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Introduction

This paper is partly based on a lecture delivered by one of the authors at the
workshop “Singularities in nonlinear evolution phenomena and applications” held at
the Centro di Ricerca Matematica Ennio De Giorgi on May 26–29, 2008, organized
by Sisto Baldo, Matteo Novaga, and Giandomenico Orlandi. The purpose of that
lecture was to describe the results in Alikakos and Fusco [5]. The first part of the
present paper is an expanded version of that lecture while the second part contains
new results, together with proofs, that relate to or complement the paper [5].

Part I

In [5] the object of study is the system

(1) ∆u−Wu(u) = 0, for u : Rn → Rn,

where W : Rn → R and the gradient Wu :=
(
∂W
∂u1

, · · · , ∂W∂un
)>; the system above is

the Euler–Lagrange equation corresponding to the free energy functional

(2) J(u) =
∫

Rn

{1
2
|∇u|2 +W (u)

}
dx.

One of the obstructions in the study of (1) is that the free energy is infinite for
the solutions we are interested in, for dimensions n ≥ 2, due to a simple geomet-
ric reason that we will explain later. Before going any further, we introduce the
hypotheses on the potential W , along with explanations.

Hypothesis 1 (N nondegenerate global minima). The potential W is of class
C2, satisfying W = 0 on A = {a1, . . . , aN} and W > 0 in Rn \ A. Furthermore,
∂2W (u) ≥ c2Id for |u− ai| ≤ r0, with r0 > 0 fixed, and for i = 1, . . . , N .

The essence of Hypothesis 1 is that W is nonconvex and that we allow for several
global minima.

In Figure 1 we show examples of potentials for which (1) has been studied in
the past. In the first graph we see a double-well potential defined over R, hence
n = 1. The kind of solution we construct, in this case, reduces to the well-known
heteroclinic connection: the solution to the ordinary differential equation u′′ −
Wu(u) = 0 that connects the phases, that is,

lim
u(x)→−∞

= a1 and lim
u(x)→+∞

= a2.

This is really textbook material (see, for example, [6, Ch. 2, §12.8]) as in this case
(1) becomes a simple Hamiltonian system. In the second we show a double-well
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Figure 1.

potential over R2 (n = 2). Dang, Fife, and Peletier [11] constructed a saddle scalar
solution for such a potential. Later, Alama, Bronsard, and Gui [1] gave a genuine
vector extension of this. Saddle solutions, although related, are not included in the
class of solutions we are discussing. In the third we show a triple-well potential
over R2 (n = 2). Bronsard, Gui, and Schatzman [9] constructed entire solutions
to (1) for a class of triple-well potentials, known as triple-junction solutions. This
is a significant example of the type of solution that concerns us here. Finally
in the fourth we show a quadruple-well potential over R3 (n = 3). For a class
of such potentials, Gui and Schatzman [22] constructed an entire solution to (1)
known as the quadruple-junction solution. This is a three-dimensional analog to
the triple-junction solution and provides another significant example of the type of
solution we study. Triple-junction and quadruple-junction solutions have additional
significance of their own and we will comment on them later.

In all these works (for n ≥ 2) the potentials W have been assumed to have
certain symmetries. This takes us to the next hypothesis.

Hypothesis 2 (Symmetry). The potential W is invariant under a finite reflection
group G acting on Rn (Coxeter group), that is,

(3) W (gu) = W (u), for all g ∈ G and u ∈ Rn.

The symmetry of W allows for equivariant solutions to (1), that is, solutions
satisfying

(4) u(gx) = gu(x), for all g ∈ G and x ∈ Rn.

The simplest reflection group over R2 is H2
2. It contains four elements: the

reflections with respect to the u1 and u2 axes, the rotation by π, and the identity.
These are exactly the symmetries of a rectangle. An H2

2-equivariant solution by (4)
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satisfies (
u1(−x1, x2), u2(−x1, x2)

)
=
(
− u1(x1, x2), u2(x1, x2)

)(
u1(x1,−x2), u2(x1,−x2)

)
=
(
u1(x1, x2),−u2(x1, x2)

)(
u1(−x1,−x2), u2(−x1,−x2)

)
=
(
− u1(x1, x2),−u2(x1, x2)

)
The triple-well potential mentioned above is symmetric under H3

2, the group of
symmetries of the equilateral triangle that contains six elements.

Finite reflection (point) groups acting on Rn are subgroups of linear transfor-
mations that are isometries, that is, subgroups of O(Rn) which are generated by
reflections. The relevance of the orthogonal group is due to the Laplacian in (1). In
the present work we focus on point groups, that is, groups of transformations having
a fixed point. The translation invariance of the Laplacian leads naturally to a differ-
ent class of groups, the discrete groups, which are relevant in the study of (1) but are
not considered here. If T ∈ O(Rn), then detT = ±1. If detT = 1, then T is called
a rotation. The reflection with respect to the hyperplane {u ∈ Rn | 〈u, r〉 = 0},
where 〈·, ·〉 is the Euclidean inner product, is defined by setting

(5) Sru = u− 2〈u, r〉
〈r, r〉

.

It is well known that a finite reflection group over Rn is generated by n reflections
Sr1 , . . . , Srn , where {r1, . . . , rn} is a set of linearly independent vectors called fun-
damental roots (see [21]). Needless to say, reflection groups also contain rotations.

