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Abstract

In this paper we establish the convergence of the largest eigenvalue of general variance
profile random matrices to the largest element of the support of the limiting measure under
very general assumptions for the variance profile of the matrices. We also prove that it is
sufficient for the entries of the matrix to have finite only the 4-th moment, instead of all the
moments. This is a generalization of previously known results.

1 Introduction

The problem of understanding the operator norm of a random matrix with independent entries is in general
multidisciplinary both from mathematical and non-mathematical point of view. From a mathematical point
of view, tools from classical probability, geometric analysis, combinatorics, free probability and more have
been used. That problem dates back to 1981, where in [18] the convergence of the largest eigenvalue of
Wigner matrices (symmetric, i.i.d. entries) to the edge of the limiting distribution was established when the
entries of the matrix are bounded. Next, in [2], the authors gave necessary and sufficient conditions for the
entries of a Wigner matrix to converge. One of those conditions was that the entries should have finite 4-th
moment. Similar bounds have been given to non-symmetric matrices with i.i.d. entries. Then, the difference
of the largest eigenvalue and its limit, after re-normalization, was proven to converge to the Tracy-Widow law
in [26]. Later, universality results were established for sparse random matrix models, for example in [21]
for random graphs and in [24] for random banded matrices. Moreover, sharp non-asymptotic results for a
general class of matrices were established in [4] and in [3].
All the models mentioned above can be generally considered as random matrices with general variance
profile, i.e. random matrices whose entries’ variances are not fixed and can depend on the dimension. These
models have also drawn a lot of attention lately, see for example [12], [13], where non-Hermitian models
are considered. Furthermore, in [27], the author characterized the limiting E.S.D. through the notion of
graphons. The convergence of the largest eigenvalue to the largest element of the support of the limiting
distribution was established in the recent works [22] and [16] for some class of random matrices with general
variance profile under the assumption that the entries of the matrix have finite all moments. In this paper
we generalize the previously mentioned results, i.e., we establish the convergence of the largest eigenvalue of
general variance profile random matrices to the largest element of the support of the limiting measure under
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very general assumptions for the variance profile of the matrices. We also prove that it is sufficient for the
entries of the matrix to have finite only the 4-th moment, instead of all the moments.

2 Description of results

Let AN be a sequence of symmetric random matrices with independent entries (up to symmetry) such that
{Genikes ypotheseis}

Assumption 2.1. • Ea(N)
i,j = 0, E|a(N)

i,j |
2 ≤ 1 for all i, j, N , and supN maxi,j∈[N] E|a(N)

i,j |
4 < ∞.

• For any constant ε > 0 it is true that ∑
i,j

P(|a(N)
i,j | ≥ ε

√
N)→ 0 (2.1) {MaxToZero}{MaxToZero}

We let s(N)
i,j := E{|a(n)

i,j |
2}. Note that these conditions imply the assumptions in the beginning of section 3 of [27].

Note that condition (2.1) always holds if we assume that the entries of AN are i.i.d. with finite 4-th moment.

Notation 2.2. For any N × N symmetric matrix A with eigenvalues {λi(A)}i∈[N], the measure
1
N

∑
i∈[N]

δλi (A)

will be the Empirical Spectral Distribution (E.S.D.) of A. Moreover we will use the following notation for the
operator norm of the matrix A,

λmax(A) := max
i∈[N]
|λi(A)| = |A|op.

{Assumption graphon}
Assumption 2.3. There exists a probability measure µ such that for every k ∈ N

lim
N→∞

∫
xkdµN (x) = lim

N→∞

1
N

E tr
(

AN
√

N

)k

=


∫

xkdµ(x) k ∈ 2N,

0 else.
(2.2) {ESDMoments}{ESDMoments}

Moreover, set

µ∞ := lim
k→∞

(∫
x2kdµ(x)

)1/2k

. (2.3) {SupOfSuppt}{SupOfSuppt}

The measure µ has compact support as we will show below [see (3.6)], and since its odd moments are zero,
µ is symmetric. Thus µ∞ is finite and equals the maximum of the support of µ.
Assumptions 2.1 provide some sufficient condition for the entries of the matrix to be controllable. Assumptions
2.3 assumes the convergence of the empirical spectral distribution of sequence of the matrices. Both of them
are more or less standard and can be found in the literature of Wigner-type matrices with general variance,
see for example [27]. Next we give some sufficient conditions in order for the largest eigenvalue to converge.
The main difficulty which the next conditions will try to address is how to compare high order moments of
the matrix with µ∞.

{Assumptions 1}
Assumption 2.4. For every N ∈ N and i, j ∈ [N] it is true that

s(N)
i,j ≤ min{s(2N)

2i,2j , s(2N)
2i−1,2j, s(2N)

2i−1,2j−1}

In order to give the next sufficient condition we first give some necessary definitions.
{orismos graphon}

Definition 2.5. We call graphon any measurable function W : [0, 1] × [0, 1]→ R which is symmetric and
integrable.

