
On the shape of almost constant mean
curvature hypersufaces

Giulio Ciraolo
Università di Milano
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Alexandrov’s Theorem (’62).
Let S = ∂Ω be a closed hypersurface embedded in Rn+1 of class C2,
Ω ⊂ Rn+1 bounded and connected.
The mean curvature HS is constant if and only if S is a sphere.

I The embeddedness assumption can not be weakened
(Wente Pacific J. Math. ’86, Kapouleas Ann. Math. ’90 e JDG ’91).

I There exist CMC hypersurfaces which are not close (Delaunay,
Kapouleas Ann. Math. ’90)
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Main goals – Questions

I If HS is close to a constant then S is close to a sphere?
I Is it close to something else?
I Can we quantify in terms of some deficit?
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I If HS is close to a constant then S is close to a sphere? No
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Question: What happens if H is almost constant?

• Quantitative studies for almost-CMC - Ω convex:

I Koutroufiotis (CPAM ’71)

I Moore (TAMS ’73)

I Schneider (Manusc. Math. ’90)

I Arnold (Monatsh. Math. ’93)

I Lang (Manusc. Math. ’95)

I Kohlmann (J. Geom. ’00)

• Examples and gluing techiniques - Bubbling?:

I Kapouleas (Ann. Math. ’90, JDG ’91, Invent.
Math. ’95, ...): examples of closed immersed
hypersurfaces.

I Butscher (Pacific J. Math. 2011) e
Butscher-Mazzeo (Ann. SNS Pisa 2012):
examples where H is close to a constant in
any Ck norms.
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A RELATED PROBLEM - CAPILLARITY THEORY

Local and global minima, stationary points of

F(E) = P(E) +

∫
E

g(x)dx .

⇒ δF = 0 for volume preserving fluxes.
Small mass regime: if |E| = m� 1 then P(E) ≈ m

n
n+1 � m ≈

∫
E g.

⇒what happens for g = 0?

I Gobal minima⇒ Isoperimetric problem.

I Local minima and stationary points⇒ Alexandrov Thm.

Question: if g 6= 0 and m small, global minima look like balls?

I Global minima ≈ balls [Figalli-Maggi, ARMA 11] (via
quantitative isoperimetric inequality).

I Local minima and stationary points⇒ Quantitative estimates
Alexandrov Thm.
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PROOFS OF ALEXANDROV’S THEOREM

Proofs :

I Alexandrov (’62): method of moving planes.

I Reilly (Indiana ’77): Reilly’s identity.

I Ros (Rev. Math. Ib. ’87) and Montiel - Ros (Proc. Do Carmo ’91):
Reilly’s identity and Heintze-Karcher inequality.

I Brendle - Eichmair JDG ’13 and Brendle Publ. Math. IHÈS ’13
Heintze-Karcher inequality and flows techiniques.

Strategy – Study these proofs quantitatively:

I Alexandrov’s proof: proximity to a single ball and optimal
quantitative estimates;

I Ros’ proof: describe bubbling and (not optimal) quantitative
estimates.



SHARP ESTIMATES FOR PROXIMITY TO A SINGLE BALL

Preventing bubbling: Ω satisfies an int/ext touching ball condition of
fixed radius.

Theorem [C.-Vezzoni, JEMS ’18]
Ω satisfies an int/ext touching ball condition of radius ρ0 > 0.
There exist δ0(n, ρ0, |∂Ω|) > 0 and C(n, ρ0, |∂Ω|) s.t.

if osc H ≤ δ0 then

Bri(O) ⊆ Ω ⊆ Bre(O)

with

re − ri ≤ C osc H .

Moreover, ∂Ω is diffeomorphic to a sphere and there exists a C1 map
F = Id + Ψν : ∂Bri → S s.t. ‖Ψ‖C1(∂Bri )

≤ C osc H .

Remark: the stability estimates are optimal!!
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PROOF OF ALEXANDROV’S THEOREM BY MOVING PLANES

1. Moving planes.
For each direction ω ∈ Rn+1 there exists a hyperplane πω orthogonal
to ω such that Ω is symmetric with respect to πω .
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Critical positions: there exist two critical position for which the
reflected cap is tangent to the hypersurface itself:

P0

P0

The symmetry case:

I u1, u2 : Br(P) ∩ TpS→ R s.t. L(ui) := div
(

∇ui√
1+|∇ui|2

)
= nH .

I u1 − u2 ≥ 0 with

L(u1 − u2) = L(u1)− L(u2) = 0 .

Strong maximum principle and Hopf’s lemma imply that
u1 = u2.

I The set of tangency points is open and closed⇒ S is symmetric
with respect to ω.



Critical positions: there exist two critical position for which the
reflected cap is tangent to the hypersurface itself:

P0

P0

The ALMOST symmetry case:

I u1, u2 : Br(P) ∩ TpS→ R s.t. div
(

∇ui√
1+|∇ui|2

)
= nH .

I u1 − u2 ≥ 0 with

L(u1 − u2) = L(u1)− L(u2) = H1 −H2 .