The quadruple-well potential mentioned above is assumed to be invariant under
the symmetries of the regular tetrahedron. The regular tetrahedron is one of the
five Platonic solids in R3 (regular convex polyhedra) all of which correspond to
finite reflection groups. Algebraically, some of these groups coincide; it turns out
that there are three algebraically distinct convex polyhedra: the tetrahedron, the
cube, and the icosahedron, with orders as follows,

|T ∗| = 24, |W∗| = 48, |J ∗| = 120.
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At this point we would like to open a big parenthesis and comment on the
relevance of the solutions we discuss to singularities, the theme of this workshop.
First, concerning phase transitions, we note that for describing coexistence of three
of more phases (N ≥ 3), it is easy to see that a vector-order parameter is necesary.

Figure 3.

In Figure 3 we show a triple well over R; clearly, in this case, the problem

(6) u′′ −Wu(u) = 0, where u(−∞) = a1, u(∞) = a3,

has no solution, that is, there is no connection between a1 and a3. Therefore,
for coexistence of more than two phases, it is more appropriate for the triple-well
potential to be defined over R2, with minima a1, a2, a3, at the vertices of a triangle,
representing the three phases (cf. [32, §1.7]). Baldo [7] has studied the minimization
problem

(7) minEε(u) =
∫

Ω

{ε2

2
|∇u|2 +W (u)

}
dx, with

∫
Ω

u(x) dx =m ,

for W as in Hypothesis 1 and Ω ⊂ Rn, and has linked the minimizers uε of (7), as
ε→ 0, to the partitioning of the domain Ω into sets S1, . . . , SN , whose boundaries
satisfy the minimality condition

(8) min
N∑

i,j=1

d(ai, aj)Hn−1(∂∗Si ∩ ∂∗Sj),

and the constraint

(9)
N∑
j=1

|Sj |aj =m .

Here, Hn−1 is the (n−1)-dimensional Hausdorff measure of the (reduced) boundary
of each Si. The numbers d(ai, aj) represent the ‘energy’ of the transition between
the phases ai and aj . In case there is a connection Uij between ai and aj , then
d(ai, aj) is explicitly given in terms of its action,

(10) d(ai, aj) =
∫

R

1
2
|U̇ij(s)|2 +W (Uij(s)) ds,

where

(11) Üij −Wu(Uij) = 0, with Uij(−∞) = ai, Uij(∞) = aj .
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As it is easily seen, the minimizer uε of (7) satisfies the Euler–Lagrange equation

(12)


ε2∆uε −Wu(uε) = σε,

∂uε
∂n

= 0, on ∂Ω.

Here, σε is a Lagrange multiplier which turns out to converge to zero as ε→ 0 (see
[26], [3]). On the basis of Baldo’s work plus a lot of well-known related evidence,
both formal and rigorous, one expects that at the ε-level, 0 < ε� 1, the boundaries
of the sets Si are replaced by thin zones of thickness ε and that in each Si and away
from these zones, the solution Uε is approximately constant and equal to some aj .
If now we rescale space and set u(y) = uε(x0 + εy), it is natural to expect that
in the limit, u converges to an entire solution of (1). Depending on the choice of
x0, the entire solution has different complexity. For example, if x0 is taken in the
interior of Sj , then u ≡ aj . If x0 is taken on the boundary of Sj separating Sj
from Si and away from the junctions, then u is expected to depend just on a single
variable s that measures the distance from the interface and connects aj to ai, that
is, u is the connection Uij (cf. (11)). If x0 is taken to be at the junction of three
or more sets ∂Sj , then u should connect three or more different phases and should
depend on two or more variables si = λn i, withn i a unit vector such that

(13) lim
λ→∞

u(λn i) = ai, for i = 1, 2, . . .

These are the entire solutions considered in this paper. In case all transition energies
are equal, then the functional in (8) simplifies and the boundaries of the partition
form a system of surfaces of constant mean curvature. Minimal surfaces are a
special case where the mean curvature is zero.

1

al3

l24l

4a

a

a

l

2

1

3

Figure 4.

In Figure 4 we show a quadruple-junction solution. In the context of minimal
surfaces, such systems of surfaces meet each other along free-boundary curves calles
‘liquid edges’ and, in turn, liquid edges meet at ‘supersingular’ points. Each such
point is the meeting oint of exactly four liquid edges, bringing together six surfaces.
Any two adjacent edges form an angle φ, with cosφ = − 1

3 (Maraldi angle). We
refer to Dierkes et al. [12, §4.10.7] and Taylor [39]. We note that x = 0 in our
solutions corresponds to this supersingular point.
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Triple-junction solutions over the plane and quadruple-junction solutions over
space have the following special significance. If the minimizers of (7) are not re-
quired to lie in a certain symmetry class, then one expects that for potentials defined
over the plane and with three or more global minima, generically, there will be only
triple-junction solutions. Similarly in space, for potentials with four or more global
minima, one expects that, generically, the minimizers will form triple-junction con-
figurations coming together and forming quadruple junctions.

The gradient flow in H−1 associated to (7) is the vector Cahn–Hilliard equation

(14)


∂u

∂t
= −∆

(
ε∆u− 1

ε
Wu(u)

)
, for u : Ω ⊂ Rn → Rn,

∂u

∂n
=
∂∆u
∂n

= 0, on ∂Ω.