Note that any N × N matrix AN which satisfies Assumptions 2.1 defines a graphon as follows

WN (x, y) := s(N)
⌈Nx⌉,⌈Ny⌉.

Definition 2.6. For any graphon W and any multigraph G = (V, E), the isomorphism density from G to W is

t(G, W ) =
∫

[0,1]|V |

∏
i,j∈E

W (xi,xj)
∏
i∈|V |

dxi
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Definition 2.7. Define Ck to be the set of all non-isomorphic plane rooted trees with k + 1 vertices, i.e. all
trees with k + 1 vertices, a vertex distinguished as a root and an ordering amongst the children of any vertex.
It is known that the number of such trees is the k−th Catalan number, i.e.,

|Ck | =
1

k + 1

(
2k

k

)
, (2.4) {CatalNum}{CatalNum}

and a trivial bound that we will use is |Ck | ≤ 22k.

Let AN be a sequence of matrices that satisfy Assumptions 2.1 and call WN the isomorphism density of AN

as is defined after Definition 2.5. {Assumption 2}

Assumption 2.8. There exists a graphon W such that

lim
N→∞

t(T, WN ) = t(T, W )

for any finite tree T . Moreover for the tree with two vertices and one edge, i.e. T ∈ C1, it is true that for any
D > 0 there exists some N0 = N0(D) such that for any N ≥ N0 it is true that

|t(T, WN ) − t(T, W )| ≤ O(N−D) (2.5) {fast convergence assumption}{fast convergence assumption}

Remark 2.9. Note that in Assumption 2.8 we do not have to assume convergence of the E.S.D. of the matrix
because this is ensured by the Assumption of the convergence of the graphon for every finite tree. This will
be explained in subsection 4.2.

Definition 2.10. NA OXI DEFN For any N ∈ N and any two N × N matrices A, B we will denote A ⊙ B their
Hadamard product which is the N × N matrix with entries the entry-wise product of A, B, i.e.,

{A ⊙ B}i,j = {A}i,j{B}i,j

The assumptions we made so far will lead to convergence in probability of the largest eigenvalue. Next we
will give some extra condition, which will lead to the almost sure convergence of the largest eigenvalue.

{assumfora.s.}
Assumption 2.11. Suppose that AN is a sequence of symmetric random matrices, with independent entries
(up to symmetry), such that there exist a random variable X with mean 0, variance 1 and finite 4-th moment
which stochastically dominates the entries of AN in the following sense

P(|{AN }i,j | ≥ t) ≤ P(|X | ≥ t), for all t ∈ [0,∞] (2.6) {stochdom}{stochdom}

and for any N ∈ N and any i, j ∈ [N].

Instead of Assumption 2.11, an easier to check (but stronger) assumption for a model of random matrices
is the following. {a.s.remeasiertocheck}
Remark 2.12. Note that if AN can be written as the Hadamard product of two matrices ΣN and A′N , where A′N
is a sequence of symmetric random matrices with i.i.d. entries all following the same law, with 0 mean, unit
variance and finite 4−th moment and for each N the entries ΣN belong to the set [0, 1], then Assumption
2.11 will hold.

We are now ready to present our first main result.
{to theorima}

Theorem 2.13. Let AN be a sequence of matrices satisfying Assumption 2.1. Then if either Assumptions 2.3

and 2.4 hold or Assumption 2.8 holds, it is true that

lim
N→∞

λmax

(
AN
√

N

)
= µ∞ in probability (2.7) {siglisi sto theorima}{siglisi sto theorima}

Moreover if the sequence of matrices AN satisfy Assumption 2.11 the convergence in (2.7) improves from

probability to almost surely.

Note that Assumption (2.4) is restrictive and does not cover a lot of the well-known and studied models.
So in what follows we try to take advantage of Theorem 2.13 and adjust it in order to prove the convergence
of the largest eigenvalue for a a general class of random matrix models. We first give a definition.
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{defngenvar}
Definition 2.14. Let AN be a sequence of matrices for which Assumptions 2.1 hold. Moreover suppose that
there exists an integer valued sequence dN for which it is true that limN→∞

dN

N = 0 and such that for each N

there are dN− orthogonally convex and closed {A(N)}i∈[dN ], subsets of [0, N]2 with the following properties.

• It is true that

A
(N)
1 ⊆ A

(N)
2 ⊆ · · · ⊆ A

(N)
dN
= {(x, y) ∈ R2 : 0 ≤ x ≤ y ≤ N} (2.8)

• For any N ∈ N, m ∈ [dN ] there exists some there exists f ∈ [d2N ] such that

{2(x, y) : (x, y) ∈
(
A

(N)
m \ ∪l≤m−1A

(N)
l

)o
∩ [N]2} ⊆

(
A

(2N)
f \ ∪l≤f −1A

(2N)
l

)o
(2.9) {growth of interior of convex sets}{growth of interior of convex sets}

and
Here the notation Ao stands for the interior of a set A.

