJB equation.

DPP and HJB equation

The tool to characterise the value function V is the Dynamic Programming Principle (DPP):

$$V(x) = \sup_{u \in \mathfrak{U}_x} \mathbb{E}\left[\int_0^{\theta_u} e^{-\rho t} \left(\ln u(t) - cx^2(t)\right) dt + e^{-\rho \theta_u} V(x(\theta_u))\right].$$

 $\mathsf{DPP} + \mathsf{regularity}$ of V shows that V satisfies a HJB equation. Issues

 Stochasticity — measurable selection problems in the proof of DPP The tool to characterise the value function V is the Dynamic Programming Principle (DPP):

$$V(x) = \sup_{u \in \mathfrak{U}_x} \mathbb{E}\left[\int_0^{\theta_u} e^{-\rho t} \left(\ln u(t) - cx^2(t)\right) dt + e^{-\rho \theta_u} V(x(\theta_u))\right].$$

 $\ensuremath{\mathsf{DPP}}\xspace + \ensuremath{\mathsf{regularity}}\xspace$ of V shows that V satisfies a HJB equation. Issues

- Stochasticity —> measurable selection problems in the proof of DPP
- ullet No a priori regularity for V. In fact we do not even know if V takes finite values.

DPP and HJB equation

The tool to characterise the value function V is the Dynamic Programming Principle (DPP):

$$V(x) = \sup_{u \in \mathfrak{U}_x} \mathbb{E}\left[\int_0^{\theta_u} e^{-\rho t} \left(\ln u(t) - cx^2(t)\right) dt + e^{-\rho \theta_u} V(x(\theta_u))\right].$$

 $\mathsf{DPP} + \mathsf{regularity}$ of V shows that V satisfies a HJB equation. Issues

- Stochasticity \longrightarrow measurable selection problems in the proof of DPP
- ullet No a priori regularity for V. In fact we do not even know if Vtakes finite values.
- Unbounded controls, the Hamiltonian may be infinite.

DPP and HJB equation

The tool to characterise the value function V is the Dynamic Programming Principle (DPP):

$$V(x) = \sup_{u \in \mathfrak{U}_x} \mathbb{E}\left[\int_0^{\theta_u} e^{-\rho t} \left(\ln u(t) - cx^2(t)\right) dt + e^{-\rho \theta_u} V(x(\theta_u))\right].$$

 $\mathsf{DPP} + \mathsf{regularity}$ of V shows that V satisfies a HJB equation. Issues

- Stochasticity \longrightarrow measurable selection problems in the proof of DPP
- ullet No a priori regularity for V. In fact we do not even know if Vtakes finite values.
- Unbounded controls, the Hamiltonian may be infinite.
- Boundary conditions at zero? at infinity?

Elementary properties

Implicit formula

$$x(t) = xZ_t + \int_0^t \frac{Z_t}{Z_s} \left(u(s) + \frac{x^2(s)}{1 + x^2(s)} \right) ds,$$

where $Z_t = e^{\sigma W_t - (b + \frac{\sigma^2}{2})t}$

Elementary properties

- Any solution $\{x(t): t \geq 0\}$ with $x(0) \geq 0$ remains positive at all times, \mathbb{P} -a.s.
- $\mathfrak{U}_x = \mathfrak{U}_y = \mathfrak{U}$ for all $x, y \geq 0$
- If $x_1(0) < x_2(0)$ and $u_1(t) < u_2(t)$, P-a.s., then $x_2(t) - x_1(t) \ge (x_2(0) - x_1(0))Z_t$, P-a.s.

Estimates for V from the SDE

•
$$\sigma^2 \ge \rho + 2b \Rightarrow V(x) = -\infty, \ \forall x \ge 0.$$

 $\sigma^2 < \rho + 2b \Rightarrow V(x) \in \mathbb{R}, \ \forall x \ge 0$ (assume hereafter).

Estimates for V from the SDE

- $\bullet \ \sigma^2 > \rho + 2b \Rightarrow V(x) = -\infty, \ \forall x > 0.$ $\sigma^2 < \rho + 2b \Rightarrow V(x) \in \mathbb{R}, \ \forall x \ge 0$ (assume hereafter).
- If $0 \le x < y \le K$, there exist constants $C_1(K), C_2 > 0$ such that

$$-C_1(K) \le \frac{V(y) - V(x)}{y - x} \le -C_2.$$

In particular V is strictly decreasing and locally Lipschitz. DPP ok.

- $\bullet \ \sigma^2 > \rho + 2b \Rightarrow V(x) = -\infty, \ \forall x > 0.$ $\sigma^2 < \rho + 2b \Rightarrow V(x) \in \mathbb{R}, \ \forall x \ge 0$ (assume hereafter).
- If $0 \le x < y \le K$, there exist constants $C_1(K), C_2 > 0$ such that

$$-C_1(K) \le \frac{V(y) - V(x)}{y - x} \le -C_2.$$

In particular V is strictly decreasing and locally Lipschitz. DPP ok.

