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Alexandrov’s Theorem ('62).

Let S = 0N be a closed hypersurface embedded in R"+1 of class C?,

Q ¢ R" bounded and connected.
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Let S = 0N be a closed hypersurface embedded in R"+1 of class C?,
Q C R"*! bounded and connected.

The mean curvature Hg is constant if and only if S is a sphere.

» The embeddedness assumption can not be weakened
(Wente Pacific ]. Math. ‘86, Kapouleas Ann. Math. '90 e JDG '91).

» There exist CMC hypersurfaces which are not close (Delaunay,
Kapouleas Ann. Math. '90)




Main goals — Questions

» If Hs is close to a constant then S is close to a sphere?
> Is it close to something else?

» Can we quantify in terms of some deficit?
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Question: What happens if H is almost constant?

e Quantitative studies for almost-CMC - ) convex:

» Koutroufiotis (CPAM '71)
» Moore (TAMS '73)

» Arnold (Monatsh. Math. '93)
» Schneider (Manusc. Math. "90)

» Lang (Manusc. Math. '95)

» Kohlmann (J. Geom. "00)
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» Moore (TAMS '73) » Lang (Manusc. Math. '95)
» Schneider (Manusc. Math. '90)  » Kohlmann (J. Geom. '00)

e Examples and gluing techiniques - Bubbling?:

» Kapouleas (Ann. Math. '90, JDG "91, Invent.
Math. '95, ...): examples of closed immersed
hypersurfaces.

» Butscher (Pacific J. Math. 2011) e
Butscher-Mazzeo (Ann. SNS Pisa 2012):
examples where H is close to a constant in
any C* norms.




A RELATED PROBLEM - CAPILLARITY THEORY

Local and global minima, stationary points of

F(E) =P(E)+ /Eg(x)dx.

= 0F = 0 for volume preserving fluxes.

Small mass regime: if |E| = m < 1 then P(E) = mm1 > m ~ J:8
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A RELATED PROBLEM - CAPILLARITY THEORY
Local and global minima, stationary points of

F(E) =P(E)+ /g(x)dx.
E

= 0F = 0 for volume preserving fluxes.
Small mass regime: if |E| = m < 1then P(E) ~ mi+1 >> m ~ J:8
= what happens for ¢ = 0?

» Gobal minima = Isoperimetric problem.

» Local minima and stationary points = Alexandrov Thm.
Question: if ¢ # 0 and m small, global minima look like balls?

» Global minima ~ balls [Figalli-Maggi, ARMA 11] (via
quantitative isoperimetric inequality).

» Local minima and stationary points = Quantitative estimates
Alexandrov Thm.



PROOFS OF ALEXANDROV’S THEOREM

Proofs :

» Alexandrov ('62): method of moving planes.
» Reilly (Indiana 77): Reilly’s identity.

» Ros (Rev. Math. Ib. '87) and Montiel - Ros (Proc. Do Carmo "91):
Reilly’s identity and Heintze-Karcher inequality.

» Brendle - Eichmair JDG 13 and Brendle Publ. Math. IHES '13
Heintze-Karcher inequality and flows techiniques.

Strategy — Study these proofs quantitatively:

» Alexandrov’s proof: proximity to a single ball and optimal
quantitative estimates;

» Ros’ proof: describe bubbling and (not optimal) quantitative
estimates.
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Preventing bubbling: (2 satisfies an int/ext touching ball condition of
fixed radius.

Theorem [C.-Vezzoni, JEMS 18]

(2 satisfies an int/ext touching ball condition of radius py > 0.
There exist do(n, po, |0Q]) > 0 and C(n, po, |0€?]) s.t.
if osc H < g then

B,(0) € 2 C B, (0)
with

re —1; < CoscH.
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SHARP ESTIMATES FOR PROXIMITY TO A SINGLE BALL

Preventing bubbling: (2 satisfies an int/ext touching ball condition of

Theorem [C.-Vezzoni, JEMS "18]

(2 satisfies an int/ext touching ball condition of radius py > 0.
There exist do(n, po, |0Q]) > 0 and C(n, po, |0€?]) s.t.
if osc H < g then

B,(0) € 2 C B, (0)
with

re —1; < CoscH.

F=1Id+Yv: 0B, — Sst. ||[¥[cisp,) < CoscH.

Moreover, 992 is diffeomorphic to a sphere and there exists a C' map
Remark: the stability estimates are optimal!!
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—

For each direction w € R"*! there exists a hyperplane 7, orthogonal
to w such that Q2 is symmetric with respect to .
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Critical positions: there exist two critical position for which the
reflected cap is tangent to the hypersurface itself:

Py

The symmetry case:

» 4l 2. AR T vu' _
ul, 12 B,(P)NT,S — Rst. L(u): dlv(m> nH.

» ul — 4% >0 with

Lu' —u?) = L") — L(u?) =0.