• In what follows the notation bd(A) stands for the boundary of a set A. For every m ∈ [dN ] the
intersection of bd(A(N)

m ) with any line segment which connects two elements (x1, y1), (x2, y2) ∈
{(x, y) ∈ [N]2 : 0 < x ≤ y < N} such that either x1 = x2 or y1 = y2, contain at most 2 elements.

For every m ∈ [dN ] set
B

(N)
m := A(N)

m \ ∪l≤m−1A
(N)
l≤m−1

Then if for all (i, j) ∈ [N]2 the variance of the (i, j)-entry of AN is given by

s(N)
i,j :=

∑
m∈[dN ]

s(N)
m 1(i∧j,i∨j)∈B(N)

m
(2.10) {defnofvariancesconvex}{defnofvariancesconvex}

for some set of numbers {si}i∈[dN ]. We will call the sequence of matrices AN , random matrix model whose
variance profile is given by a generalized step function

The following Theorem is a corollary of Theorem 2.13 and covers the cases where the entries of the variance
profile matrix are the values of a step function or a continuous function which is coordinate decreasing (or
increasing).

{Theorima gia sxedon kalous pinakes}
Theorem 2.15. Let AN be a random matrix model whose variance profile is given by a generalized step

function. Then if it also satisfies Assumptions 2.3 and for every N ∈ N and {i, j} such that there exists some

m ∈ [dN ] such that if (min{i, j}, max{i, j}) ∈
(
B

(N)
m

)o then

s(N)
i,j ≤ s(2N)

2i,2j (2.11) {extrassuconvex}{extrassuconvex}

Then

lim
N→∞

λmax

( AN
√

N

)
= µ∞ in probability

Moreover if the sequence of matrices AN satisfy Assumption 2.11 the convergence in (2.7) improves from

probability to almost surely.

Remark 2.16. The sequence dN in Definition 2.14 can grow to infinity but each new set that emerges at some
N0 will not contribute to the entries of the matrix AN , i.e., it will not contain a natural number until much
later in the sequence. See for example the discussion in Remark 7.18.

Will we need a figure here as well here ? In the next corollary we prove that it is sufficient for a model to
be well-approximated by sequence which satisfies one of the Assumptions above.

{symperasma gia proseggiseis pinakon}
Corollary 2.17. Let AN be a sequence of matrices satisfying Assumptions 2.1 and 2.3. Write AN as

AN = ΣN ⊙ A′N , (2.12)

where ΣN is the matrix with entries the standard deviation of AN , i.e. (E{A2
N }i,j)

1/2 = Σ
(N)
i,j and A′N is random

symmetric matrix with independent entries all with zero mean, unit variance and finite 4−th moment. Moreover,

suppose that for every n ∈ N there exists a sequence of Σ(n)
N such that the sequence of matrices A(n)

N := Σ(n)
N ⊙ A′N
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satisfies Assumptions 2.1 and 2.3 and either Assumptions 2.4 either Assumptions 2.8 or the Assumptions of

Theorem 2.15. Furthermore, for every n ∈ N denote by µ(n) the limiting distribution of the E.S.D. of A(n)
N and by

µ(n)
∞ the largest element in the support of µ(n). Suppose that

lim
n→∞

µ(n)
∞ = µ∞, µ(n) ⇒ µ in distribution,

lim
n

lim sup
N

max
i,j
|{ΣN }i,j − {Σ

(n)
N }i,j | = 0

. Then

lim
N→∞

λmax

( AN
√

N

)
= µ∞ in probability

Moreover again, if the sequence of matrices A′N satisfy Assumption 2.11 the convergence in (2.7) improves from

probability to almost surely.

Remark 2.18. Note that Theorem 2.15 covers the case that sN
i,j = σ( i

N , j
N ) for some symmetric step function

σ : [0, 1] × [0, 1]→ [0, 1] and Corollary 2.17 covers the case that σ is symmetric and continuous. The last
fact is true by Lemma 6.4 of [21], where the deviation matrices when σ is continuous is approximated by
step functions.

3 Analysis of high order moments
{highordermoments}

We will relate the largest eigenvalue with a high moment of the measure µN and at the same time this moment
will be controlled by µ∞. We start by analysing the convergence in (2.2). In general, it is true that

E tr(A2k) =
∑

i1,i2,........,i2k∈[N]

E
2k∏
l=1

ail ,il+1 (3.1) {geniko athrisma}{geniko athrisma}

with the convention that i2k+1 = i1.
Now, for a term with indices i1, i2, . . . , i2k, we let i := (i1, i2, . . . , i2k) and X (i) :=

∏2k
l=1 ail ,il+1 . Then consider

the graph G(i) with vertex set
V (i) = {i1, i2, . . . , i2k},

and set of edges
{{ir , ir+1} : r = 1, 2, . . . , 2k},

For such an i we also use the term cycle.
As explained in [1] (in the proof of relation (3.1.6) there, pages 49, 50 or in Theorem 3.2 of [27]), the limit

lim
N→∞

1
Nk+1 E tr(A2k)

remains the same if in (3.1) we keep only the summands whose indices i satisfy the following:

