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ABSTRACT

In this paper we establish the convergence of the largest eigenvalue of general variance
profile random matrices to the largest element of the support of the limiting measure under
very general assumptions for the variance profile of the matrices. We also prove that it is
sufficient for the entries of the matrix to have finite only the 4-th moment, instead of all the
moments. This is a generalization of previously known results.

1 Introduction

The problem of understanding the operator norm of a random matrix with independent entries is in general
multidisciplinary both from mathematical and non-mathematical point of view. From a mathematical point
of view, tools from classical probability, geometric analysis, combinatorics, free probability and more have
been used. That problem dates back to 1981, where in [18] the convergence of the largest eigenvalue of
Wigner matrices (symmetric, i.i.d. entries) to the edge of the limiting distribution was established when the
entries of the matrix are bounded. Next, in [2], the authors gave necessary and sufficient conditions for the
entries of a Wigner matrix to converge. One of those conditions was that the entries should have finite 4-th
moment. Similar bounds have been given to non-symmetric matrices with i.i.d. entries. Then, the difference
of the largest eigenvalue and its limit, after re-normalization, was proven to converge to the Tracy-Widow law
in [26]. Later, universality results were established for sparse random matrix models, for example in [2]1]
for random graphs and in [24] for random banded matrices. Moreover, sharp non-asymptotic results for a
general class of matrices were established in [4] and in [3].

All the models mentioned above can be generally considered as random matrices with general variance
profile, i.e. random matrices whose entries’ variances are not fixed and can depend on the dimension. These
models have also drawn a lot of attention lately, see for example [12], [13], where non-Hermitian models
are considered. Furthermore, in [27], the author characterized the limiting E.S.D. through the notion of
graphons. The convergence of the largest eigenvalue to the largest element of the support of the limiting
distribution was established in the recent works [22] and [16] for some class of random matrices with general
variance profile under the assumption that the entries of the matrix have finite all moments. In this paper
we generalize the previously mentioned results, i.e., we establish the convergence of the largest eigenvalue of
general variance profile random matrices to the largest element of the support of the limiting measure under



very general assumptions for the variance profile of the matrices. We also prove that it is sufficient for the
entries of the matrix to have finite only the 4-th moment, instead of all the moments.

2 Description of results

Let Ay be a sequence of symmetric random matrices with independent entries (up to symmetry) such that

Assumption 2.1. [ Eagv) =0, E|aff].v)|2 < 1 for all i,j, N, and sup, max;je[n Elaffl.v)

e For any constant € > 0 it is true that

|* < oo.

Z P(la’| > e VN) - 0 2.1)
ij

We let sg;’) = E{|a1.(;)|2}. Note that these conditions imply the assumptions in the beginning of section 3 of [27].
Note that condition always holds if we assume that the entries of Ay are i.i.d. with finite 4-th moment.

Notation 2.2. For any N X N symmetric matrix A with eigenvalues {7;(A)}:[n], the measure
1
N Z )
i€[N]
will be the Empirical Spectral Distribution (E.S.D.) of A. Moreover we will use the following notation for the

operator norm of the matrix A,
Amax(A) = max [A:(A)| = |A|op-
i€[N]

Assumption 2.3. There exists a probability measure p such that for every k € N

k K
1 A x“du(x) Ik € 2N,
lim kadu,\,(x)z lim —Etr(—N) = J ) 2.2)
N—oo Nooo N VN 0 else.
Moreover, set
1/2k
Hoo 1= lim ( f x2kdu(x)) ) (2.3)

The measure u has compact support as we will show below [see (3.6)], and since its odd moments are zero,
u is symmetric. Thus L is finite and equals the maximum of the support of .
Assumptions[2.I|provide some sufficient condition for the entries of the matrix to be controllable. Assumptions
assumes the convergence of the empirical spectral distribution of sequence of the matrices. Both of them
are more or less standard and can be found in the literature of Wigner-type matrices with general variance,
see for example [27]. Next we give some sufficient conditions in order for the largest eigenvalue to converge.
The main difficulty which the next conditions will try to address is how to compare high order moments of
the matrix with pe.

Assumption 2.4. For every N € N and i,j € [N] it is true that

(2N)  _(2N) (2N)
Soi9j* Soi-1.2j* Si-1,2j-1)

() :
S < min{
In order to give the next sufficient condition we first give some necessary definitions.
Definition 2.5. We call graphon any measurable function W : [0, 1] X [0, 1] — R which is symmetric and
integrable.

Note that any N X N matrix Ay which satisfies Assumptions defines a graphon as follows

(N)
[NxT.[Nyl*

Definition 2.6. For any graphon W and any multigraph G = (V, E), the isomorphism density from G to W is

HG, W) = f[ ﬂ W(x.%) ﬂ dx,

V]
0.1M jicE =\

Wn(x,y) i=s
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Definition 2.7. Define Ci to be the set of all non-isomorphic plane rooted trees with I + 1 vertices, i.e. all

trees with k + 1 vertices, a vertex distinguished as a root and an ordering amongst the children of any vertex.

It is known that the number of such trees is the k—th Catalan number, i.e.,

Cl = #(2’“) 2.4
kel — k ) .

and a trivial bound that we will use is |Cj| < 22F.

Let Ay be a sequence of matrices that satisfy Assumptions and call Wy the isomorphism density of Ay
as is defined after Definition

Assumption 2.8. There exists a graphon W such that
I\l}im UT, Wy) = (T, W)

for any finite tree T. Moreover for the tree with two vertices and one edge, i.e. T € Cy, it is true that for any
D > 0 there exists some Ny = No(D) such that for any N > N it is true that

[t(T, Wy) — t(T, W)| < O(ND) (2.5)

Remark 2.9. Note that in Assumption [2.8] we do not have to assume convergence of the E.S.D. of the matrix
because this is ensured by the Assumption of the convergence of the graphon for every finite tree. This will
be explained in subsection

Definition 2.10. NA OXI DEFN For any N € N and any two N X N matrices A, B we will denote A © B their
Hadamard product which is the N X N matrix with entries the entry-wise product of A, B, i.e.,

{A© B}y = {A};{B)y;

The assumptions we made so far will lead to convergence in probability of the largest eigenvalue. Next we
will give some extra condition, which will lead to the almost sure convergence of the largest eigenvalue.

Assumption 2.11. Suppose that Ay is a sequence of symmetric random matrices, with independent entries
(up to symmetry), such that there exist a random variable X with mean 0, variance 1 and finite 4-th moment
which stochastically dominates the entries of Ay in the following sense

P([{An}il 2 t) < P(X] > 1), for all t € [0, o0] (2.6)
and for any N € N and any i,j € [N].
Instead of Assumption |2.11] an easier to check (but stronger) assumption for a model of random matrices

is the following.

Remark 2.12. Note that if Ay can be written as the Hadamard product of two matrices Xy and A;,, where Ay
is a sequence of symmetric random matrices with i.i.d. entries all following the same law, with O mean, unit
variance and finite 4—th moment and for each N the entries Xy belong to the set [0, 1], then Assumption
211l will hold.

We are now ready to present our first main result.

Theorem 2.13. Let Ay be a sequence of matrices satisfying Assumption[2.1] Then if either Assumptions|2.3
and (2.4 hold or Assumption|[2.8 holds, it is true that

A
lim o (—”) =l in probability 2.7)

VN
Moreover if the sequence of matrices Ay satisfy Assumption the convergence in (2.7) improves from
probability to almost surely.

Note that Assumption is restrictive and does not cover a lot of the well-known and studied models.

So in what follows we try to take advantage of Theorem and adjust it in order to prove the convergence

of the largest eigenvalue for a a general class of random matrix models. We first give a definition.