Harnack’s inequality and quantitative Hopf’s lemma imply
that u1 − u2 is small.

I Propagate the smallness⇒ S is ALMOST symmetric with
respect to ω.



IDEA OF THE STABILITY PROOF
Quantitative study of the method of moving planes:

Harnack inequalities and elliptic regularity

P0

P0 |L(u1 − u2)| ≤ osc(H)

sup(u1 − u2) ≤ C inf(u1 − u2) + osc(H).

‖u1 − u2‖C1 ≤ C osc(H).

I Harnack, Carleson, Hopf: quantitative versions of the maximum
principle and Hopf’s Lemma⇒ around P: the cap is close to S.

I Approximate symmetry in one direction: starting from the
tangency point P, propagate the information. Delicate argument
when we are close to ∂Ω ∩ π.

I Approximate symmetry with respect to O: approximate
symmetry in N + 1 directions.

I Conclusion: every critical hyperplane is close to O.



MORE GENERAL VERSIONS OF ALEXANDROV’S THEOREM

[C.-Vezzoni, IMJ] and [C.-Roncoroni-Vezzoni, AMPA]:

HS = f (κ1, . . . , κn−1) in Mn
+ .

Theorem: Ω ⊂Mn
+ satisfies an int/ext touching ball condition of

radius ρ0 > 0. There exist δ0(n, ρ0, |∂Ω|) > 0 and C(n, ρ0, |∂Ω|) s.t. if
δ ≤ δ0, then

Bri(O) ⊆ Ω ⊆ Bre(O) with re − ri ≤ C osc HS .

OTHER QUANTITATIVE STUDIES OF THE MMP:

I C.-Magnanini-Sakaguchi (J. Anal. Math. ’16) for an
overdeterimed problem in PDEs.

I Serrin’s overdetermined problem: Aftalion-Busca-Reichel (Adv.
Diff. Eq. ’99), C.-Magnanini-Vespri (AMPA ’16)

I C., A. Roncoroni (Bruno Pini Math. Anal. Semin. ’18 ) - a rewiew
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REMOVING THE TOUCHING BALL CONDITION:
BUBBLING?

If H is constant, then H = H0 =
nP(Ω)

(n + 1)|Ω|
:

nP(Ω) =

∫
∂Ω

H0x · ν = H0

∫
∂Ω

x · ν = (n + 1)|Ω|H0

Rescale Ω s.t. H0 = n, and define δ(Ω) = ‖H/n− 1‖C0(∂Ω) .

C.-Maggi, CPAM ’17: Ω is close to a collection of tangent spheres of
radius n/H0 and most of ∂Ω can be C1,β parametrized.

α = 1
2(n+2)



C.-Maggi, CPAM ’17 - Part I
Given L ∈ N and a ∈ (0, 1], there exists c(n,L, a) > 0 with the
following property. If Ω is such that

H0 = n , P(Ω) ≤ (L + 1− a) P(B) , δ(Ω) ≤ c(n,L, a) ,

there exists a family of disjoint balls {Bzj,1}j∈J with # J ≤ L and s.t.

G =
⋃
j∈J

Bzj,1

satisfies

|Ω∆G|
|Ω|

≤ C(n) L2 δ(Ω)α ,

|P(Ω)−# J P(B)|
P(Ω)

≤ C(n) L2 δ(Ω)α ,

hd(∂Ω, ∂G)

diam(Ω)
≤ C(n) L3/n δ(Ω)α/4n2(n+1) .
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C.-Maggi, CPAM ’17 - Part II
There exist Σ ⊂ ∂G and ψ : Σ→ R s.t.:
∂G \ Σ consists at most of C(n) L-spherical caps with diameters
bounded by C(n) δ(Ω)α/4(n+1).
The function ψ is such that (I + ψ νG)(Σ) ⊂ ∂Ω and

‖ψ‖C1,γ(Σ) ≤ C(n, γ) , ∀γ ∈ (0, 1) ,

‖ψ‖C0(Σ)

diam(Ω)
≤ C(n) L δ(Ω)α

‖∇ψ‖C0(Σ) ≤ C(n) L2/n δ(Ω)α/8n(n+1) ,

Hn(∂Ω \ (I + ψ νG)(Σ))

P(Ω)
≤ C(n) L4/n δ(Ω)α/4n(n+1) ,

where (I + ψ νG)(x) = x + ψ(x) νG(x) and νG is the
outward normal to G.



C.-Maggi, CPAM ’17. Part III
Moreover:

(i) if # J ≥ 2, then ∀ j ∈ J exists ` ∈ J, ` 6= j, s.t.

dist(∂Bzj,1, ∂Bz`,1)

diam(Ω)
≤ C(n) δ(Ω)α/4(n+1) ,

i.e. every ball {Bzj,1}j∈J is almost tangent to another ball of G.

(ii) if there exists κ ∈ (0, 1) s.t.

|Bx,r \ Ω| ≥ κ |B| rn+1 , ∀x ∈ ∂Ω , r < κ ,

and δ(Ω) ≤ c(n,L, κ), then # J = 1, i.e. Ω is close to a single
sphere.