1. The graph G(i) is a tree with k + 1 vertices.

2. The path i1 → i2 → · · · → i2k → i1 traverses each edge of the tree exactly twice, in opposite directions
of course.

G(i) becomes an ordered rooted tree if we mark i1 as the root and declare a child smaller than another if it
appears earlier in the cycle.
Cycles i that don’t satisfy either of 1 or 2 above we call bad cycles. So the sum in (3.1) can be written as

E tr(A2k) = MN (k) + BN (k), (3.2) {xoristo athrisma}{xoristo athrisma}

where

MN (k) :=
∑
G∈Ck

∑
i∈[N]2k :G1(i)∼G

∏
{i,j}∈E(G1(i))

s(N)
i,j , (3.3) {orismos kalon orwn}{orismos kalon orwn}

BN (k) :=
∑

i∈[N]2k :bad cycle

EX (i). (3.4) {oi kakoi oroi}{oi kakoi oroi}
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Here Ck are the ordered rooted trees with k edges and G(i) ∼ G means that the graphs are isomorphic as
ordered rooted trees.
Note that by the uniform bound on the variances of AN it is true that

MN (k) ≤ |Ck |N
k+1, (3.5)

which, with the use of (2.4), implies that

lim sup
k→∞

(
lim sup

N→∞

MN (k)
Nk+1

)1/2k

≤ 2. (3.6) {upboundcatalan}{upboundcatalan}

The plan is to control the expectation of the trace in (3.2) through an appropriate bound involving various
MN (j)′s. To control the term BN (k), we adopt the analysis of Section 2.3 of [25].

{protasi gia megalo trace}
Proposition 3.1. Let AN be a matrix that satisfies Assumption 2.1. Assume additionally that the absolute

value of the entries of the matrix are all supported in [0, CN
1
2−ϸ] for some ϸ > 0. Then for all N large enough

and all k < N it is true that

|BN (k)| ≤
k∑

s=1

(4k5)2k−2s
(
(CN)

1
2−ϸ

)2k−2s
(s+1)∧k∑

t=1

(4k4)4(s+1−t)MN (t − 1). (3.7) {BadCycBnd}{BadCycBnd}

Proof. We bound each term of the sum defining BN (k). Take a bad cycle i and let

• t: the number of vertices of G(i),

• s: the number of the edges of G(i),

• e1, e2, . . . , es: the edges of G(i) in order of appearance in the cycle,

• a1, a2, . . . , as: the multiplicities of e1, e2, . . . , es in the cycle.

That is, aq is the number of times the (undirected) edge eq appears in the cycle. Note that t ≤ s + 1 (true for
all graphs) and t ≤ k because the cycle is bad.

Additionally, we let T (i) be the rooted ordered tree obtained from G(i) by keeping only edges that lead to
a new vertex at the time of their appearance in the cycle. The root is i1 and we declare a child of a vertex
smaller than another if it appears earlier in the cycle.

To bound |EX (i)|, notice that if any of a1, a2, . . . , as is 1, we have EX (i) = 0 by the independence of the
elements of AN and the zero mean assumption. We assume therefore that all multiplicities are at least 2.
Using the information about the mean, variance, and support of |a(N)

i,j |, we get that for any integer a ≥ 2 it
holds E(|a(N)

i,j |
a) ≤ (C1N1/2−ϸ)a−2s(N)

i,j . Thus

E|X (i)| =
s∏

i=1

E|Xei |
ai ≤ (C1N1/2−ε)a1+···+as−2s

∏
{i,j}∈E(G1(i))

s(N)
i,j ≤ (C1N1/2−ε)2k−2s

∏
{i,j}∈E(T (i))

s(N)
i,j . (3.8)

In the second inequality, we used the fact that s(N)
i,j ∈ [0, 1] for all i, j, N . For integers s, t ≥ 1, a1, . . . , as ≥ 2

and T ∈ Ct−1 let

NT,a1,a2,...,as =
the number of bad cycles with T (i) ∼ T , vertex set {1, 2, . . . , t},
and edge multiplicities a1, a2, . . . , as.

(3.9)

Consequently,

|BN (k)| ≤
k∑

s=1

k∧(s+1)∑
t=1

∑
a1,a2,...,as

(C1N1/2−ε)2k−2s
∑

T∈Ct−1

NT,a1,a2,...,as

∑
i∈[N]2k :T (i)∼T

∏
{i,j}∈E(T (i))

s(N)
i,j (3.10) {FirstGraphBound}{FirstGraphBound}

≤

k∑
s=1

k∧(s+1)∑
t=1

∑
a1,a2,...,as

(C1N1/2−ε)2k−2s
∑

T∈Ct−1

NT,a1,a2,...,as

∑
i∈[N]2(t−1):T (i)∼T

∏
{i,j}∈E(T (i))

s(N)
i,j (3.11)

≤

k∑
s=1

k∧(s+1)∑
t=1

∑
a1,a2,...,as

(4k4)4(s+1−t)+2(k−s)(C1N1/2−ε)2k−2sMN (t − 1). (3.12)
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The inside sum is over all s-tuples of integers a1, a2, . . . , as greater than or equal to 2 with sum 2k. By
subtracting 2 from each ai , we get an s-tuple of non-negative integers with sum 2k − 2s. The number of
such s-tuples is