{CatalNum}

{Assumption

{fast conver

{assumfora. s

{stochdom}

{a.s.remeasi

{to theorims

{siglisi stc



Definition 2.14. Let Ay be a sequence of matrices for which Assumptions hold. Moreover suppose that
there exists an integer valued sequence dy for which it is true that limy_, % = 0 and such that for each N
there are dy— orthogonally convex and closed {A™},[4,], subsets of [0, N]? with the following properties.

e It is true that
AV cAN - cAY = {(xy eR*:0<x <y < N 2.8)
e For any N € N, m € [dy] there exists some there exists f € [dyy] such that
205 1) : (¢ ) € (AV\ Uemr AY) A INPY € (AP Uiy APV (2.9

and
Here the notation A° stands for the interior of a set A.

e In what follows the notation bd(A) stands for the boundary of a set A. For every m € [dy] the
intersection of bd(ﬂg)) with any line segment which connects two elements (xi,y;), (%, ys) €
{(x,y) € [N]?: 0 < x < y < N} such that either x; = x, or y; = yy, contain at most 2 elements.

For every m € [dy] set
B = A\ Viem AL,
Then if for all (i,j) € [N]? the variance of the (i, j)-entry of Ay is given by
s = DL S Ly apest (2.10)
me[dy]
for some set of numbers {s;}i[q,]. We will call the sequence of matrices Ay, random matrix model whose

variance profile is given by a generalized step function

The following Theorem is a corollary of Theorem and covers the cases where the entries of the variance
profile matrix are the values of a step function or a continuous function which is coordinate decreasing (or

increasing).

Theorem 2.15. Let Ay be a random matrix model whose variance profile is given by a generalized step
Junction. Then if it also satisfies Assumptions and for every N € N and {i, j} such that there exists some
m € [dy] such that if (min{i, j}, max{i,j}) € (BY)° then

s < spry) 2.11)

Then
. Ay
lim ﬁmax(—) = U~ in probability

N—>oo W

Moreover if the sequence of matrices Ay satisfy Assumption the convergence in (2.7) improves from
probability to almost surely.

Remarlk 2.16. The sequence dy in Definition can grow to infinity but each new set that emerges at some
Ny will not contribute to the entries of the matrix Ay, i.e., it will not contain a natural number until much
later in the sequence. See for example the discussion in Remark[7.18]

Will we need a figure here as well here ? In the next corollary we prove that it is sufficient for a model to
be well-approximated by sequence which satisfies one of the Assumptions above.

Corollary 2.17. Let Ay be a sequence of matrices satisfying Assumptions[2.1] and[2.3] Write Ay as
Ay =IN O Ay, (2.12)

where Xy is the matrix with entries the standard deviation of Ay, i.e. (E{A2};))'/? = ZEJN) and Ay, is random
symmetric matrix with independent entries all with zero mean, unit variance and finite 4—th moment. Moreover,
suppose that for every n € N there exists a sequence of EE\';) such that the sequence of matrices Axl) = EE\';) O A}
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satisfies Assumptions[2.1] and[2.3 and either Assumptions 2.4 either Assumptions|[2.8 or the Assumptions of
Theorem Furthermore, for every n € N denote by u™ the limiting distribution of the E.S.D. of Ag‘) and by
ufx',l ) the largest element in the support of u™. Suppose that

lim 1%’ = oo,  u™ = p in distribution,

n—oo

lim lim sup max [{Zy};; — {Zﬁé‘)}ul =0
n N 19}
. Then

. An
lim ﬂmax(—) = U» In probability

N—oo \/N

Moreover again, if the sequence of matrices Ay, satisfy Assumption the convergence in improves from
probability to almost surely.

Remark 2.18. Note that Theorem covers the case that s{‘f] = O(Ni, %) for some symmetric step function
0:[0,1]1%x[0,1] — [0, 1] and Corollary covers the case that o is symmetric and continuous. The last
fact is true by Lemma 6.4 of [21], where the deviation matrices when o is continuous is approximated by
step functions.

3 Analysis of high order moments

We will relate the largest eigenvalue with a high moment of the measure py and at the same time this moment
will be controlled by u.,. We start by analysing the convergence in (2.2). In general, it is true that

2l
Ew(a® = Y E||au, (3.1)
i1, ire[N]  1=1
with the convention that iy = ;.
Now, for a term with indices i}, i, . . ., ig), we let i := (iy, b, . . ., ipr) and X(i) := lzzkl a; 4.,- Then consider

the graph G(i) with vertex set
V@) = {ir, b, ..., foxchs
and set of edges
{i;, 41} :r=1,2,...,2k},

For such an i we also use the term cycle.
As explained in [1] (in the proof of relation (3.1.6) there, pages 49, 50 or in Theorem 3.2 of [27]), the limit
. 1 2k
]\%I_I;Igo WEH(A )
remains the same if in we keep only the summands whose indices i satisfy the following:
1. The graph G(i) is a tree with k + 1 vertices.

2. The path iy —» iy — -+ — iy — {j traverses each edge of the tree exactly twice, in opposite directions

of course.

G(i) becomes an ordered rooted tree if we mark i; as the root and declare a child smaller than another if it
appears earlier in the cycle.
Cycles i that don’t satisfy either of 1 or 2 above we call bad cycles. So the sum in can be written as

E tr(A**) = My(k) + By(k), 3.2)

where
N
wio=> 5[] 59
GECy i€[N]2k:G, (1)~ G {i)EE(G1 (1))

By (k) := Z EX(i). (3.4)
i€[N]?k:bad cycle

{highordermc
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Here Cj are the ordered rooted trees with k edges and G(i) ~ G means that the graphs are isomorphic as
ordered rooted trees.
Note that by the uniform bound on the variances of Ay it is true that

My(k) < |C [N, (3.5)
which, with the use of (2.4), implies that
/2k
. My
hrkn_)s::p (hzvm _)sDL:p NIL 1 ) < 2. (3.6)

The plan is to control the expectation of the trace in through an appropriate bound involving various
My (j)’s. To control the term By(k), we adopt the analysis of Section 2.3 of [25].

Proposition 3.1. Let Ay be a matrix that satisfies Assumption[2.1] Assume additionally that the absolute
value of the entries of the matrix are all supported in [0, CN %’e] Jor some € > 0. Then for all N large enough

and all k < N it is true that
(s+1)Ak

k
Bu(ol < > (ak52 (V)37 N (k) - 0My (¢ - 1), (3.7

s=1 t=1

Proof. We bound each term of the sum defining By(k). Take a bad cycle i and let

e t: the number of vertices of G(i),
e s: the number of the edges of G(i),
® ¢e1,6e,,...,6e5 the edges of G(i) in order of appearance in the cycle,

® a;,qay,...,0as the multiplicities of e;, ey, . . ., e5 in the cycle.

That is, aq is the number of times the (undirected) edge e, appears in the cycle. Note that t < s+ 1 (true for
all graphs) and t < k because the cycle is bad.

Additionally, we let T(i) be the rooted ordered tree obtained from G(i) by keeping only edges that lead to
a new vertex at the time of their appearance in the cycle. The root is i; and we declare a child of a vertex
smaller than another if it appears earlier in the cycle.

To bound [EX(i)|, notice that if any of a;, as, ..., as is 1, we have EX(i) = O by the independence of the

elements of Ay and the zero mean assumption. We assume therefore that all multiplicities are at least 2.