Its sharp-interface limit as ε → 0 is the vector Mullins–Sekerka free-boundary
problem, a prominent gradient flow associated to (8), (9); its scalar counterpart
was studied in [31] and [2]. The function

µε = ε∆u− 1
ε
Wu(u)

tends to a limit µ0 as ε → 0 which together with the free boundary Γ(t) satisfies
the following quasi-static problem

(15)



∆µ0 = 0, for x ∈ Γij(t) := ∂Si ∩ Sj ,

µ0 = Hij

(∫ ∞
−∞
|U̇ij(s)|2 ds

) ai − aj
|ai − aj |

, on Γij(t),

(ai − aj)d ijt (t) =
[[∂µ0

∂ν

]]
, on Γij(t) ⊂ Ω ⊂ Rn,

∂µ0

∂n
= 0, on ∂Ω.

Here, µ0 = µ0(x, t) is a vector, Hij(x, t) is the mean curvature of Γij(t), d
ij
t (t) is

the distance between x and Γij, [[·]] is the jump of the derivative of µ0 in the normal
direction to Γij(t), and the Laplacian in x variables.

Problem (15) has to be accompanied with Plateau angle conditions along any
liquid edge where three surfaces intersect (see Figure 4):

(16)
sin θ1

d(a2, a3)
=

sin θ2

d(a1, a3)
=

sin θ3

d(a1, a2)
,

that is, the angles are fixed along the evolution. In the simplest case when all
transition energies are equal (the case of a symmetric potential, for example), the
angles are all equal to 2π

3 .
Formally, it can be checked that the weighted perimeter

N∑
i,j=1

d(ai, aj)H(∂∗Si ∩ ∂∗Sj)

is decreasing and that the volume |Sj(t)| of each phase is conserved along the
evolution (15), (16).
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We also note that by the Γ-convergence results in [7],

1
ε
Eε(uε) =

∫
Ω

{ε
2
|∇uε|2 +

1
ε
W (uε)

}
dx

≈
N∑

i,j=1

d(ai, aj)Hn−1(∂∗Si ∩ ∂∗Sj), as ε→ 0,

=: Peru0.(17)

On the other hand, for y = x/ε,

1
ε

∫
Ω

{ε2

2
|∇uε|2 +W (uε)

}
dx =

∫
Ωε

{1
2
|∇yuε|2 +W (uε)

}
εn−1 dy.

Thus, ∫
Ωε

{1
2
|∇yuε|2 +W (uε)

}
dy ≈ 1

εn−1
Peru0 (as ε→ 0)

≈ 1

|Ωε|
n−1
n

Peru0,(18)

where |Ωε| is the Lebesgue measure of Ωε. This computation explains the infinite
free energy for n ≥ 2 mentioned earlier. The analogous sharp-interface problem to
(15), (16) for the Allen–Cahn system in two dimensions was introduced and studied
in Bronsard and Reitich [10]. Mantegazza, Novaga, and Tortorelli [27] initiated a
program for the global (in time) study of networks on the plane. The recent work of
Freire [18] addresses the difficulties of the parametric method in dimensions greater
or equal than three. Problem (15), (16) is more difficult and corresponding results
are known at a formal level (cf. Bronsard, Garcke, and Stoth [8]).

After this long detour we are ready for the next hypothesis that relates the
number and location of minima of the potential W to the group G.

Hypothesis 3 (Location and number of global minima). Let F ⊂ Rn be a funda-
mental region of G. We assume that F̄ (the closure of F ) contains a single global
minimum of W , say a1, and let Stab(a1) be the subgroup of G that leaves a1 fixed.
Then,

(19) N :=
|G|

|Stab(a1)|
.

First we recall a few basic facts about the fundamental region. For H2
2, a fun-

damental region is the first quadrant of R2. Its orbit under the elements of the
group consists of disjoint sets whose union, after closure, is R2. The walls of the
fundamental region are the u1 and u2 axes which define the fundamental reflections
that generate the group. Similarly for H3

2, a fundamental region is the π
3 sector in

R2, the walls of which define the fundamental reflections. In Figure 5 we also show
a fundamental region for a group W∗ of symmetries of the cube in R3.

In two dimensions the minimum a1 can be placed in the interior of F̄ , on an
edge, or on its vertex. For example, for H3

2 this process will give N = 6, N = 3,
and N = 1 respectively. In higher dimensions, we have more options. We can place
a1 in the interior of F̄ , in the interior of a face, in the interior of an edge, and so on.
We have calculated that in the case of the cube (±1,±1,±1) with F the simplex
generated by s1 = e1 + e2 + e3, s2 = e2 + e3, and s3 = e3, we have N = 6 on the
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Figure 5.

edge s3, N = 8 on the edge s1, N = 12 on the edge s2, N = 24 in the interior of a
face, N = 48 in the interior of F̄ , and N = 1 on the vertex of F .

The hypotheses so far have been purely geometrical. Our final hypothesis is
analytic and is introduced for carrying out the analysis of the problem.

Hypothesis 4 (Q-monotonicity). Let

(20) D := Int
(⋃

g∈Stab(a1)gF̄
)
.