• Set $A = c(\rho + 2b - \sigma^2)^{-1}$. There exist constants K_1, K_2 s.t.

$$K_1 \le V(x) + A\left(x + \frac{1}{b+\rho}\right)^2 + \frac{1}{\rho}\ln\left(x + \frac{1}{b+\rho}\right) \le K_2,$$

Further estimates from the SDE

V is differentiable at zero and

$$\ln \left(-V'(0) \right) + \rho V(0) + 1 = 0.$$

Further estimates from the SDE

V is differentiable at zero and

$$\ln\left(-V'(0)\right) + \rho V(0) + 1 = 0.$$

• If V is $C^2(0,\infty)$, it satisfies for x>0 the HJB equation

$$\rho V = \underbrace{\left(\frac{x^2}{x^2 + 1} - bx\right) V' - \left(\ln(-V') + cx^2 + 1\right) + \frac{1}{2}\sigma^2 x^2 V''}_{H(x, V', V'')}$$

Further estimates from the SDE

V is differentiable at zero and

$$\ln \left(-V'(0) \right) + \rho V(0) + 1 = 0.$$

• If V is $C^2(0,\infty)$, it satisfies for x>0 the HJB equation

$$\rho V = \underbrace{\left(\frac{x^2}{x^2 + 1} - bx\right) V' - \left(\ln(-V') + cx^2 + 1\right) + \frac{1}{2}\sigma^2 x^2 V''}_{H(x, V', V'')}$$

Note: Boundary condition at $x = 0 \rightarrow \mathsf{HJB}$ is satisfied at x = 0.

$$\rho V = \underbrace{\left(\frac{x^2}{x^2 + 1} - bx\right) V' - \left(\ln(-V') + cx^2 + 1\right) + \frac{1}{2}\sigma^2 x^2 V''}_{H(0,V',V'')}$$

Let $v:[0,\infty)\to\mathbb{R}$ a continuous function. We say that

i) v is a *viscosity subsolution* of the HJB on $[0,\infty)$, if for every $\phi\in C^2[0,\infty)$ such that $v-\phi$ has a local maximum at $x\geq 0$

$$\rho v(x) \le H(x, \phi'(x), \phi''(x))$$

Let $v:[0,\infty) \to \mathbb{R}$ a continuous function. We say that

i) v is a viscosity subsolution of the HJB on $[0,\infty)$, if for every $\phi\in C^2[0,\infty)$ such that $v-\phi$ has a local maximum at $x\geq 0$

$$\rho v(x) \le H(x, \phi'(x), \phi''(x))$$

ii) v is a viscosity supersolution of the HJB on $(0,\infty)$, if for any $\phi\in C^2(0,\infty)$ such that $v-\phi$ has a local minimum at x>0

$$\rho v(x) \ge H(x, \phi'(x), \phi''(x))$$

Let $v:[0,\infty)\to\mathbb{R}$ a continuous function. We say that

i) v is a viscosity subsolution of the HJB on $[0,\infty)$, if for every $\phi \in C^2[0,\infty)$ such that $v-\phi$ has a local maximum at $x \geq 0$

$$\rho v(x) \le H(x, \phi'(x), \phi''(x))$$

ii) v is a viscosity supersolution of the HJB on $(0,\infty)$, if for any $\phi\in C^2(0,\infty)$ such that $v-\phi$ has a local minimum at x>0

$$\rho v(x) \ge H(x, \phi'(x), \phi''(x))$$

iii) v is a constrained viscosity solution of the HJB on $[0,\infty)$, if it is both a viscosity supersolution on $(0,\infty)$ and a viscosity subsolution on $[0,\infty)$.

V is the unique constrained v.s. to the HJB

By the DPP and the boundary condition at x=0, the value function V is a constrained viscosity solution to

$$\rho V(x) = H(x, V'(x), V''(x)), \quad \text{on } [0, \infty).$$

By the DPP and the boundary condition at x=0, the value function V is a constrained viscosity solution to

$$\rho V(x) = H\big(x, V'(x), V''(x)\big), \qquad \text{on } [0, \infty).$$

Comparison principle: Let

u be a continuous viscosity subsolution of the HJB on $[0,\infty)$ s.t.

$$\frac{u(y) - u(x)}{y - x} \le -\frac{1}{c_*} < 0, \quad \forall x, y \in [0, \infty)$$

v be a continuous, strictly decreasing viscosity supersolution of the HJB on $(0, \infty)$ such that

$$\liminf_{x \to \infty} \frac{v(x)}{1 + x^2} > -\infty.$$

Then, u < v on $[0, \infty)$.