Using the information about the mean, variance, and support of |a§fjv)|, we get that for any integer a > 2 it
holds E(Iagjv)la) < (ClNl/Z‘e)“‘zs(idm. Thus

S
E|X(i)| = l_[ E|Xei|ai < (CIN1/2—s)a1+~-.+a5—2s 1_[ SEJN) < (C1N1/2—5)2k—2s 1_[ Sg}’)_ (3.8)
i=1 {ijl€E(Gr (1) {iJj}€E(T({))
In the second inequality, we used the fact that s(l.f]\.’) € [0, 1] for all i,j, N. For integers s,t > 1,a;,...,0as > 2

and T € C;_; let
the number of bad cycles with T(i) ~ T, vertex set {1,2,...,t},

N = (3.9)
Tt = and edge multiplicities a;, ag, . . ., as.
Consequently,
k kA(s+1)
1/2-&\2k-2 (N)
Byl > > D @NYERE N N o > ]S (3.10)
s=1 t=1 a.a.....a5 TeCi i€[N]2k:T(i)~T {ij}€E(T({))
ke kA(s+1)
1/2-\2k-2 (N)
<22 2L @NRE D Naaea ), || &) @
s=1 t=1 ay,a,....a TeCi- €[N T(E)~T (if)€E(T(E)
k kA(s+1)
SZ Z Z (4k4)4(s+1—t)+2(k—s)(c1N1/2—5)2k—25MN(t_1)' 3.12)

{upboundcate
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The inside sum is over all s-tuples of integers a;, as, ..., as greater than or equal to 2 with sum 2k. By
subtracting 2 from each a;, we get an s-tuple of non-negative integers with sum 2k — 2s. The number of

such s-tuples is (( ))(Combmatlons with repetition), which is at most §2(k=9) < }2(k=s) Thus the above

2k-2s

sum is bounded by
IkA(s+1)

I
Z(4k5)2(k—s)(clNl/Z—S)Zk—ZS Z (4k4)4(s+l—t)MN(t _ 1) (3 13)
s=1 t=1
O

4 Proof of Theorem [2.13

By relation and Proposition it is clear that one needs to control the behaviour of the crucial part of
high order traces, i.e., My(Jk). More precisely, in order to give an upper bound on the largest eigenvalue we
will study the behaviour of My(k) when k = O(logz(N )). Firstly by assumption one has that there is a
probability measure u which is symmetric and compactly supported such that

Jim Z () (—9,.%) = (=00, %) 4.1)

for all x € R continuity points of the function p(—oo, x). This implies that

Ay
l1m1nfﬂmax( \/_) > U a.S.

1/2Ik
Peo = lplr,, = lim ( f xz"du(X))

So in order to prove Theorem [2.13|one needs to prove that

where

lim sup (L) < i 4.2)

\/_

We will prove ( separately for each one of the assumptions [2.4] and [2.8]

4.1 Proof of Theorem [2.13| with Assumptions [2.4]
In this subsection we will prove under Assumptions The following proposition is crucial.

Lemma 4.1. Let Ay be a sequence of matrices that satisfies Assumptions|[2.1] [2.3 and[2.4 Then for every
I, N € N such that k < N it is true that
My(k) < N*1 2k

Proof. Fix N,k €N : k< N and a tree T € Ci. Then, for each d := (d;, ds, . . ., dis1) € {—1,0}}*! consider the
function
@a: [N]k+1 - [2N]k+1

with

@a (i1, i, L lorr1) = 2 (1, B, -, foger1) +(dy, das - dir1)
for all ij, iy, ..., i1 € [N]**1. Note that each @¢q is one to one and for different vectors d, d’ € {—1, 0}<*!, the
image of ¢q is disjoint from that of ¢g>.
Lastly, by assumption m 2.4/ for any d € {~1,0}*"! it is true that

2. 2 lss > ] s (4.3)

TECx i),iy, i1 E[N]F*1) ijEE(T) TeCr jepg ([N]k+1) LEE(T)

So if one sums over all possible trees in Cy, implies that

2k My (k) = Z Z Z 1—[ sV < Z l_[ s2V < My (k). 4.4)

dy ,dgdis1 TECk iy iy ey E[N]<) iJEE(T) TECr iepa([N]k+1) WERT)

{liminf}
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By applying inductively, one can prove that for fixed N, k € N the sequence

Gm = Mann (k) /(2" N)*<*!
is increasing in the variable m. So by it is true that

Sup g = lim g = pgk.

m m—oo
Lastly, by a trivial inequality on the p—norms of the limiting measure, one has that
poie < p2F.

And the proof follows from the inequality qo < pgie < p2~. m|

Next, we are going to give a more precise estimate on the high order moments of the matrices and hence
we will give the necessary bound on the largest eigenvalue under an additional assumption on the support of
the entries of the matrix.

Proposition 4.2. Let Ay be a sequence of matrices that satisfy Assumptions and[2.4. Moreover
assume that the entries of Ay are all supported in [0, CN %‘6] for some constant C and some small 6 > 0. Then

. A
]\lll_rgoﬁmax(\/_;%) =l as.
Proof. First, we claim that for any k = O(log2 (N)) it holds
E tr(AZF) < N*" 1 2F(1 + o(1)}2<. (4.5)

Indeed, combining Propositions and we get

k (s+DAk
2k-2
Etr(Azk) < uikaJrl + Z(4k5)2k725 ((CN)%fe) S Z (4k4)4(s+1*t)Ntﬂgo(l—l)' (46)
s=1 t=1
Note that if u,, = O then is implied by NA. So we assume that p, > 0. Next, we focus on the second
summand in the right hand side of the previous inequality, for N large enough. By a trivial bound on the
geometric series one has that the right hand side in is bounded by

2k & | o\2k-2s Np2 \SHDAE

“nK 413)22s (N30 4]t © 4.7
: Zl( PR (o) e | s (@.7)

)2 k=1 (4KP)2C1-26 ks
_ 59718k, 2 k-1 2 \k+1
=27k "N (ue)" " + E(N,u'oo) i Z(W) (4.8)
s=1
< 29IIENR(2 )< 4 320120113 (12 y (k-1 k126 (4.9)

and follows.
Now we can prove (4.2). Fix ¢ > 0 and pick k := [C;log N], where C; > 1 + (2/¢) [obviously this k is
O((log N)?)]. By Markov’s inequality and {&.5), one has that

Ay 2l Ay 2k 2k 1 1 2k
P max\— —) = 1 <P max\ ™ —) £ Heo 1 {—————E maxA 4.1
(ﬂ (W)>um( +e))< (ﬂ (\/N)>u (1+¢) )<ﬂgok(l+€)2ka Tinax (An) (4.10)
1 1 1+ 0(1)\**
- —_Etu(A2)<N|———= 4.11
= 1251 + ok NF ) < ( 1+e ) 11

is summable bacause of the choice of C;, which implies that

1+o(1))c1 log N
1+e

Note that the expression N (

A
lim sup Amax (—N) < U a.s.,

N VN

since € was arbitrary, and completes the proof. m]

{anisotita nm
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Proof of Theorem|[2.13| with Assumptions[2.4] . Fix e > 0 and define the matrices A}, A; as the ones whose

. . . N N
(i.j) element is aiJI\a..JEN%’C and aiJllai,-|>N%’€

matrix whose (i, j) element is Eh; pro{zided that the mean value of h;; can be defined.

respectively. For a random matrix H := (h;;), EH denotes the

Weyl’s inequality (Theorem 4.3.1 in [20]) gives that

1 1
ﬁﬂmax(AN) < _\/]_V (ﬂmax(AISV - EAf,) + ﬂmax(EAf/) + ﬂmax(A;[)) . (4-12] {anisotita w
The second and the third summands in the right hand side of (4.12) , due to Assumptions (2.1), can be
proven that they are asymptotically negligible (in probability) completely analogously to the proof of Theorem

2.3.23 in [25]. In particular one can show that

e The (deterministic) sequence N 3 ﬂmaX(E(Af,)) converges to 0. Write down why.

e The sequence N 3 ﬂmax((Af,)) converges to O in probability.