We restrict ourselves to potentials W for which there is a continuous function Q :
D̄ → R with the following properties:

Q is convex,(21a)

Q(u) > 0 and Qu(u) 6= 0, on D̄ \ {a1},(21b)

Q(u+ a1) = |u|+ o(|u|) as |u| → 0,(21c) 〈
Qu(u),Wu(u)

〉
≥ 0, on D̄ \ {a1}.(21d)

Before discussing the limitations that such a hypothesis imposes on W , let us
explain right away how such a Q helps in the analysis. First, it is clear that
understanding the geometry of a vector solution is much harder than for its scalar
counterpart. A possible route in handling a vector field is by writing it in polar
form and then attempting to control its radial part, which of course is a scalar
function. From this point of view, one would write

u(x) = a1 + |u(x)− a1|
u(x)− a1

|u(x)− a1|
with

(22) Q(u(x)) = |u(x)− a1|, for x ∈ D.
Note that the distance from a1 is the relevant quantity since we are seeking solutions
that connect the minima of W . Next, by computation and utilizing (1),

∆Q(u(x)) = tr
{

(∂2Q)(∇u)(∇u)>
}

+
〈
Qu(u(x)),∆u(x)

〉
= tr

{
(∂2Q)(∇u)(∇u)>

}
+
〈
Qu(u(x)),Wu(u(x))

〉
.

If now it happens that

(23) u : D → D, (positivity)
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we can continue the calculation using convexity to get

(24) ∆Q(u(x)) ≥
〈
Qu(u(x)),Wu(u(x))

〉
≥ 0, for x ∈ D.

From this we can deduce global bounds on Q
(
u(x)

)
and so, ultimately on u(x).

Insisting on Q(u) = |u − a1| is unnecessary and very restrictive since all we need
by the computation above is convexity. The price, however, for this more general
option is that we have to develop a global coordinate system in Rn in terms of
the level sets of Q (see Proposition 2 in Part II). Another crucial element in the
calculation above is the positivity of u and we will come back to this point later.

Now we address the restrictions that Q imposes on W . First, for n = 1 and odd
symmetry, for a double-well potential W with D = {u > 0}, it is easy to see that
Q-monotonicity implies that W is monotone in D along the ray emanating from a1

and thus, only the graph on the right in Figure 6 satisfies the condition.

Figure 6.

It turns out that in higher space dimensions, Q-monotonicity is less restrictive.
In Figure 7 we consider n = 2 with H2

2 symmetry, which is the next simplest case;
hence, D = {(u1, u2) | u1 > 0}. In Figure 7 we show two options for W by drawing
its level sets: in the first one W has a saddle at the origin and of course a minimum
at a1; in the second one, W has a maximum at the origin. We also draw a typical
level set of a possible Q. The level sets of Q should be convex and should intersect
the level sets of W in acute angles so that (21d) is satisfied. Certainly, this is not
a proof for the existence of a Q but it gives the flavor of what is involved. One can
see that the case of the maximum above cannot be handled with the simple choice
Q(u) = |u− a1|.

For G = H3
2 on the plane, F the π

3 sector, and a1 = (1, 0), it can be verified that
the triple-well potential

(25) W (u1, u2) = |u|4 + 2u1u
2
2 −

2
3
u3

1 − |u|2 +
2
3

satisfies the Q-monotonicity condition in D =
{

(r, θ) | r > 0, θ ∈ (−π3 ,
π
3 )
}

, with
Q(u) = |u− a1|, where u = (u1, u2). In Proposition 1 in Part II we verify that the
potential in (25) satisfies Hypotheses 1–4.

For n = 3, G = T ∗, F the simplicial cone generated by(√
2
3 , 0,

1√
3

)
,
(
0,
√

2
3 ,

1√
3

)
,
(
0, 0, 1√

3

)
,
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Figure 7.

and a1 =
(√

2
3 , 0,

1√
3

)
, we can take as an example the quadruple-well potential

W (u1, u2, u3) = |u|4 − 4√
3

(u2
1 − u2

2)u3 −
2
3
|u|2 +

5
9
,

with Q(u) = |u − a1|, where u = (u1, u2, u3), and D the simplicial cone generated
by (

0,
√

2
3 ,

1√
3

)
,
(
0,−

√
2
3 ,

1√
3

)
,
(√

2
3 , 0,−

1√
3

)
.

Finally, we give an example in Rn, with G the reflection group generated by
the coordinate planes, F the simplicial cone generated by the standard basis e1 =
(1, . . . , 0), . . . , en = (0, . . . , 1), and a1 = (α1, . . . , αn), αi > 0,

(26) W (u) =
n∑
k=1

Ck
(
u2
k(u2

k − 2α2
k) + α4

k

)
,

for u = (u1, . . . , un) ∈ Rn, where Ck are given positive constants, with D = F
and Q = |u − a1|. Note that in this last example a1 is in the interior of F̄ . In
Proposition 3 in Part II we establish that for each finite reflection group G acting
on Rn there exist infinitely many smooth potentials W satisfying Hypotheses 1–4.
Also, in the Remarks following Propositions 1 and 3 in Part II we give information
on the way that a certain class of such Q’s can be constructed.

We are now ready to state our result.

Theorem 1. Under Hypotheses 1–4, there exists an equivariant (cf. (4)) classical
solution u to system (1) such that:

(i) |u(x)−a1| ≤ Ke−kd(x,∂D), for some positive constants k,K and for x ∈ D,
where d(x, ∂D) is the Euclidean distance between x and ∂D.

(ii) u(D) ⊂ D (positivity).