((
s

2k−2s

))
(combinations with repetition), which is at most s2(k−s) ≤ k2(k−s). Thus the above

sum is bounded by
k∑

s=1

(4k5)2(k−s)(C1N1/2−ε)2k−2s
k∧(s+1)∑

t=1

(4k4)4(s+1−t)MN (t − 1). (3.13)

□

4 Proof of Theorem 2.13

By relation (3.2) and Proposition 3.1, it is clear that one needs to control the behaviour of the crucial part of
high order traces, i.e., MN (k). More precisely, in order to give an upper bound on the largest eigenvalue we
will study the behaviour of MN (k) when k = O(log2(N)). Firstly by assumption 2.3 one has that there is a
probability measure µ which is symmetric and compactly supported such that

lim
N→∞

1
N

N∑
i=1

δλi (
AN√

N
)(−∞, x) = µ(−∞, x) (4.1) {liminf}{liminf}

for all x ∈ R continuity points of the function µ(−∞, x). This implies that

lim inf
N

λmax(
AN
√

N
) ≥ µ∞ a.s.

where

µ∞ = |µ|L∞ = lim
k→∞

(∫
x2kdµ(x)

)1/2k

So in order to prove Theorem 2.13 one needs to prove that

lim sup
N

λmax(
AN
√

N
) ≤ µ∞ (4.2) {H anisotita gia to theorima limsup}{H anisotita gia to theorima limsup}

We will prove (4.2) separately for each one of the assumptions 2.4 and 2.8.

4.1 Proof of Theorem 2.13 with Assumptions 2.4

In this subsection we will prove (4.2) under Assumptions 2.4. The following proposition is crucial.
{protasi gia anisotita kalon orwn me apeiro norma}

Lemma 4.1. Let AN be a sequence of matrices that satisfies Assumptions 2.1, 2.3 and 2.4. Then for every

k, N ∈ N such that k < N it is true that

MN (k) ≤ Nk+1µ2k
∞

Proof. Fix N, k ∈ N : k < N and a tree T ∈ Ck. Then, for each d := (d1, d2, . . . , dk+1) ∈ {−1, 0}k+1 consider the
function

φd : [N]k+1 → [2N]k+1

with
φd (i1, i2, · · · , i2k+1) = 2 (i1, i2, · · · ., i2k+1) + (d1, d2, · · · , dk+1)

for all i1, i2, . . . , ik+1 ∈ [N]k+1. Note that each φd is one to one and for different vectors d, d′ ∈ {−1, 0}k+1, the
image of φd is disjoint from that of φd’.
Lastly, by assumption 2.4 for any d ∈ {−1, 0}k+1 it is true that∑

T∈Ck

∑
i1,i2,···ik+1∈[N]k+1)

∏
i,j∈E(T )

s(N)
i,j ≤

∑
T∈Ck

∑
i∈φd([N]k+1)

∏
i,j∈E(T )

s(2N)
i,j (4.3) {anisotita gia diplasiasmo kai gia ena dentro}{anisotita gia diplasiasmo kai gia ena dentro}

So if one sums over all possible trees in Ck, (4.3) implies that

2k+1MN (k) =
∑

d1,d2···dk+1

∑
T∈Ck

∑
i1,i2,···ik+1∈[N]k+1)

∏
i,j∈E(T )

s(N)
i,j ≤

∑
T∈Ck

∑
i∈φd([N]k+1)

∏
i,j∈E(T )

s(2N)
i,j ≤ M2N (k). (4.4) {anisotita gia diplasiasmo ropwn }{anisotita gia diplasiasmo ropwn }
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By applying (4.4) inductively, one can prove that for fixed N, k ∈ N the sequence

qm := M2m N (k)/(2mN)k+1

is increasing in the variable m. So by (2.2) it is true that

sup
m

qm = lim
m→∞

qm = µ2k.

Lastly, by a trivial inequality on the p−norms of the limiting measure, one has that

µ2k ≤ µ2k
∞ .

And the proof follows from the inequality q0 ≤ µ2k ≤ µ2k
∞ . □

Next, we are going to give a more precise estimate on the high order moments of the matrices and hence
we will give the necessary bound on the largest eigenvalue under an additional assumption on the support of
the entries of the matrix. {anisotita moments kai L-apeirou}

Proposition 4.2. Let AN be a sequence of matrices that satisfy Assumptions 2.1, 2.3 and 2.4. Moreover

assume that the entries of AN are all supported in [0, CN
1
2−δ] for some constant C and some small δ > 0. Then

lim
N→∞

λmax(
AN
√

N
) = µ∞ a.s.