To deal with the first summand, which refers to the matrix Af, - Alf,, we will use Proposition Notice
that due to Lemma 3.6 of [27], the empirical spectral distributions of the matrices (AISV — EAf,)/ VN, Ayn/ VN
converge weakly to the same probability measure almost surely. Moreover by Weyl’s inequality one has that
(How exactly? Needs justification Because of the new definition of lamnda(max)) Next let

AN = AI%, - EA;,, (4.13) {orismos tot
s == E{(Aw))- 4.14)
So by a direct application of Proposition one has that for any k < N
I ok_2 (s+1)Ak
~ ~ 1 —4S ~
E tr(A2) < By (k) + Z(4k5)2k‘25 (cny=) Z (AKHAEHD (¢ = 1) (4.15)
s=1 t=1

where My(m) are the terms for m € [N] and for the matrix Ay. Furthermore,

i = E(A}) 2 B((A)°) 2 s,

S0 k ok-2 (s+1)Ak
~ 1 —ZS
E tr(A2F) < My(k) + § (4K°)?<25 ((CN)* ™) § (4K 0 (= 1) 4.16)
s=1 t=1

where My(m) are the for the matrix Ay. Thus, by Proposition and similarly to the proof of one
can show that for k = O(logQ(N)),

E tr(A2F) < N*" 1 2k(1 + o(1))2*.
Then, as in the proof of Proposition we get

lim sup Amax (—) <lo a.s., (4.17) {limsupoftru
N

which ends the proof. m]

4.2 Proof of Theorem [2.13| under Assumption

{to theorims
Firstly, note that

1
D, LWy = > s My(e).
TeCy TeCx
Thus, since asymptotically the only contributing parts in the k-th moment of the E.S.D. are the terms My(k),
as is proven in Theorem 3.2 of [27], Assumption is implied by Assumption

Next we need an analogue of (4.5), and this is proven in the next proposition. {Protasi gis

Proposition 4.3. Suppose Ay is a sequence of random matrices such that Assumptions|[2.1][2.8 hold. Moreover
assume that the entries of Ay are all supported in (O, CN%“S]for some 6, C > 0. Then for Ik = O(log(V)) it is
true that

Etr A2F < 2N"*112K(1 + o(1))%".
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Proof. Firstly note that for k < N

pok 1= Jim M) = 3 f W, 30)dor s - . @18
Tec, Y10,11% (lJ)EE(T)
and similarly
k+1MN(k) Zf l_[ Wi(x;, x5)dx; dxg - - - dXeq - (4.19)
N Ie+1
TeC, YO (4 ner(T)

Fix T € C,. Enumerate the edges of T in the order of first appearance during a depth first search algorithm.

For {i,j} € E(T) denote {i, j}o,rq to be its enumeration. So for any O < [ < k define the following quantities.

Hy (e, T) = f [T wexw  [] Wegdade: - dxe. (4.20)
011 ((eE(T):(ihorast ()BT iflora21+1
Note that
My (k)
0 k N
D M0 T) = e Y e T) =~ (4.21)
TeCy TeCy

Fix | € [k]. Then since all the variances are uniformly bounded by 1 and by Assumption it is true that
for any D > O there exists some Ny = Np(D) such that for N > Ny it is true that

I (e T) — py P (k. T)| < W (x. y) — W(x, y)dydx| < cl (4.22)

[0.1]2

for some absolute constant C;. Note that
My (k) \ 0 (-1 S 0 (-1)
e —He < 0| Do e D = e Tl < 3 Y e ) = iy, T (4.23)
Tec =1 TeCy 1=1

1 C1 K22k

S —pND (4.24)

In the last inequality we used the trivial bound |Cj| < 22*. Thus, by the previous inequality and the trivial
inequality pg) < u2¢ one has that
My (k)
Ni+1

1
< ey k22k01 — (4.25)

Note that for any C’ € (0, o) if It = C’log N then for D large enough one has that

. 9 \2K 1
lim k[—|] Ci— =0
Hoo

N—oo ND

and so any k = O(log(N)) and for N large enough one has that
MN (k) < ) Zk.
Nk+1 ©
Thus, if one applies (4.25) to Proposition and for k = O(log(N)) one has that

k (s+1)Ak
2k-2
My (k) < 21&ka+1 19 2 :(4k5)2k—25 ((CN)%_S) s 2 (4k4)4(s+1_t)Ntu:1.
s=1 t=1

Now the proof of Proposition 4.3 will proceed similarly to the proof of o it is omitted. O

Proof of Theorem|2.13| with Assumptions[2.8 Given Proposition the proof continues analogously to the
Proof of Theorem [2.13] with Assumptions and therefore it omitted. O

{oriakh ropt

{IncrBound}

{anisotita c
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4.3 Proof of almost sure convergence, under the extra Assumption [2.117]
Until this point we have proven that if a sequence of random matrices Ay satisfies Assumptions and
or and then

lim Apax il ) = U in probability. (4.26)

A
N—>oo (ﬁ
For any € > 0 and C > 0, define the matrices Ay, EAy the matrix with the truncated entries of Ay at scale
CNz~¢ and the matrix with entries their expected value EA5. See the precise definitions of this matrices in
the Proof of Theorem [2.13]with assumptions For these matrices we have proven the following facts.

e As is mentioned before the empirical spectral distributions of the matrices (Af, — EAf,)/ VN, Ayn/ VN
converge weakly a.s. the same probability measure. So due to that and (4.17) one has that

Uoo < liminfﬂmax(w) < lim supﬂmax(w) < Us a.s. 4.27)
N VN N VN
e For the deterministic sequence EAISV it is true that
lim ﬂmaX(EAﬁ) =0 (4.28)
NN

Assume that the sequence of matrices Ay satisfy also Assumption Let X be the random variable that
stochastically dominates the entries of Ay in the sense of (2.6). Let Xy be a sequence of symmetric random
matrices after an appropriate coupling such that for all N € N and i,j € [N]? it is true that

lag| < X}yl (4.29)

and the entries of Xy are independent up to symmetry and all following the same law as X. Furthermore note
that since the random variable X has finite 4—th moment it is true that for any € € (0, 1)

e

Z 22mp(|x| > 25179) < oo (4.30)

m=1

From it is sufficient to show that for any ¢ > 0

Ay

P limsup(—)gum+e)=0 (4.31)
( N \YN

Due to (4.27), ([£.28) and the triangular inequality for the operator norm of matrices, the probability in

is bounded by
<

P(ﬂmax(—) < ﬁmax(—N) + e) < P(For all N € N, there exists k> N : Ay # Ai,) (4.32)

VN VN

= lim P (Unser Urcigren flag)’| = CN27)) (4.33)
Now note that the quantity in (4.33) is bounded by
lim P (Unsor Urcigien {1 Xi}yl 2 CN27%)) = P(For all N € N, there exists k > N : Xy # X} (4.34)

due to (£.29). In the matrix X5 is the truncation of the matrix Xy when the absolute values of the
entries of Xy are smaller or equal to CNz ¢, The probability in the right hand side of is known to be 0,
see for example [1I] there, pages 94 and 95. This last fact is true due to (4.30).
5 Proof of Theorem 2.15|
Set
() = Unmeay (B, (5.1)
By = {(xy) €R*: (x + dy,y + dy) € B'y for any {d,, dy,} € {-1,0, 1}?}, (5.2)

{a.s.ina.s.}

{determin a.

{anisotita s

{sumfinitea.

{a.s.probzer

{i.0 for A}

{i.o for X}
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and define the matrices

{Ag\})}u = 1 jesylAnij. {Af?)}u = L(yesy 1Anti
. One can use Weyl’s inequality similarly to (??) NA BALOUME CITE and Theorem to show that it
suffices to prove that the sequence of matrices Aj\}) satisfies the Assumptions of Theorem and that

(2)
lim Amax(—=) =0 in probability (5.3)
—00 N

\/_

In order to establish (5.3), we will need the following lemma.

Lemma 5.1. For any m € N and any plane rooted tree with m edges, T € C,, enumerate the vertices of T
according to their order of appearance during a depth first algorithm. We will say that two numbers ,n € [m+1]
are connected in T if the I-th vertex of T is connected with the l-th vertex through an edge. Moreover set

aco(N, m, T) := {(iy, - - - ims1) € [N]™! if Ln are connected in T for some n,l € [m + 1] then {i, iy} € Ay}.

Then
lace(N, m, T)| < N6dy

Proof. For the proof of this lemma we will use induction.