Strong maximum principle and Hopf’s lemma imply that
ul =

» The set of tangency points is open and closed = S is symmetric
with respect to w.



Critical positions: there exist two critical position for which the
reflected cap is tangent to the hypersurface itself:

ca

The ALMOST symmetry case:

Py

> ul 12 B(P)NT,S — Rsit. div(\/%ﬁ) —nH.

» ul — 4% >0 with
L' —u?) = L(u') — L(u*) =H; — H,.
Harnack’s inequality and quantitative Hopf’s lemma imply
that u' — u? is small.

» Propagate the smallness = S is ALMOST symmetric with
respect to w.



IDEA OF THE STABILITY PROOF

Quantitative study of the method of moving planes:

Harnack inequalities and elliptic regularity

IL(u1 — u2)| < osc(H)
sup(u1 - Mz) < Cinf(u1 — Mz) 4+ OSC(H).
[y — ]| < Cosc(H).

» Harnack, Carleson, Hopf: quantitative versions of the maximum
principle and Hopf’s Lemma = around P: the cap is close to S.

» Approximate symmetry in one direction: starting from the
tangency point P, propagate the information. Delicate argument
when we are close to 9Q N .

» Approximate symmetry with respect to O: approximate
symmetry in N + 1 directions.

» Conclusion: every critical hyperplane is close to O.



MORE GENERAL VERSIONS OF ALEXANDROV’S THEOREM
[C.-Vezzoni, IM]] and [C.-Roncoroni-Vezzoni, AMPA]:

Hs =f(k1,...,kp—1) in M .
Theorem: () C M| satisfies an int/ext touching ball condition of

radius pg > 0. There exist dy(n, po, |0€2]) > 0 and C(n, po, |09]) s.t. if
0 < by, then

B,(0O)CQCB,(0) with r,—r <CoscHsg.



MORE GENERAL VERSIONS OF ALEXANDROV’S THEOREM
[C.-Vezzoni, IM]] and [C.-Roncoroni-Vezzoni, AMPA]:

Hs =f(k1,...,kp—1) in M .
Theorem: () C M| satisfies an int/ext touching ball condition of

radius po > 0. There exist do(n, po, |0€2]) > 0 and C(n, po, |0Q]) s.t. if
0 < dp, then

B,(0O)CQCB,(0) with r,—r <CoscHsg.

OTHER QUANTITATIVE STUDIES OF THE MMP:

» C.-Magnanini-Sakaguchi (J. Anal. Math. "16) for an
overdeterimed problem in PDEs.

» Serrin’s overdetermined problem: Aftalion-Busca-Reichel (Adv.
Diff. Eq. '99), C.-Magnanini-Vespri (AMPA "16)

» C., A. Roncoroni (Bruno Pini Math. Anal. Semin. ‘18 ) - a rewiew



REMOVING THE TOUCHING BALL CONDITION:
BUBBLING?
nP(Q)

If H is constant, then H = Hy = m:

HP(Q): Hox'V:Ho/ x~V:(Tl+1)|Q‘H()
o0 o

Rescale €2 s.t. Hy = 1, and define 6(S2) = ||[H/n — 1| 000 -
C.-Maggi, CPAM "17: Q) is close to a collection of tangent spheres of
radius 1/Hy and most of 992 can be C!*# parametrized.

Feta(nt1)

@ = 3t12)

z1° ) gerdn+l)
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C.-Maggi, CPAM 17 - Part 1
Given L € Nand a € (0, 1], there exists ¢(n, L,a) > 0 with the
following property. If 2 is such that

Hy=n, PQ)<(L+1-a)P(B), &) <c(nLa),

there exists a family of disjoint balls {B;, 1 };e; with #] < L and s.t.

G=JB:

jel
satisfies
[2AG] < C(n)L?5(Q),
€2
[P(2) — #] P(B)| 2 5o\
50 < Lo,
hd(anaG) < C(n)LS/n(;(Q)a/4n2(n+l)' G

diam(€2)



C.-Maggi, CPAM "17 - Part 11

There exist ¥ C 0Gand ¢ : ¥ — R s.t.:

0G \ X consists at most of C(n) L-spherical caps with diameters
bounded by C(n) §(Q)*/4+1),

The function ¢ is such that (I + ¢ v5)(X) C 012 and

Hw”ClW(E) < C(nf-)/) P V’V S (Ou 1) 5

e <l Lo
[VYllcomy < Cn) L2/ §(Q)/8nnt1)
H'(02\ (I + ¢ wve) (%))

G
<C(n L4/n5 O oz/4n(n+1)7
b (m) LY/ 5(0) -
V60 <//

where (I + ¢ vg)(x) = x + ¥ (x) ve(x) and v is the
outward normal to G.