In particular, u connects the N = |G|/|Stab(a1)| global minima of W :

lim
λ→+∞

u(λga1) = ga1, for all g ∈ G.
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The proof of Theorem 1 is based on a family of constrained minimization prob-
lems in W 1,2

E (BR; Rn) (the equivariant Sobolev maps)

(27) min JBR , where JBR(u) =
∫
BR

{1
2
|∇u|2 +W (u)

}
dx,

where BR = {x ∈ Rn | |x| < R}. We introduce two constraints. One enforces the
desirable behavior at infinity,

(28) |u(x)− a1| ≤ q̄ < r0, for x ∈ CR ⊂ D ∩BR.

where CR is another ball B(xR, 2L) with xR = R
2 x0 and L > 0, fixed, independent

of R, and sufficiently large. The other constraint is positivity. We minimize in the
class of positive maps

(29)
{
u ∈W 1,2

E (BR; Rn) | u(D ∩BR) ⊂ D̄
}
.

Before going further, let us point out that equivariance in not a constraint since
by the results in Palais [30], a critical point of JBR in the equivariant class is
aumatically a critical point in W 1,2

E (BR; Rn). At the beginning we thought that
positivity should be a property of the minimizer uR and thus be automatically
satisfied. However, we were not able to prove this. Instead, by using the gradient
flow

(30)


ut = ∆u−Wu(u),
∂u

∂n
= 0, on ∂BR.

in the class W 1,2
E (BR; Rn), we were able to show that the set of positive maps

remains invariant under (30) and, moreover, that the flow takes the positive maps
into the set of strongly positive maps, that is, maps that map the interior of D
into itself. This, together with the fact that the gradient flow reduces the free
energy JBR allows us to remove the positivity constraint. The removal of the other
constraint for all R > R0, where R0 is a certain size that can be estimated well
and depends only on L and W , is achieved via comparison arguments through the
Q-functions. However, the key role of the Q-monotonicity is to ensure, through an
estimate, that the limit along subsequences

(31) u(x) = lim
R→∞

uR(x)

is not identically equal to zero, that is, trivial.

Part II

We begin by giving the details behind the construction of the potential in (25).
Let ej ∈ R2, j = 1, 2, 3, be the vertices of an equilateral triangle T inscribed in

the unit circle. Then,

(32) 〈ej , ej〉 = 1, for j = 1, 2, 3, and 〈ej , eh〉 = −1
2
, for j 6= h.

The group H3
2 of the symmetries of T is generated by the reflections Sj : R2 → R2

defined by

(33) Sj(ξej + ηeh) = ξej + ηek, for j 6= h, k, h 6= k, with ξ, η ∈ R.
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Proposition 1. The potential W : R2 → R defined by

(34) W (u) = 〈u, u〉2 − 1
3

3∏
j=1

〈2u− ej , ej〉+
1
3
, u ∈ R2

satisfies Hypotheses 1–4 with G = H3
2, aj = ej, j = 1, 2, 3, and Q : D̄ → R defined

by

(35) Q(u) = |u− e1|,
where D̄ = {u = ξe1 + η(e2 − e3) | ξ ≥ 0, |η| ≤ ξ}.

Proof. Hypothesis 2 follows trivially from the definition of W . We also have

(36) W (ej) = 0, for j = 1, 2, 3.

If we take

(37) e1 = (1, 0), e2 =
(
− 1

2 ,
√

3
2

)
, e3 =

(
− 1

2 ,−
√

3
2

)
,

then we have

(38) W (u1, u2) = |u|4 − 2
3
u3

1 + 2u1u
2
2 − |u|2 +

2
3

with partial derivatives

(39)


∂W

∂u1
(u1, u2) = 4u1|u|2 − 2u2

1 + 2u2
2 − 2u1,

∂W

∂u2
(u1, u2) = 4u2|u|2 + 4u1u2 − 2u2.

From (39) it follows that the critical points of W are the following: nondegenerate
minima u = ej , j = 1, 2, 3, saddle points u = − 1

2ej , j = 1, 2, 3, and a local minimum
u = 0. From this, (36), and the fact that W (u)→ +∞ as |u| → +∞, we conclude
that

(40) W (u) > 0, for u 6= ej , j = 1, 2, 3.

It remains to verify Hypothesis 4. To this end we study the sign of the function

(41) V (u) =
1
2
〈
Wu(u), u− e1

〉
= 2|u|4 − 3u3

1 + u1u
2
2 − 2u2

2 + u1.

We first analyze the sign of V on the boundary of the fundamental domain F =
{(u1, u2) | 0 < u2 <

√
3u1, for u1 > 0}. We have

(42)


V (u1, 0) = 2u1

(
u1 +

1
2

)
(u1 − 1)2 ≥ 0, for u1 ≥ 0,

V (u1,
√

3u1) = 32u1

(
u1 +

1
2

)(
u1 −

1
4

)2

≥ 0, for u1 ≥ 0.

Next we look for the critical points of V in F . We have the equations

(43)


∂V

∂u1
(u) = 8u1|u|2 − 9u2

1 + u2
2 + 1 = 0,

∂V

∂u2
(u) = 8u2|u|2 + 2u1u2 − 4u2 = 0.

For u2 6= 0, (43b) implies 8|u|2 = 4 − 2u1; u2
2 = −u2

1 − 1
4u1 + 1

2 . Inserting these
expressions into (43a) yields

(44) u2
1 −

5
16
u1 −

1
8

= 0,
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which has a unique positive solution

(45) ū1 =
5 +
√

153
32

>
1
2

(
1 +

1
16

)
It follows that V has a unique critical point (ū1, ū2) in the positive quadrant and

(46) ū2
2 =

1
2
− 1

4
ū1 − ū2

1.