Proof. First, we claim that for any k = O(log2(N)) it holds

E tr(A2k
N ) ≤ Nk+1µ2k

∞ {1 + o(1)}2k. (4.5) {teleytaia anisotita gia trace}{teleytaia anisotita gia trace}

Indeed, combining Propositions 3.1 and 4.1, we get

E tr(A2k) ≤ µ2k
∞ Nk+1 +

k∑
s=1

(4k5)2k−2s
(
(CN)

1
2−ϸ

)2k−2s
(s+1)∧k∑

t=1

(4k4)4(s+1−t)N tµ2(t−1)
∞ . (4.6) {anisotita protolia m-apeiro kai trace}{anisotita protolia m-apeiro kai trace}

Note that if µ∞ = 0 then (4.5) is implied by NA. So we assume that µ∞ > 0. Next, we focus on the second
summand in the right hand side of the previous inequality, for N large enough. By a trivial bound on the
geometric series one has that the right hand side in (4.6) is bounded by

2k2

µ2
∞

k∑
s=1

(4k5)2k−2s
(
(CN)

1
2−δ

)2k−2s
(4k4)4(s+1)

(
Nµ2
∞

(4k4)4

)(s+1)∧k

(4.7)

= 29k18Nk(µ2
∞)k−1 +

2k2

µ2
∞

(Nµ2
∞)k+1

k−1∑
s=1

(
(4k5)2C1−2δ

N2δµ2
∞

)k−s

(4.8)

≤ 29k18Nk(µ2
∞)k−1 + 32C1−2δk13(µ2

∞)(k−1)Nk+1−2δ , (4.9)

and (4.5) follows.
Now we can prove (4.2). Fix ϸ > 0 and pick k := [C1 log N], where C1 > 1 + (2/ϸ) [obviously this k is
O((log N)2)]. By Markov’s inequality and (4.5), one has that

P

(
λmax(

AN
√

N
) ≥ µ∞(1 + ϸ)

)
≤ P

(
λ2k

max(
AN
√

N
) ≥ µ2k

∞ (1 + ϸ)2k

)
≤

1
µ2k
∞ (1 + ϸ)2k

1
Nk

Eλ2k
max(AN ) (4.10)

≤
1

µ2k
∞ (1 + ϸ)2k

1
Nk

E tr(A2k
N ) ≤ N

(
1 + o(1)

1 + ϸ

)2k

(4.11)

Note that the expression N
(

1+o(1)
1+ϸ

)C1 log N
is summable bacause of the choice of C1, which implies that

lim sup
N

λmax

(
AN
√

N

)
≤ µ∞ a.s.,

since ϸ was arbitrary, and completes the proof. □
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Proof of Theorem 2.13 with Assumptions 2.4. . Fix ϸ > 0 and define the matrices A≤N , A>
N as the ones whose

(i, j) element is aN
i,j1|ai,j |≤N

1
2 −ϸ and aN

i,j1|ai,j |>N
1
2 −ϸ respectively. For a random matrix H := (hi,j), EH denotes the

matrix whose (i, j) element is Ehi,j provided that the mean value of hi,j can be defined.
Weyl’s inequality (Theorem 4.3.1 in [20]) gives that

1
√

N
λmax(AN ) ≤

1
√

N

(
λmax(A≤N − EA≤N ) + λmax(EA≤N ) + λmax(A>

N )
)
. (4.12) {anisotita weyl gia mikra mesi timi kai megala}{anisotita weyl gia mikra mesi timi kai megala}

The second and the third summands in the right hand side of (4.12) , due to Assumptions (2.1), can be
proven that they are asymptotically negligible (in probability) completely analogously to the proof of Theorem
2.3.23 in [25]. In particular one can show that

• The (deterministic) sequence N−
1
2 λmax(E(A≤N )) converges to 0. Write down why.

• The sequence N−
1
2 λmax((A≥N )) converges to 0 in probability.

To deal with the first summand, which refers to the matrix A≤N − EA≤N , we will use Proposition 4.2. Notice
that due to Lemma 3.6 of [27], the empirical spectral distributions of the matrices (A≤N − EA≤N )/

√
N, AN /

√
N

converge weakly to the same probability measure almost surely. Moreover by Weyl’s inequality one has that
(How exactly? Needs justification Because of the new definition of lamda(max)) Next let

ÃN := A≤N − EA≤N , (4.13) {orismos tou trunctated variance}{orismos tou trunctated variance}

s(N),≤
i,j := E{(ÃN )2

i,j}. (4.14)

So by a direct application of Proposition 3.1, one has that for any k < N

E tr(Ã2k
N ) ≤ M̃N (k) +

k∑
s=1

(4k5)2k−2s
(
(CN)

1
2−ϸ

)2k−2s
(s+1)∧k∑

t=1

(4k4)4(s+1−t)M̃N (t − 1) (4.15)

where M̃N (m) are the terms (3.3) for m ∈ [N] and for the matrix ÃN . Furthermore,

s(N)
i,j = E(A2

N ) ≥ E{(A≤N )2} ≥ s(N),≤
i,j ,

so

E tr(Ã2k
N ) ≤ MN (k) +

k∑
s=1

(4k5)2k−2s
(
(CN)

1
2−ϸ

)2k−2s
(s+1)∧k∑

t=1

(4k4)4(s+1−t)MN (t − 1) (4.16)

where MN (m) are the (3.3) for the matrix AN . Thus, by Proposition 4.1 and similarly to the proof of (4.5) one
can show that for k = O(log2(N)),

E tr(Ã2k
N ) ≤ Nk+1µ2k

∞ (1 + o(1))2k.