For m = 2 we will show that the number of non-identically O elements per row is at most 6dy and the
implication will follow. Fix i € [N]. The number of non-identical O entries in the i—th row is bounded by
the number of times the lines y = i and x = i intersect with the boundary of the set 545{1“) for any m € [dy]

times the number of entries which are at a distance at most 1 from that intersection. By the 3—rd property

in Definition [2.10] we have that their are at most two such elements in the intersection for each segment.

Moreover, for any such intersection there are at most 3 elements in the axis y = i and 3 at most in the axis
x = i with natural coordinates of distance at most 1 from that intersection. Thus, the number of non-identical
0 entries in the i—th row is the bounded by 12dy.

Suppose that the desired inequality holds for any 1 : | < m — 1. Fix T € C,,,. Enumerate the vertices of T
according to their appearance during a depth first search algorithm. Let vy, denote the last appearing leaf

of T during a depth first search algorithm and let vg denote its only neighbour in T, for some d € [m — 1].

Then the tree T \ {v,+1} is a plane rooted tree with m — 1 edges for which the induction hypothesis holds. So
lace(N, m, T)| < lace(N,m—1,T\ {Um+1})|m51v)](|{(im+1, iy) € Ay, given that iy =i} < N(12dy)™ ' 12dy
i€
]

So by the uniform bound on the variance of Ay in Assumptions and Lemma [5.3|one has that for any
k<N
MP (k) < N2k(12dy)" (5.4)

where MI(V2 )(I) are the terms in for the matrix Ag). Now we are ready to prove the Theorem.

Proof of Theorem One can show that similarly to the proof of Theorem [2.13] it is sufficient to prove
under the extra assumption that the absolute value of the entries is bounded by CN 27¢ for some constants
C, e > 0. So by Proposition and one has that for k = O(log? N)

(s+1D)Ak

12dy\F < L \2k-2s 12dy \?

(2)v 2k k+1 N 5\2k-2s i-e 4\4A(s+1-t) prt N

Etr{AV})** < N (—) + El(4k) ((CN)2 ) tgl (4k™) N (—) (5.5)
s= = N

The term on the right-hand side can be treated completely analogously to right hand-side term of in
the Proof of Proposition Thus, one can conclude that for arbitrary small § > 0 and for any k = O(log(N))
it is true that
2
P(nax(—=) 2 6) <

1
VN (VNG)*

Ef i (An) < ;Etr{A(Z)}Z" < N(@)zk
max (W(S)Qk N 6

{oi ligoi or

{anisotita ¢

{anisotita c

{anisotita r
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which implies (5.3).
Moreover fix (i,j) € [N]? such that i < j. Then if (i,j)] € By there exists some m € [dy] such that

{(Fe, x) € [NT? : dist((i.j), (k. %)) < 1} € (BR)°
But from Assumption there exists some f € [day] such that
{(J, x) € [2N]” : dist((2L, 2)). (I, X)) = 0 or 2} € (BF™)°
but since (B}ZN))O is an orthogonally convex set one can conclude that
{(J, x) € [2N) : dist((2% 2j). (I, ) < 2} € (BFY)°

and in particular due to (2.10),(2.11) one can conclude that the sequence of matrices Ajvl) satisfies Assumption
24
[m}

Almost sure convergence under the extra Assumption[2.1]1] To improve the convergence in Theorem one
can notice that if the matrix sequence of matrices Ay satisfy Assumption the same will be true for
the sequences of matrices Afvl) and AI(?). Note that due to Lemma 3.6 in [27] and (5.5), the almost sure
convergence of the E.S.D. of the matrices Ag) to the measure which is concentrated at O is implied. So with
these facts one can prove that the convergence in can be improved to almost surely, similarly to the
proof of the almost sure convergence in Theorern Lastly one can notice that the matrix A](\P satisfy the
assumptions for the almost sure convergence in Theorem [2.13|which ends the proof. m]

6 Proof of Corollary

Firstly note that for any n € N
A(n)
Ama(—=) > 1, in probability (6.1)

VN
Also if we extra assume that A}, satisfies Assumption the convergence in (6.1) improves into almost
surely. Next fix € > 0 and ng large enough such that for every n > ny it is true that p., + € > u(()g ). Then, due
to Weyl’s inequality, one has that

P () 2 e +20) < PG L) 2 10 + & < B ) 4 2 2 ke 62)
max({——=) = €)= max\{——) = €)= max\—  — max\— —/) = € .
VN e VN e VN VN e
AN—AE\?) € Ag\?) n , €
< P(ﬂmax( ) > _) + P(ﬁmax( ) > 00 + _) (6-3]
VN 2 VN a 2

The second term in (6.3) is asymptotically negligible due to (6.1). For the first term one can show, similarly

_ AW
to the proof of Theorem [2.13| that it suffices to prove that ﬂmaX(AN \/1%"’

absolute values of the entries of the matrix Ay — Ay, are concentrated in (0, CN %‘e) for some C, e > 0. . But

) is negligible, when for each N the

one can easily show that
t

Mj,(t) < N2t (m.?lx{zzv}qj - =hy
)

where My (t) are the terms defined in for the matrices Ay — Agl). In particular due to Proposition
one can show that the largest eigenvalue of Ay — AE\?) is asymptotically negligible, similarly to the proof of
Theorem

So after increasing ny if necessary, we conclude that the proof.

The improvement to almost sure convergence under the extra Assumption[2.11]for the sequence of matrices
A}, can be proven similarly to the proof of the analogous part of Theorem and therefore it is omitted.

{anisotita k

{pano fragme

Why?
Is this ok?
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7 Examples

In this section we present examples on which our theorems can be applied.

7.1 Wigner and Wigner-type matrices

Our theory would not be complete if it couldn’t be applied to the most widespread random matrix models the
Wigner matrices, i.e., the case that the entries of Ay are i.i.d. In what follows we establish the convergence of
the largest eigenvalue of Wigner matrices perturbed by an error term matrix.

Theorem 7.1. Let A* be an infinite symmetric matrix with i.i.d. entries all with zero mean, unit variance and
bounded 4-th moment. Then define a sequence of increasing dimension matrices such that

Ay =AY + Iy 0 AY
where A;;) is an N X N symmetric sub-matrix of A~ and the entries of the matrices AE\?) =280 AEVI) satisfy

lim max [E{A}| = 0. (7.1)
N—oo ij

Then A
. N
Alll_rgcﬂmax(_ N) =2 as.

Proof. Firstly note that the sequence of matrices Aﬁvl) satisfy Assumptions Assumptions and
Note that its limiting distribution is the semicircle law. So by Theorem [2.13|one has that
(1)
flmax(—N) =2 a.s.

VN
By Weyl’s inequality one has that
(1) (2) (2)
An N Ay Ay
max i(—) — ;(—)| < max (—)| = —_—
max (=) = AN < max A )] = A7)
So it is sufficient to show that the largest eigenvalue of N ’%Aﬁ) tends to 0. Note that the sequence of matrices
AY satisfy Assumpti Thus similarly to th f of the al in Th 5l i
N ption 2. us similarly to the proof of the almost sure convergence in Theorem |2.15} it
is sufficient to prove that the largest eigenvalue of N ‘%AIZV tends to O under the extra assumption that the
absolute value of the entries of A}?) are supported in (0, CN %‘5), for some C, € > 0. So by Proposition one
can show that for k = O(log? N) it is true that

k
Etr{Aﬁ)}Zk < N+ (max E{AE?)}Z)
ij

which implies that the largest eigenvalue of N ’%Alzv tends to O. ]

7.2 Random matrix with variance profile given by a step function

The next example we provide are Random Matrices whose variance profile is given by a step function. It is

also a widespread random matrix model.