Using (46), (44), and

|u|2 =
1
2
− 1

4
ū1,

we get

V (ū1, ū2) = 2
(1

2
− 1

4
ū1

)2

− 3ū3
1 +

1
2
ū1 −

1
4
ū2

1 − ū3
1 − 1 +

1
2
ū1 + 2ū2

1 + ū1

= −4ū3
1 +

15
8
ū2

1 +
3
2
ū1 −

1
2

=
5
8
ū2

1 + ū1
1
2
> 0,(47)

where we have used (45). This implies that also Hypothesis 4 is satisfied. Indeed,
from (42) we have V (u) ≥ 0 on ∂F . On the other hand, |u| sufficiently large implies
V (u) > 0. Therefore, the existence of a point û ∈ F where V (û) ≤ 0 would imply
the existence of a critical point ū of V such that V (ū) ≤ 0. This is not the case
because we have shown that V has a unique critical point ū in the positive quadrant
and by (47), V (ū) > 0. This concludes the proof. �

Remark. The polynomial (38) is a special choice in the four-dimensional vector
space P of polynomials of order ≤ 4 which are invariant under H3

2:

(48) P =
{
P | P (u) = α|u|4 + β(u3

1 − 3u1u
2
2) + γ|u|2 + δ, for α, β, γ, δ ∈ R

}
.

Hypothesis 1 requires α > 0 and can be normalized to α = 1. The coefficients β,
γ, and δ are uniquely determined by the conditions

(49) Pu(e1) = 0, P (e1) = 0, and Pu
(
− 1

2e2

)
= 0.

The last condition is necessary in order that Hypothesis 4 holds with Q(u) = |u−e1|.
In conclusion, the choice (38) is ‘canonical’ in the sense that it is the unique

normalized polynomial of degree 4 that is invariant under H3
2, satisfies (49), and

also satisfies Hypothesis 4 with Q(u) = |u− e1|.

Let now ej ∈ R3, j = 1, 2, 3, 4 be the vertices of a tetrahedron T inscribed in the
unit sphere. Then,

(50) 〈ej , ej〉 = 1, for j = 1, 2, 3, 4, and 〈ej , eh〉 = −1
3
, for j 6= h.

If we take

(51) e1,3 =
(
±
√

2
3 , 0,

1√
3
, e2,4 =

(
0,±

√
2
3 ,−

1√
3

)
,

then one can check that the five homogeneous polynomials

1, |u|2, (u2
1 − u2

2)u3, (u2
3 − 2u2

1)(u2
3 − 2u2

2)), |u|4

make up a basis for the five-dimensional vector space P of the polynomials of degree
≤ 4 which are invariant under the group T ∗ of the symmetries of T . If one imposes
to the generic P ∈ P the conditions

(52) P (e1) = 0, Pu(e1) = 0,
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and the necessary conditions

(53) Pu
(
− 1

3e3

)
= 0 and Pu

(
1
2 (e2 + e4)

)
= 0,

to ensure that Hypothesis 4 holds with Q(u) = |u − e1| and normalizes to 1 the
coefficient of |u|4, one gets the canonical polynomial

(54) W (u) = |u|4 − 4√
3

(u2
1 − u2

2)u3 −
2
3
|u|2 +

5
9
.

An analysis similar to the one in the proof of Proposition 1 shows that actually W
satisfies Hypotheses 1–3 and Hypothesis 4 with Q(u) = |u− e1|.

In the proposition that follows we give the proof of Lemma 3.1 in [5] in full
generality.

Proposition 2. Assume that
(i) Ω ⊂ Rn is an open and connected set with a piecewise-smooth boundary

and 0 ∈ Ω.
(ii) Q : Ω̄→ R is a continuous function such that

(55) Q(u) > 0 and Qu(u) 6= 0, for u ∈ Ω̄ \ {0},
with

(56) Q(u) = |u|+H(u)

where H : Ω̄→ R a smooth function that satisfies

(57) H(0) = Hu(0) = 0.

(iii) For each u ∈ ∂Ω, Qu(u) points outside Ω.
Then, for each ν ∈ Sn−1, the equation

(58)
du
dq

=
Qu(u)〈

Qu(u), Qu(u)
〉 , for u ∈ Ω \ {0}

has a unique solution ũ(·, ν) : (0, qν) → Rn, where (0, qν) is the maximal interval
of existence, such that

(59) lim
q→0+

ũ(q, ν) = 0 and lim
q→0+

ũ(q, ν)
|ũ(q, ν)|

= ν.

Moreover, the map h defined by

(60) (q, ν) h7→ ũ(q, ν),

is a diffeomorphism of Σ =
{

(q, ν) | q ∈ (0, qν), for ν ∈ Sn−1
}

onto Ω \ {0}.

Proof.
Step 1. Scalar multiplication of (58) by Qu(u) yields

(61)
d

dq
Q(u) = 1.

This, (55), (56), and the fact that Ω is negatively invariant by (iii) imply

(62) lim
q→0+

u(q) = 0 and Q(u(q)) = q

along any solution of (58). Using q = |u|+H(u) we can rewrite (58) in the form

(63)
du
dq

=
u

q
+ g(u),
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where g : Ω→ Rn is a smooth function that satisfies

(64) g(0) = 0

and is defined in terms of Q and H. From (63) we have

(65)
d

dq
u(q)
|u(q)|

=
g(u(q))
|u(q)|

−
〈 u(q)
|u(q)|

,
g(u(q))
|u(q)|

〉 u(q)
|u(q)|

.