Then, as in the proof of Proposition 4.2, we get

lim sup
N

λmax

(
ÃN
√

N

)
≤ µ∞ , a.s. , (4.17) {limsupoftrunca.s.}{limsupoftrunca.s.}

which ends the proof. □

4.2 Proof of Theorem 2.13 under Assumption 2.8
{to theorima gia graphon subsection}

Firstly, note that ∑
T∈Ck

t(T, WN ) =
∑
T∈Ck

1
Nk+1 MN (k).

Thus, since asymptotically the only contributing parts in the k-th moment of the E.S.D. are the terms MN (k),
as is proven in Theorem 3.2 of [27], Assumption 2.3 is implied by Assumption 2.8.

Next we need an analogue of (4.5), and this is proven in the next proposition.
{Protasi gia anisotita graphon}

Proposition 4.3. Suppose AN is a sequence of random matrices such that Assumptions 2.1,2.8 hold. Moreover

assume that the entries of AN are all supported in (0, CN
1
2−δ] for some δ, C > 0. Then for k = O(log(N)) it is

true that

E tr A2k
N ≤ 2Nk+1µ2k

∞ {1 + o(1)}2k.
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Proof. Firstly note that for k < N

µ2k := lim
N→∞

1
Nk+1 MN (k) =

∑
T∈Ck

∫
[0,1]k+1

∏
(i,j)∈E(T )

W (xi , xj)dx1dx2 · · ·dxk+1. (4.18) {oriakh roph me graphon}{oriakh roph me graphon}

and similarly
1

Nk+1 MN (k) =
∑
T∈Ck

∫
[0,1]k+1

∏
(i,j)∈E(T )

WN (xi , xj)dx1dx2 · · ·dxk+1. (4.19)

Fix T ∈ Ck. Enumerate the edges of T in the order of first appearance during a depth first search algorithm.
For {i, j} ∈ E(T ) denote {i, j}ord to be its enumeration. So for any 0 ≤ l ≤ k define the following quantities.

µ(l)
N (k, T ) =

∫
[0.1]k+1

∏
(i,j)∈E(T ):{i,j}ord≤l

WN (xi , xj)
∏

(i,j)∈E(T ):{i,j}ord≥l+1

W (xi , xj)dx1dx2 · · ·dxk+1. (4.20)

Note that ∑
T∈Ck

µ(0)
N (k, T ) = µ2k ,

∑
T∈Ck

µ(k)
N (k, T ) =

MN (k)
Nk+1 . (4.21)

Fix l ∈ [k]. Then since all the variances are uniformly bounded by 1 and by Assumption (2.5) it is true that
for any D > 0 there exists some N0 = N0(D) such that for N ≥ N0 it is true that

|µ(l)
N (k, T ) − µ(l−1)

N (k, T )| ≤

∣∣∣∣∣∣
∫

[0,1]2
WN (x, y) −W (x, y)dydx

∣∣∣∣∣∣ ≤ C1
1

ND
(4.22) {IncrBound}{IncrBound}

for some absolute constant C1. Note that∣∣∣∣∣MN (k)
Nk+1 − µ2k

∣∣∣∣∣ ≤∑
T∈C

∣∣∣∣ k∑
l=1

{µ(l)
N (k, T ) − µ(l−1)

N (k, T )}
∣∣∣∣ ≤ ∑

T∈Ck

k∑
l=1

|µ(l)
N (k, T ) − µ(l−1)

N (k, T )| (4.23)

≤ |Ck |kC1
1

N ϸN
≤

C1k22k

ND
. (4.24)

In the last inequality we used the trivial bound |Ck | ≤ 22k. Thus, by the previous inequality and the trivial
inequality µ2k ≤ µ2k

∞ one has that
MN (k)
Nk+1 ≤ µ2k

∞ + k22kC1
1

ND
. (4.25) {anisotita gia grigora graphon}{anisotita gia grigora graphon}

Note that for any C′ ∈ (0,∞) if k = C′ log N then for D large enough one has that

lim
N→∞

k

(
2

µ∞

)2K

C1
1

ND
= 0

and so any k = O(log(N)) and for N large enough one has that

MN (k)
Nk+1 ≤ 2µ2k

∞ .

Thus, if one applies (4.25) to Proposition 3.1 and for k = O(log(N)) one has that

MN (k) ≤ 2µ2k
∞ Nk+1 + 2

k∑
s=1

(4k5)2k−2s
(
(CN)

1
2−ϸ

)2k−2s
(s+1)∧k∑

t=1

(4k4)4(s+1−t)N tµt−1
∞ .