V decreases and

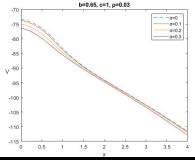
$$0 \le x < y \Longrightarrow \frac{V(y) - V(x)}{y - x} \le -c < 0,$$

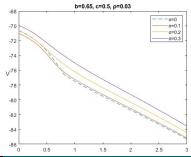
- V decreases and $0 \le x < y \Longrightarrow \frac{V(y) V(x)}{y x} \le -c < 0$,
- For $\sigma > 0$, V is smooth and satisfies the HBJ classically. For $\sigma = 0$, V' may have a jump discontinuity at one $x_* > 0$

- V decreases and $0 \le x < y \Longrightarrow \frac{V(y) V(x)}{y x} \le -c < 0$,
- For $\sigma>0$, V is smooth and satisfies the HBJ classically. For $\sigma=0$, V' may have a jump discontinuity at one $x_*>0$
- V is differentiable at 0 and $\ln \left(-V'(0) \right) + \rho V(0) + 1 = 0$.

- V decreases and $0 \le x < y \Longrightarrow \frac{V(y) V(x)}{y x} \le -c < 0$,
- For $\sigma > 0$, V is smooth and satisfies the HBJ classically. For $\sigma = 0$, V' may have a jump discontinuity at one $x_* > 0$
- V is differentiable at 0 and $\ln \left(-V'(0) \right) + \rho V(0) + 1 = 0$.

$$V(x) + A\left(x + \frac{1}{b+\rho}\right)^2 + \frac{1}{\rho}\ln\left(x + \frac{1}{b+\rho}\right) \stackrel{x\to\infty}{\longrightarrow} K$$





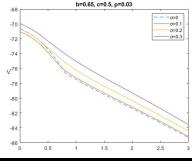
Optimally controlled process

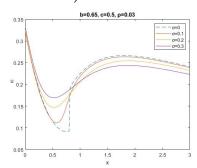
A verification theorem gives the optimal control in feedback form

$$u_*(x(t)) = -\frac{1}{V'(x(t))} \le \frac{1}{c_*}$$

so the optimally controlled system satisfies

$$dx(t) = \left(-\frac{1}{V'(x(t))} - bx(t) + \frac{x^{2}(t)}{x^{2}(t) + 1}\right)dt + \sigma x(t)dW(t).$$



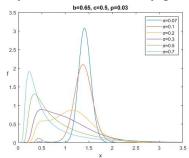


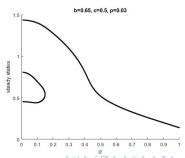
$$\mathcal{L}^*\mu = 0 \Longrightarrow d\mu(x) = \frac{1}{Z} x^{-2\left(1 + \frac{b}{\sigma^2}\right)} e^{-\Psi_{\sigma}(x)} dx.$$

The exponent Ψ_{σ} is explicitly given in terms of V' and

$$\Psi_{\sigma}(x) \simeq \frac{2}{\sigma^2 |V'(0)| x}, \ x \to 0 \qquad \text{and} \qquad \Psi_{\sigma}(x) \simeq \frac{2}{\sigma^2 x}, \ x \to \infty.$$

Polynomial tails at infinity get fatter as σ increases.

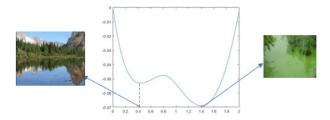




Oligotrophic vs Eutrophic

When σ is small and other parameters are suitable, the invariant distribution may be bimodal. The process $y(t) = \ln(x(t))$ is a diffusion in a double-well potential $\Phi_{\sigma}(y)$:

$$dy(t) = -\Phi'_{\sigma}(y(t))dt + \sigma dW(t).$$



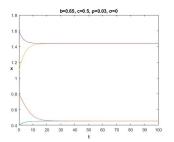
with invariant distribution for $\sigma > 0$

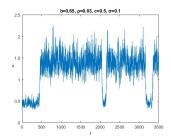
$$d\mu_{\sigma}(x) = \frac{1}{Z_{\sigma}} \exp\left(-\frac{2}{\sigma^2}\Phi_{\sigma}(x)\right) dx.$$

Deterministic vs Stochastic trajectories

When σ is small and other parameters are suitable, the invariant distribution may be bimodal. The process $y(t) = \ln(x(t))$ is a diffusion in a double-well potential $\Phi_{\sigma}(y)$:

$$dy(t) = -\Phi'_{\sigma}(y(t))dt + \sigma dW(t).$$





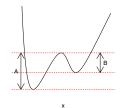
$\sigma \to 0$ asymptotics: metastability

For a diffusion in a double well potential

$$dy(t) = -\Phi'(y(t))dt + \sigma dW(t).$$

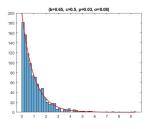
$$\text{Arrhenius law}: \qquad \frac{\sigma^2}{2}\log\mathbb{E}\big[\tau_{O\to E}\big]\to A, \quad \frac{\sigma^2}{2}\log\mathbb{E}\big[\tau_{E\to O}\big]\to B$$

$$\frac{\tau_{O \to E}}{\mathbb{E} \big[\tau_{O \to E} \big]} \stackrel{d}{\longrightarrow} \mathsf{Exp}(1)$$



[Siguira 1993, Bovier & den Hollander book 2014]

[Day 1983]



Thank you for your attention