Some remarks:

I The proof is based on integral identities, in particular Ros’ proof
of Alexandrov’s Theorem / Heintze-Karcher inequality.

I The examples available in litterature are the only possible ones
which are not close to a single sphere.

I The theorem is qualitatively optimal.

I Apply our estimates for capillarity problems: local minima are
close to a ball.

I Anisotropic version in Delgadino, Maggi, Mihaila, Neumayer
(Arch. Rat. Mech. Anal. 2018).

I The case of closeness to a single sphere has been improved in
Krummel-Maggi (Calc Var PDE ’17).



IDEA OF THE PROOF - H CONSTANT
Proof by integral identities (Reilly, Ros, Montiel-Ros)

I We introduce an auxilliar problem:{
∆f = 1 in Ω,

f = 0 on ∂Ω .

I Reilly’s identity for f :
∫
Ω(∆f )2 − |∇2f |2 =

∫
∂Ω Hf 2

ν .

I Heintze-Karcher inequality:∫
∂Ω

n
H
≥ (n + 1)|Ω| ,

equality if and only if Ω is a ball.
I Conclusion. If H is costant:

n
H

P(Ω) =

∫
∂Ω

n
H
≥ (n + 1)|Ω| = 1

H

∫
∂Ω

Hx · ν =
n
H

P(Ω) .
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IDEA... OF THE IDEA.. OF THE PROOF

I Starting point: Proof by Ros / Heintze-Karcher inequality.
If ∆f = 1 in Ω and f = 0 on ∂Ω, then∫

Ω

∣∣∣∇2f − Id
n + 1

∣∣∣ ≤ C(n,Ω)δ1/2 ,

∫
∂Ω

∣∣∣n/H0

n + 1
−|∇f |

∣∣∣2 ≤ C(n,Ω)δ .

I Compactness argument: Reilly’s identity, P−function,
Pohozaev’s identity, Allard’s regularity thm..

I Quantitative version...



NONLOCAL THEORY
Nonlocal Perimeter: introduced by Caffarelli-Souganidis (CPAM
2008) and Caffarelli-Roquejoffre-Savin (CPAM 2010).

Ps(Ω) =

∫
Ω

∫
Ωc

dx dy
|x− y|n+2 s , Ωc = Rn \ Ω , s ∈ (0, 1/2) .

The nonlocal mean curvature HΩ
s is the first variation of the nonlocal

perimeter.

If ∂Ω ∈ C1,α, α > 2s, then

HΩ
s (p) =

1
ωn−2

P.V.
∫
Rn

χ̃Ω(x)

|x− p|n+2s dx , χ̃Ω(x) = χΩc(x)− χΩ(x) .

Remark. (1− 2s) nonlocal→ local:

lim
s→ 1

2
−

(1− 2s)Ps(Ω) = P(Ω) lim
s→ 1

2
−

(1− 2s)Hs(Ω) = H(Ω) .



NONLOCAL RIGIDITY

C.-Figalli-Maggi-Novaga, Crelle ’18 - Part I: simmetry

HΩ
s (p) =

1
ωn−2

P.V.
∫
Rn

χ̃Ω(x)

|x− p|n+2s dx ,

where
χ̃Ω(x) = χΩc(x)− χΩ(x) .

Theorem (Nonlocal Alexandrov Thm)
If Ω is a bounded open set of class C1,2s and HΩ

s is constant, then ∂Ω is a
sphere.

See also X. Cabré, M. Fall, J. Sola-Morales, T. Weth (Crelle ’18).



C.-Figalli-Maggi-Novaga, Crelle ’18 - Part II: stability

Deficit: δs(Ω) = sup
p,q∈Σ, p 6=q

|HΩ
s (p)−HΩ

s (q)|
|p− q|

.

Rescaled distance: ρ(Ω) = inf
{ t− s

diam(Ω)
: p ∈ Ω ,Bs(p) ⊂ Ω ⊂ Bt(p)

}
.

Theorem (Stability Alexandrov Theorem)
Ω bounded open set of class C2,α, α > 2s. There exists Ĉ(n) > 0 s.t.

ρ(Ω) ≤ Ĉ(n) ηs(Ω) , ηs(Ω) =
diam(Ω)2n+2s+1

|Ω|2
δs(Ω) .

Moreover, there exists η(n, s) > 0 s.t. if ηs(Ω) ≤ η(n, s) then there exists a
map F : ∂B1(O)→ Rn of class C2,τ for any τ < 2s, such that
F(∂B1(O)) = ∂Ω and

‖F− I‖C2,τ (∂B1(O)) ≤ C(n, s, τ) ηs(Ω).

In particular, if ηs(Ω) is sufficiently small, then Ω is convex.
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REMARKS

Proofs.

I Symmetry: method of moving planes.

I Stability: quantitative study of the nonlocal method of moving
planes.

Remark: Local vs NonLocal

I Disjoint union of spheres vs single sphere.

I Convexity for small deficit.

I Local results are not obtained as a limit of the nonlocal one for
s→ 1/2.
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Thanks!