Theorem 7.2. Let {Ay}nen be a sequence of symmetric random matrices each of them with dimension N.
Suppose there exist two other sequence of matrices Xy, Ay, such that Ay = Xy © A}, Suppose that the entries of
A}, for all N are independent (up to symmetry) and identically distributed random variables with zero mean,
unit variance and finite 4-th moment. Moreover suppose that for each i, j € [N]

o Zy}y = o(s. %)for some o : [0, 1]%> — [0, 1].

e The function o is symmetric, i.e. o(x,y) = a(y, x)) for any x.y € [0, 1]. Furthermore suppose that there
m(m+1)

exist m € N, disjoint intervals {I;}icm) such that [0, 1] = U l; and {s;j}1<i<j<m € [0, 117 2 such that

o(x,y) = Z Omax{ih.minlij) 11, (0) 15, (Y)

ije[m]

{theorempert

{mikres dias

{theoremster
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Then the sequence of matrices Ay satisfy Assumptions It also satisfies[2.3| due to Theorem 1.2 of [22],
So there exists a limiting measure u of the E.S.D. of N ‘%AN with bounded support. Set ul to be the largest

element of the support of u. Then
Ay

VN
Progf. It is sufficient to show that the deviation profile matrix Xy satisfy the Assumptions of Theorem

Note that for the number of times that the values of O(Ni, %) may differ for i,j € [N]? are at most m?. Moreover
the underlying sets from Definition are

]\lllm ﬂmax( ) = V-go a.s.

Bﬁ.ff ={(x.y) eR?: (%, %) € (P XIN}N{(xy) €R*:0 < x < y < Nifor any i.j € [m] (7.2)

It is obvious that the sets in satisfy the first two assumptions of Definition For the third one,
we may easily modify the sets {I;};[m) to some intervals {IfN)}ie[m] depending on N, but for which the edges
of the sets are irrational numbers and such that the variances of the matrices Ay will remain the same.
This implies the third assumption of Definition Lastly note that the sequence of matrices satisfy the
Assumption [2.11] see Remark[2.12] So we can apply Theorem and complete the proof. O

Corollary 7.3. Suppose that Ay is a sequence of matrices such that it can decomposed in the following sense

AN = Aﬁ\}) + EN @Aﬁ\})!

where Ag\}) satisfies the assumptions of Theorem and the matrices Aﬁ) = Xy 0O AS) satisfy
limy ., max;; [E{(A}?| = 0. Then
. Ay o
]\lll_rgoﬂmax(ﬁ) = Koo a.s.
Proof. The proof is completely analogous to the proof of Theorem [7.1] and therefore it is omitted. ]

7.3 Random matrix with variance profile given by a continuous function

The next example we provide are Random Matrices whose variance profile is given by a the continuous
functions. It is also a widespread random matrix model.

Theorem 7.4. Let {An}nen be a sequence of symmetric random matrices each of them with dimension N.
Suppose there exist two other sequence of matrices Xy, Ay such that Ay = Zy © A}, Suppose that the entries of
A}, for all N are independent (up to symmetry) and identically distributed random variables with finite 4-th
moment. Moreover suppose that for each i,j € [N]

o Iy} = o(ﬁi, %)for some o : [0,1]%> = [0, 1].
e The function o is symmetric and continuous.
Then the sequence of matrices Ay satisfy Assumptions[2.1] It also satisfy and so there exists a limiting

measure u of the E.S.D. of N ‘%AN with bounded support. Set u2 to be the largest element of the support of u.

Then
An

VN

Proof. It is sufficient to show that the deviation profile matrix Xy satisfy the Assumptions of Corollary
This is true by approximating the matrix Xy © A}, by matrices 25\7)‘41/\1 where the entries of 25\7) are given by

Al[l_l’}n Amax( ) = :ugo a.s.

some appropriately chosen step functions which will depend on n, similarly to the proof of Lemma 6.4 of
[22]. ]

Corollary 7.5. Suppose that Ay is a sequence of matrices such that it can decomposed in the following sense

Ay =AY +3y 040,

{defnofsetsv

{coraproxste

{theoremconf

{coraproxcor
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where AEVI) satisfies the assumptions of ’I‘heorem and the entries of the matrices Aﬁ) =2Xy0 Aj(\}) satisfy the
Sfollowing
lim max |E{A§3)}§,-| =0.

N—ooo ij
Then A
. N
]\lll_r)rgoﬂmax(ﬁ) = ]J'go a.s.
Proof. The proof is completely analogous to the proof of Theorem and therefore it is omitted. m]

Remark 7.6. In Theorem 1.3 [22] the author proved the analogous results to Corollaries and under
the extra assumption that the entries of the matrix A, have sub-Gaussian Laplace and in particular finite
moments. transforms.

7.4 Generalized step functions, more examples

In the Random Matrix Theory literature what is commonly described as Random matrices with variance-profile
given by a step function are more or less what we describe in Theorem[7.2] In this subsection we give some
examples which are covered by the generalized version of this variance-profile matrices but not from the
"standard" step functions.

Theorem 7.7 (Non-Periodic Band Matrices with Bandwidth proportional to the dimension). Let AJ’V be a
sequence of symmetric random matrices with i.i.d entries all following a law with O mean, unit variance and
finite 4-th moment. Set Ay to be the matrix with entries

{An}ij = Ljisjepn{An ). 1J € [N],
for some p € (0, 1]. Then for the sequence of matrices Ay Assumptions hold. Moreover due to Theorem 4 of
[7] Assumptions[2.3 also hold for the sequence of matrices Ay. So
An

VN
Proof. This is a straightforward application of Theorem [2.15| where the underlying sets described in Definition
are

AV =,y € [0, NP : Ix -yl <p)N{(x,y) eR?: x <y}, and A = {(x,y) eR*: 0 < x <y < N}

]\lli_rgoﬂmax( ) = Ueo @S

and the underlying numbers are s; = 1 and s, = 0. ]

Remark 7.8. The random band matrix models have been extensively studied after the novel work in [7] and
have tremendous application in various research areas. When the bandwidth of the matrices is periodic, i.e.,
the distance from the diagonal outside which the entries are O is periodic, the operator norm of such matrices
has been extensively studied, see for example [24] or the survey [10]. Moreover when the bandwidth of such
matrices is non-periodic but the bandwidth (the maximum non identically zero entries per row) is o(IV) but
tends to infinity has also been examined in [5]. To the best of our knowledge the convergence of the largest

eigenvalue of non-Periodic Band Matrices with Bandwidth proportional to the dimension was not established.

7.4.1 Random Gram Matrices

Lets X be an N X M matrix with independent, centered entries with unit variance, where % converges to
some positive constant as N — oo. It is known that the empirical spectral distribution of XX7, after rescaling.
converges to the Mar ~cenko-Pastur law [23]. Moreover the convergence of largest eigenvalue to the largest
element of its support has been established, see for example [1], However, some applications in wireless
communication require understanding the spectrum of XX7, where X has a variance profile, see for example
[19] or [14]. Such matrices are called random Gram matrices. In this subsection we establish the convergence
of the largest eigenvalue of random Gram matrices to the largest element of the support of its limiting
distribution, assuming that there exists a limiting distribution for the E.S.D. Firstly we give some necessary
definition.



17

Definition 7.9. Let Ay be a sequence of N X M matrices, where M = [cN] for some constant ¢ € [0, 1]* and
for N large enough. Suppose that the matrix
AT
ON,N [ N,M ]
On-mN
[AN,M ON.N—M] Onn

are random matrices with a variance profile given by a generalized step function, see Definition where
Oy is an k X l matrices with all of its entries equal to 0. The we will say that the random matrices Ay are
non-symmetric random matrices with their variance profile given by a generalized step function.