{

A +4./J/ (%) 1)6_(7(«)



C.-Maggi, CPAM "17. Part 111

Moreover:

(i) if#J>2,thenVjeJexistsl €], £ #j,s.t.

diSt(@Bzi 1 aBZZ 1)
L z1) a/4(n+1)
diam(92) < Clm)o(©) ’

i.e. every ball {B;, 1} is almost tangent to another ball of G.

(ii) if there exists k € (0,1) s.t.
|Bx,r\Q|2/€|B|rn+l, Vx€89,7’<l€,

and 6(Q) <c(n,L, k), then #] = 1,i.e. Q1is close to a single
sphere.

B



Some remarks:

>

|

The proof is based on integral identities, in particular Ros’ proof
of Alexandrov’s Theorem / Heintze-Karcher inequality.

The examples available in litterature are the only possible ones
which are not close to a single sphere.

The theorem is qualitatively optimal.

» Apply our estimates for capillarity problems: local minima are

close to a ball.

Anisotropic version in Delgadino, Maggi, Mihaila, Neumayer
(Arch. Rat. Mech. Anal. 2018).

The case of closeness to a single sphere has been improved in
Krummel-Maggi (Calc Var PDE "17).
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IDEA OF THE PROOF - H CONSTANT
Proof by integral identities (Reilly, Ros, Montiel-Ros)

» We introduce an auxilliar problem:

Af =1 inQ,
f=0 onof.

> Reilly’s identity for f: Jo (A = |V = [, Hf?.
» Heintze-Karcher inequality:

n
— > (n+1)]Q|,
| 5= mene

equality if and only if €2 is a ball.
» Conclusion. If H is costant:

2 p(0) = /I’; (n+1)[0 = /Hx v = TP(©).



IDEA... OF THE IDEA.. OF THE PROOF

» Starting point: Proof by Ros / Heintze-Karcher inequality.
If Af =1in Q and f = 0 on 012, then

5 Id 12 / n/Hy 2
- < — < .
/Q‘Vf nH(_C(n,Q)a 7 m(nH Vil < cm,a)s

» Compactness argument: Reilly’s identity, P—function,
Pohozaev’s identity, Allard’s regularity thm..

» Quantitative version...



NONLOCAL THEORY

Nonlocal Perimeter: introduced by Caffarelli-Souganidis (CPAM
2008) and Caffarelli-Roquejoffre-Savin (CPAM 2010).

// B g —RrQ, se(0,1)2).

[x =yl

The nonlocal mean curvature H$! is the first variation of the nonlocal
perimeter.

If 9O € C®, a > 2s, then

Hp) = PV [ 2 o) = xo) — xa().

Wp—2
Remark. (1 — 2s) nonlocal — local:

lim (1—25)P,(Q) = P(Q)  lim (1 — 25)H,(Q) = H(Q).

1=
5=32 5=y



NONLOCAL RIGIDITY

C.-Figalli-Maggi-Novaga, Crelle "18 - Part I: simmetry

1 Xa(x)
H%(p) = P.V. A
s (p) s /Rn x — p|t2s X,

where
Xa(x) = xa(x) — xa(x).

Theorem (Nonlocal Alexandrov Thm)

If Q is a bounded open set of class C1* and H! is constant, then 9 is a
sphere.

See also X. Cabré, M. Fall, J. Sola-Morales, T. Weth (Crelle "18).



C.-Figalli-Maggi-Novaga, Crelle "18 - Part II: stability

Q) o
Deficit:  6,(Q) = sup =) = H (@)
PAAEE, pq lp -4l
Rescaled distance:  p(Q2) = inf { —°
C P T Glam (@)

peQ,Bs(p)cQC Bt(p)}.




C.-Figalli-Maggi-Novaga, Crelle "18 - Part II: stability

Q _gQ
Deficit:  §5(Q) = sup w )
PAER, p#q lp — 4
: . -5
Rescaled distance:  p(€2) = inf {m :peQ,Bp)cQcC Bt(P)} .

Theorem (Stability Alexandrov Theorem)
Q bounded open set of class C>*, a > 2s. There exists C(n) > 0s.t.

diam(Q)2n+2s+1

P S Cm(), m(Q) = ——gp——&().

Moreover, there exists n(n,s) > 0s.t. if n;(Q) < n(n,s) then there exists a
map F : OB1(0) — R" of class C>™ for any T < 2s, such that
F(0B1(0)) = 0Q and

IF = Illc2.7 a8, (0)) < C(n,8,7) ns(82).

In particular, if ns(QY) is sufficiently small, then S is convex.



REMARKS

Proofs.

» Symmetry: method of moving planes.

» Stability: quantitative study of the nonlocal method of moving
planes.




REMARKS

Proofs.

» Symmetry: method of moving planes.

» Stability: quantitative study of the nonlocal method of moving
planes.

Remark: Local vs NonLocal
» Disjoint union of spheres vs single sphere.
» Convexity for small deficit.

» Local results are not obtained as a limit of the nonlocal one for
s—1/2.



Thanks!