This and (64) imply

(66)
∣∣∣ d
dq

u(q)
|u(q)|

∣∣∣ ≤ ∣∣∣g(u(q))
u(q)

∣∣∣ ≤ C,
for some constant C. It follows that for each solution u(q) of (58) there exists a
unit vector ν ∈ Sn−1 such that

(67) lim
q→0+

u(q)
|u(q)|

= ν.

The above argument shows that there is a map ĥ : Ω \ {0} → Σ that associates
to each u ∈ Ω \ {0} a pair (q, ν) ∈ Σ as follows: q = Q(u) and ν is given by (67)
with u(·) the unique solution of (63) through the point (Q(u), u).

Step 2. From the implicit function theorem, the equation

(68) p+H(pν) = q

has a unique smooth local solution p = p(q, ν) for which there holds

(69) p(0, ν) = 0 and
dp
dq

(0, ν) = 1.

Fix small positive numbers 0 < ε < δ and let u(q, ε, ν), for q ∈ (0, δ), be the solution
of (63) through the point (ε, p(ε, ν)ν. Using the fact that the fundamental matrix
solution of the homogeneous equation

du
dq

=
u

q

is
q

s
Id,

we see that u(·, ε, ν) is the unique solution of the integral equation

(70) u(q, ε, ν) = q
(p(ε, ν)

ε
ν +

∫ q

ε

g(u(s, ε, ν))
ds
s

)
, for q ∈ (0, δ).

Given 0 < ε1 < ε2 < δ, set

(71) φ(q) =
1
q
|u(q, ε2, ν)− u(q, ε1, ν)|

and observe that (69) and (64) imply

(72)
∣∣∣p(ε2, ν)

ε2
− p(ε1, ν)

ε2

∣∣∣ ≤ C|ε2 − ε1|,

(73)
1
s
|g(u(s, ε2, ν))− g(u(s, ε1, ν))| ≤ Cφ(s).
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Therefore, from (70) it follows that

(74) φ(q) ≤



C|ε2 − ε1|+ C

∫ ε1

q

φ(s) ds+
∫ ε2

ε1

|g(u(s, ε2, ν))|ds
s

≤ C|ε2 − ε1|+
∫ ε1

0

φ(s) ds, if q < ε1,

C|ε2 − ε1|+
∫ q

ε1

|g(u(s, ε1, ν))|ds
s

+
∫ ε2

q

|g(u(s, ε2, ν))|ds
s

≤ C|ε2 − ε1|, if ε1 < q < ε2,

C|ε2 − ε1|+
∫ ε2

ε1

|g(u(s, ε1, ν))|ds
s

+ C

∫ q

ε2

φ(s) ds

≤ C|ε2 − ε1|+ C

∫ q

0

φ(s) ds, if ε2 < q.

This and Gronwall’s lemma imply

(75) φ(q) ≤ C|ε2 − ε1|eCδ,

that is,

(76) |u(q, ε2, ν)− u(q, ε1, ν)| ≤ Cq|ε2 − ε1|eCδ, for ν ∈ Sn−1, q ∈ (0, δ).

Therefore, u(·, ε, ·) converges uniformly on (0, δ)×Sn−1 to a continuous function
ũ(·, ·) which satisfies the limit equation

(77) ũ(q, ν) = q
(
ν +

∫ q

0

g(ũ(s, ν))
ds
s

)
, for q ∈ (0, δ), ν ∈ Sn−1.

Thus, (77) shows that each ν ∈ Sn−1 uniquely determines a solution ũ(·, ν) of (63),
and ν1 6= ν2 implies ũ(·, ν1) 6= ũ(·, ν2). From this and Step 1 it follows that (77)
defines a map

h : (0, δ)× Sn−1 → Ωδ =
{
u ∈ Ω \ {0} | Q(u) < δ

}
,

which is the inverse of the map ĥ|Ωδ , ĥ the map defined in Step 1.
To conclude the proof, it suffices to show that h : (0, δ) × Sn−1 → Ωδ is a

diffeomorphism. The last statement of the Proposition then follows from the general
theory of ordinary differential equations that allows to extend h to the whole Σ.

Step 3. Let α > 0 a small number and ν̂ : (−α, α) → Sn−1 a smooth curve such
that

(78) ν̂(0) = ν and ν̂′(0) = ω.

Set

ψ(s, τ) =
1
s

( ũ(s, ν̂(τ))− ũ(s, ν)
τ

)
.

Then, (77) implies

|ψ(q, τ)| ≤
∣∣∣ ν̂(τ)− ν

τ

∣∣∣+ C

∫ q

0

|ψ(s, τ)|ds,

or,

(79) |ψ(q, τ)| ≤
∣∣∣ ν̂(τ)− ν

τ

∣∣∣eCδ.
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From (77) we also get

ψ(q, τ2)− ψ(q, τ1) =
ν̂(τ2)− ν

τ2
− ν̂(τ1)− ν

τ1

+
∫ q

0

∫ 1

0

gu
(
ũ(s, ν) + λ(ũ(s, ν̂(τ2))− ũ(s, ν))

)
ψ(s, τ2) dλ ds

−
∫ q

0

∫ 1

0

gu
(
ũ(s, ν) + λ(ũ(s, ν̂(τ1))− ũ(s, ν))

)
ψ(s, τ1) dλ ds

=
ν̂(τ2)− ν

τ2
− ν̂(τ1)− ν

τ1

+
∫ q

0

∫ 1

0

gu(s, λτ2)(ψ(s, τ2)− ψ(s, τ2)) dλ ds

−
∫ q

0

∫ 1

0

(gu(s, λ, τ2)− gu(s, λ, τ1))ψ(s, τ1) dλ ds

(80)

where we have set gu(s, λ, τ) = gu
(
ũ(s, ν) + λ(ũ(s, n̂u(τ))− ũ(s, ν))

)
.