Theorem 7.10. Let Ay be a sequence of N X M matrices, where M = [cN] for some constant ¢ € [0, 1]* and for
N large enough. Suppose that the entries of Ayu are independent and satisfy Assumptions[2.1} Furthermore
suppose that there exists a non-trivial probability measure yu with compact such that the E.S.D. of the matrices
N‘IAN,MAJE'M converges to u. Set U, to be the largest element in the support of u. Then if one of the next
Assumptions holds

e The matrices Ay are non-symmetric random matrices with their variance profile given by a generalized
step functions

e The matrix Ay can be decomposed in the following sense NA BALO STHN ARXH HADAMARD
PRODUCT Ay = Znm © Ay, Jor two sequence of N X M matrices Xy, Ay ,, such that the entries of
AI’V' u are centered, independent random variables with unit variance and bounded 4-th moment and
Xnum Is a sequence of matrices with values given by a continuous function similarly to Theorem

It is true that

AvmAyy
N

Moreover if there exists a random variable X with O mean, unit variance and finite 4-th moment that stochastically

dominates, in the sense of[2.6} the entries of Ay for all N, M then the convergence in can be improved to
almost surely.

) = U in probability (7.3)

max(

Proof. Firstly set
Ay 1= [AN,M ON,N—M]
where Oy y-py denotes the N X N — M matrix with O one every entry. Note that the matrix Ay symmetric so
that AN,MAI’I\;. M= ANAIE. Next define the sequence of matrices
- 0 A}
AN = N
Ay O
Note that
ALy Af

det(AIy — AyAL) = det
e(ﬁ N 0\ N) C({ AN ﬁ']IN

]) = det(A - Iy + Ay)
where I is the k X k identity matrix for any k € N. Thus, the eigenvalues of Ay are the square root of ANAK,
and their negative ones. The matrix Ay is called the symmetrization of Ay.

Now the sequence of matrices Ay satisfy Assumptions Moreover the Assumptions are also satisfied
and if v is the limiting probability measure of the E.S.D. of Ay, then if X ~ vand Y ~ p it is true that X? has
the same law as Y.

Lastly note that Definition implies the Assumptions of Theorem for the sequence of Matrices Ay
and the second Assumption implies the Assumptions of Theorem Thus by a direct application of one of
the Theorems above the proof is complete. m]

{defnfewbadr

{thmgrammatz

{convofgram
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Remark 7.11. In [19] the authors showed that if the variances of the entries of Ay are given by the values
of a continuous function (and some extra assumptions such as bounded 4 + ¢ moments of the entries) the
limiting distribution of the E.S.D. of ANAK, does exist. So in Theorem we prove the convergence of the
largest eigenvalue of these models as well. The authors in [19] also studied the non-centered version of these
models, i.e. when the entries of the matrix do not have O mean, but we do not cover this case with our result.

Corollary 7.12 (Triangular matrices). Let {Ay}yen be a sequence of N X N lower triangular matrices. with iid
entries all following a law with 0 mean, unit variance and finite 4-th moment. Then

Proof. As is also explained in the proof of Theorem the asymptotic behavior of the eigenvalues a sample
covariance random matrix model, i.e. AyAL, can be equivalently described as the asymptotic behavior of
symmetric matrices with independent entries. More precisely set
. 0 Af
AN = N
Ay O
The eigenvalues of Ay are the square roots of the eigenvalues of AnAj}, and their negative ones. Moreover
in [11] it is shown that the E.S.D. of N"'!AyAT converges to a probability measure whose support’s largest
element is e. Equivalently the largest element of the support of limiting measure of the E.S.D. of Ay is +e,

see Remark 2.2 of [9] for a more detailed discussion on this phenomenon. Moreover the sequence of matrices
Ay satisfies the Assumptions of Theorem [2.15| where the underlying sets described in Definition are

N
?I(IN) = {(x.y) € [0,N?: x + 5 <y} andﬂ(QN) ={xy eR?*:0<x<y<N}
and the underlying number are s; = 1 and sy, = 0. So after an application of Theorem for the sequence
of matrices Ay, the proof is completed. m]
7.5 Random Block Matrices

The Random Block Matrix models have application in Modeling and Optimization problems. Their spectral
properties have been investigated in [17] and [15], under various assumptions. Next, in [27] the author
proves the convergence of the E.S.D. under very general conditions. Next we present the Random Block
Matrices.

Definition 7.13. Let A and B be two matrices of dimension N X M and K X L respectively. Let a;; be the
(i.j)—th entry of A. We define the Kronecker product of A and B to be the NK X ML matrix

Cll‘lB al’gB --~a1,MB

Clg,lB a2’2B s avaB
A®B :=

aN,lB aN_zB e aN,MB

d {denf randon
Definition 7.14. Fix d € N and a set of numbers {a;}i[q; € (0, 1]* such that 3.4y a; = 1. Let Ay be an N X N

matrix such that Ay = X icra2 Erct ® A%l where Ey, is the matrix with 1 in the (k, )~entry and O in every

T
other entry and Ax{’l) is an a,(cN) X afN) matrix under the extra convention that (Ax{‘l)) = A;I,“‘K). Each of the

matrices A’V has i.i.d. entries and the sequences af(N) are sequences such that
N
lim — = ai, for k € [d]
Nooo N

and
d
Zai(m =Nforany NeN
i=1
Then the sequence of matrices Ay will be called random block matrix model.
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Theorem 7.15. Let Ay be a random block matrix model. Assume that the entries of Ay satisfy the Assumptions
Moreover assume that there are some numbers {s;;} <[> such that for the variance of the entries of the
(I, )—th block is equal to sy for any N € N.

Then there exists a probability measure u with compact support such that the E.S.D. of N tends to u. Set Lo
to be the largest element in the support of y. Then

hm ﬂmdx( ") = b @S

Nf_

Proof. The existence of the limiting distribution u follows from Theorem 6.1 of [27]. The convergence of the
largest eigenvalue is a consequence of Corollary [7.3| with the underlying sets being

I = (ZaiZai], for any i € [d].

J<i J<ti

and the underlying values of the step function being {s;;}e[a m}

In the previous theorem the number of blocks of the matrix Ay is fixed. Next we give present an analogue
of these matrices with the number of blocks tending to infinity. Under some extra assumptions we prove the
convergence of the largest eigenvalue. Until this point we have presented examples for which Theorem
is applied but the number of orthogonally convex sets in Definition is fixed. So next we give an example
where this does not hold.

Definition 7.16. Fix a non-decreasing sequence of natural numbers, dy tending to infinity. For each N € [N]
fix a set of numbers {dd”)}ie[dN] C (1, N]%* such that ZiE[dN]I_ai(dN)J = N. Let Ay be an N X N matrix such that
AN = Yiterdyt? Bt ®A1’f,‘l, where Ej; is the matrix with 1 in the (k, )—entry and O in every other entry and Axc’l)
is an La,((N)J X I_afN)J matrix under the extra convention that (A](\lf'l))T = A%’k). Each of the matrices Ax(‘l) has
i.i.d. entries whose distribution does not dependent on N and has O mean, si; variance and bounded 4 — th
moment. Moreover the sequences a,(cd”)

a(dN)

are such that

lim

N—oo

= ay, for k € N and some a; € [0, 1]

i a; = 1.
i=1

Then the sequence of matrices Ay will be called random block matrix model with increasing block number.

such that

Theorem 7.17. Let Ay be a random block matrix model with increasing block number. Assume that the
matrices Ay satisfy the Assumptions[2.] Moreover the variances of the blocks of are fixed for all N, i.e. the
variance of the entries of the k, |l block are all equal sﬁi\? = si1. the matrices each {M, L} € N assign a number
sy assume that for each N, there are some numbers {sij”) Jijeray? such that for the variance of the entries of

the (k, I)~th block of Ay is equal to si{ z) , S0 that sk = S(N)

Furthermore assume that,

e The number of blocks does not grow too fast, i.e.,

e The growth of the sequences a( )

N > Ny it is true that for all k € [dy]

2m:me| > 1a®™], ) la™)

i<k i<k

is almost linear meaning that there exists a Ny such that for all

AN} ={me [medw) ], ZLa(d“’) 1N 2Ny (7.4)

i<k i<k

Set U, to be the largest element in the support of u. Then

Ay
hm Amax(—=) = oo @.S.

\[_

{denf randon

{thmrandomb]l

{growrateofk
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Remark 7.18. The equality allows the number of blocks to grow to infinity but the "growth" of each new
interval will be very slow. For example say that the matrix Ay, has d—blocks. For the first interval

(dg

0. [a™])

(dng)

1 is not a

the value of a®™) can be a number for which it is true that |2a®)] = | x|. So assuming that a

natural number, there exists some small € > O for which we can set

d d.
o) . o) _

This allows us to add any number of disjoint new intervals whose union will be the interval (aidz’v"), 2a(1dN°)]

and their length will add up to €, and still will hold. For simplicity say we add 1 new interval. We can

continue with that procedure and create new intervals of small length between all the previous d intervals.