We note the estimates

(81)
∣∣∣ ν̂(τ2)− ν

τ2
− ν̂(τ1)− ν

τ1

∣∣∣ ≤ C(|τ1|+ |τ2|),

(82) |gu(s, λ, τ)| ≤ C,

|gu(s, λ, τ2)− gu(s, λ, τ1)| ≤ C
∣∣ũ(s, ν̂(τ2))− ũ(s, ν̂(τ1))

∣∣
≤ Cs(|τ2||ψ(s, τ2) + |τ1||ψ(s, τ1)|)
≤ Cδ(|τ1|+ |τ2|),(83)

where we have used (79) that implies |ψ(s, τ)| is bounded.
From this estimate, (79), and (80), it follows

(84) |ψ(q, τ2)− ψ(q, τ2)| ≤ C(|τ1|+ |τ2|) + C

∫ q

0

|ψ(s, τ2)− ψ(s, τ1)|ds,

and therefore, we obtain for (q, ν) ∈ (0, δ)× Sn−1

(85)
∣∣∣ ũ(q, ν̂(τ2))− ũ(q, ν)

τ2
− ũ(q, ν̂(τ1))− ũ(q, ν)

τ1

∣∣∣ ≤ Cq(|τ1|+ |τ2|)
From this inequality it follows that ũ(q, ν) is differentiable with respect to ν and
that the derivative Dν ũ(q, ν) : TνSn−1 → Rn depends continuously on (q, ν) and
satisfies the integral equation

(86) Dν ũ(q, ν)ω = q
(
ω +

∫ q

0

gu(ũ(s, ν))Dν ũ(s, ν)ω
ds
s

)
.

This and

(87) Dqũ(q, ν) = ν +
∫ q

0

g(ũ(s, ν))
ds
s

+ g(ũ(q, ν)),

show that ũ(q, ν) is differentiable at (q, ν) ∈ (0, δ)× Sn−1 and

(88) Dũ(q, ν)(ρ, ω) = qω + ρν + higher-order terms

and therefore that Dũ(q, ν) is nonsingular. This concludes the proof. �
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Proposition 3. For each finite reflection group G acting on Rn, there exist infinitely-
many smooth potentials W : Rn → R that satisfy Hypotheses 1–4.

Proof. Let
Int
(⋃

g∈Stab(a)gF̄
)

and let Q : D̄ → R be a convex function such that the map Q( · + a) : D̄ \ a → R
satisfies the assumptions in Proposition 1. Let ρ : Rn → R be a G-invariant map
such that

(i) ρ(u) > 0, for u ∈ D \ {a}, and ρ(u) = 0, for u ∈ {a} ∪ ∂D,
(ii) ρ(u+ a) = |u|+ φ(u), for u ∈ D,

where φ is a smooth function such that φ(0) = φu(0) = 0.
Define

(89)

W (u) =
∫ Q(u)

0

ρ
(
ũ(q, ν(u))

)
dq, for u ∈ D̄ \ {a},

W (a) = 0.

where (q, ν) 7→ ũ(q, ν) − a is the diffeomorphism defined in Proposition 2. We
assume that W is extended G-equivariantly to the whole of Rn. By definition, W
satisfies W (u) > 0 for u 6= ga, g ∈ G. From (89) and the smoothness of the maps
u 7→ Q(u) and u 7→ ν(u), it follows that W is smooth on D \ {a}. From (ii) and
assumption (56) in Proposition 2 we see that W extendes smoothly to a and a is
nondegenerate zero of W . Finally, the smoothness of W in a neighborhood of ∂D
follows from the assumption that ρ(u) vanishes for u ∈ ∂D.

It remains to show that the function W defined by (89) and the convex function
Q verify the condition

(90)
〈
Qu(u),Wu(u)

〉
≥ 0, for u ∈ D \ {a}.

To see this we note that differentiating with respect to q the identity ν(ũ(q, ν)) = ν
we get

(91) νu(u)Qu(u) = 0,

where we have also used (58). Differentiating (89) with respect to u yields

(92) Wu(u) = ρ(u)Qu(u) +
∫ Q(u)

0

ρu
(
ũ(q, ν(u))

)
ũν(q, ν(u))νu(u) dq.

In view of (91), scalar multiplication of (92) by Qu(u) implies

(93)
〈
Wu(u), Qu(u)

〉
= ρ(u)|Qu(u)|2 ≥ 0.

This concludes the proof. �

Remark. Possible explicit choices for the functions Q and ρ considered in Proposi-
tions 1 and 2 are

(94) Q(u) = |u|+ 〈Au, u〉,

where A is a positive definite symmetric n× n matrix, and

(95) ρ(u) =
∏

â∈{ga | g∈G}

d
(
u,
⋃
g∈G∂(gD)

)2
,

where d(u,E) is the distance of u from the set E.
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