Again for simplicity assume that their length is all equal to e. But these new intervals will not contain any
natural numbers for any N < O(%)No and so they will not contribute to the blocks of the matrices Ay for all
that N.

Proof of Theorem[7.17} The proof is a direct application of Theorem [2.15|and therefore it is ommited.

8 Alemma

In the next lemma, we prove the crucial estimate we invoked in the proof of Proposition We adopt and
present the terminology of Section 5.1.1 of [1].

Lemma 8.1. Npg o, o < (4k*)3Hs+170+20c=s)

Note to us: We don’t use the values of a;, as, . . ., ds.
Proof. Take a cycle i := (ij, ip, . .., iyx) and assume that it has edge multiplicities a;, as, ..., as > 2. Each step
in the cycle we call a leg. More formally, legs are the elements of the set {(r, (i;, i-41)) : 7= 1,2,..., 2k}, which

become exactly the edges of G(i) if we replace (iy, ig+1) With {ig, ig+1}.

For 1 < a < b, we say that the leg (a, (is. iu+1)) is single up to b if {ig, iz+1} # {ic, ic+1} for every c €
{1,2,...,b - 1},c # a. We classify the 2k legs of the cycle into 4 sets Ty, Ty, T3, T4. The leg (a, (iq, ia+1))
belongs to

Ty: if ige € {1y, ..., 1q}. L. e., the leg leads to a new vertex.

Ts: if there is a Ty leg (b, (ip, ip+1)) With b < a so that a = min{c > b : {i., ic41} = {ip, ip+1}}- I. e., at the
time of its appearance, it increases the multiplicity of a T} edge of G(i) from 1 to 2.

T,: if it is not Tj or Ts.

Ty: if it is T, and there is no b < a with {iq, iz4+1} = {ip, 41}
L.e., at the time of its appearance, it creates a new edge but leads to a vertex that has
appeared already.

Moreover, a Ts leg (a, (iy, iz+1)) is called irregular if there is exactly one Ty leg (b, (ip, ip+1)) which has b < a,
Uq € {ip, ip+1}, and is single up to a. Otherwise the leg is called regular.
It is immediate that a T, leg is one of the following three kinds.

a) Itis a Ty leg.
b) Its appearance increases the multiplicity of a T, edge from 1 to 2.
¢) Its edge marks the third or higher order appearance of an edge.
The number of edges of G;(i) is s and the number of its vertices is t (since T(i) ~ T € C;_;). Call

?: the number of edges of G, (i) that have multiplicity at least 3.

{remnotfastc

{CountLemma}

{CycleCountI
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m: the number of T legs.
r: the number of regular T3 legs.

We have for r, t, and |Ty| the following bounds

r<2m, (8.1)
t=s+1-m<k, (8.2)
|Ty| = 2m + 2(k — s). (8.3)

The first relation is Lemma 5.6 in [1]. The second is true because if we remove the m edges traveled by T,
legs, we get a tree with s — m edges and t vertices, and in any tree the number or vertices equals the number
of edges plus one. Then the inequality is true because s < k (all edges of G(i) have multiplicity at least 2) and
if s = k then m > 1 since the cycle is bad. For the last relation, note that |T5| = |T;| = t — 1 and thus, using
too, we have |Ty| = 2k — 2(t — 1) = 2k — 2(s — m).

Now back to the task of bounding N4, ... .o, We fix a cycle as in the beginning of the proof and give each
vertex an index in {1, 2, ..., t} which records the order of the first appearance of the vertex in the cycle.
Then, we record

e for each Ty leg, a) its order in the cycle, b) the index of its initial vertex, c) the index of its final
vertex, and d) the index of the final vertex of the next leg in case that leg is Ty. This gives a
O, c{1,2,....2k}x ({1,2,...t}2 U {1,2,...t}%) with |T4| elements.

e for each regular Tj; leg, a) its order in the cycle, b) the index of its initial vertex, and c) the index of
its final vertex. This gives a @, C {1,2,...,2k} X {1,2,..., t}2 with r elements.

We call U the set of all indices that appear as fourth coordinate in elements of Q,. These are indices of final
vertices of T} legs.
We claim that, having Q,, Q-, T(i) we can reconstruct the cycle i.

We determine what kind each leg of the cycle is and what the index of its initial and its final vertex is.
These data are known for the T, and T3 regular legs. The remaining legs are T; or T3 irregular. We discover
the nature of each of them by traversing the cycle from the beginning as follows. The first leg is Ty since the
graph (?) G(i, j) does not have loops (each of its edges connects an I-vertex with a J-vertex ?). Assume that
we have arrived at a vertex v; in the cycle with the smallest i for which the nature of the leg ¢; := (i, (v, Vi+1))
is not known yet. If the vertex v; has no children in G(i, j) that we haven’t encountered up to the leg #;_;,
then ¢; is T; irregular. If the vertex v; does have such children, call z the oldest among them (that is, the one
that appears earlier in the cycle).

e If z € U, then in case it was included in @; because of ¢;_; (and we have the date to check this), we have

z
[}

Figure 1: The case z ¢ U.The legs #;, {;(i < j) are Ts, while ¢, £, are T;.

that ¢; is Ty with v = z, while in case it was included with a leg #; with index i’ > i, we have that £; can’t be

{rBound}
{tBound}

{T4Bound}

{graphCase}
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T; (because then v;; would be a child of v; appearing earlier than z, contradicting the choice of z), thus ¢; is
Ts irregular.

o If z ¢ U, we will show that ¢; = (i, (v;, w)) is Ty. Assume on the contrary that it is T3 irregular. Clearly
z # w, and call ¢, (p < i) the T leg that has vertices v;, w and is single up to i — 1. The cycle will visit the
vertex v; at a later point, with a leg ¢; = (j, (v;, v;)) with j > i and v; # z, v; # v; , in order to create the edge that
connects v; with z (that is, 8,1 = (j + 1, (v;, z)) will be Ty), see Figure |1, The leg /; is not T} because v; has
been visited by an earlier leg, and it is not T, because we assumed that z ¢ U. It has then to be Ts. Thus,
there is a leg £, connecting vertices v;, v; that is T.

If g < i, then we consider two cases. If v; = w, then ¢; is T, because the edge v;, w has been traveled
already by £,,. £;, and this would force z € U, a contradiction. If v; # w, then £; would have been T; regular as
there are at least two T legs (£, £,) with order less than i with one vertex v;, traveling different edges, and
single up to i — 1, again a contradiction because ¢; is Ty or T; irregular.

If g > i, then v;(# z) is a child of v; (that is, the T leg £, goes from v; to vj) that appears after leg /; but
earlier than z, which contradicts the definition of z. We conclude that /; is Tj.

Thus, having G, j), O1. Qs allows to determine the index of the initial and final vertex of all legs, and the
only thing remaining for the recovery of all the data of the cycle (??) is the elements i, j, in the legs. This is
determined in the next two steps.

The above imply that the number of bad cycles with given ¢, r is at most

(2kt?(t + 1) 2kt?) < (akct)rITl, (8.4)

Then and give r + |Ty| < 4m + 2(k — s), and finally using (8.2), and we get the desired bound. O
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