Now the proof of Proposition 4.3 will proceed similarly to the proof of (4.5) so it is omitted. □

Proof of Theorem 2.13 with Assumptions 2.8. Given Proposition 4.25 the proof continues analogously to the
Proof of Theorem 2.13 with Assumptions 2.4 and therefore it omitted. □
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4.3 Proof of almost sure convergence, under the extra Assumption 2.11

Until this point we have proven that if a sequence of random matrices AN satisfies Assumptions 2.1, 2.3 and
2.4 or 2.1 and 2.8 then

lim
N→∞

λmax

( AN
√

N

)
= µ∞ in probability. (4.26)

For any ϸ > 0 and C > 0, define the matrices A≤N , EA≤N the matrix with the truncated entries of AN at scale
CN

1
2−ϸ and the matrix with entries their expected value EA≤N . See the precise definitions of this matrices in

the Proof of Theorem 2.13 with assumptions 2.4. For these matrices we have proven the following facts.

• As is mentioned before the empirical spectral distributions of the matrices (A≤N − EA≤N )/
√

N, AN /
√

N

converge weakly a.s. the same probability measure. So due to that and (4.17) one has that

µ∞ ≤ lim inf
N

λmax

(A≤N − EA≤N
√

N

)
≤ lim sup

N
λmax

(A≤N − EA≤N
√

N

)
≤ µ∞ a.s. (4.27) {a.s.ina.s.}{a.s.ina.s.}

• For the deterministic sequence EA≤N it is true that

lim
N→∞

λmax

(EA≤N
√

N

)
= 0 (4.28) {determin a.s.}{determin a.s.}

Assume that the sequence of matrices AN satisfy also Assumption 2.11. Let X be the random variable that
stochastically dominates the entries of AN in the sense of (2.6). Let XN be a sequence of symmetric random
matrices after an appropriate coupling such that for all N ∈ N and i, j ∈ [N]2 it is true that

|a(N)
i,j | ≤ |{XN }i,j | (4.29) {anisotita stoch dom}{anisotita stoch dom}

and the entries of XN are independent up to symmetry and all following the same law as X. Furthermore note
that since the random variable X has finite 4−th moment it is true that for any ϸ ∈ (0, 1)

∞∑
m=1

22mP(|X | ≥ 2
m
2 (1−ϸ)) < ∞ (4.30) {sumfinitea.s.}{sumfinitea.s.}

From (4.1) it is sufficient to show that for any ϸ > 0

P

(
lim sup

N

( AN
√

N

)
≤ µ∞ + ϸ

)
= 0 (4.31) {a.s.probzero}{a.s.probzero}

Due to (4.27), (4.28) and the triangular inequality for the operator norm of matrices, the probability in (4.31)
is bounded by

P

(
λmax

( AN
√

N

)
≤ λmax

( A≤N
√

N

)
+ ϸ

)
≤ P

(
For all N ∈ N, there exists k ≥ N : AN , A≤N

)
(4.32)

= lim
k→∞

P
(
∪N≥2k ∪1≤i≤j≤N {|a

(N)
i,j | ≥ CN

1
2−ϸ}

)
(4.33) {i.o for A}{i.o for A}

Now note that the quantity in (4.33) is bounded by

lim
k→∞

P
(
∪N≥2k ∪1≤i≤j≤N {|{XN }i,j | ≥ CN

1
2−ϸ}

)
= P

(
For all N ∈ N, there exists k ≥ N : XN , X≤N

)
(4.34) {i.o for X}{i.o for X}

due to (4.29). In (4.34) the matrix X≤N is the truncation of the matrix XN when the absolute values of the
entries of XN are smaller or equal to CN

1
2−ϸ . The probability in the right hand side of (4.34) is known to be 0,

see for example [1] there, pages 94 and 95. This last fact is true due to (4.30).

5 Proof of Theorem 2.15

Set

B′(N) := ∪m∈dN

(
B

(N)
m

)o, (5.1)

BN := {(x, y) ∈ R2 : (x + dx , y + dy) ∈ B′N for any {dx , dy} ∈ {−1, 0, 1}2}, (5.2)
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and define the matrices
{A(1)

N }i,j = 1(i,j)∈BN {AN }i,j, {A
(2)
N }i,j = 1(i,j)<BN {AN }i,j

. One can use Weyl’s inequality similarly to (??) NA BALOUME CITE and Theorem 2.13 to show that it
suffices to prove that the sequence of matrices A(1)

N satisfies the Assumptions of Theorem 2.13 and that

lim
N→∞

λmax(
A(2)

N
√

N
) = 0 in probability (5.3) {oi ligoi oroi pou den isxyei to zhtoumeno}{oi ligoi oroi pou den isxyei to zhtoumeno}

In order to establish (5.3), we will need the following lemma.
{anisotita poso grigora megalonoun }

Lemma 5.1. For any m ∈ N and any plane rooted tree with m edges, T ∈ Cm enumerate the vertices of T

according to their order of appearance during a depth first algorithm. We will say that two numbers l, n ∈ [m+1]
are connected in T if the l−th vertex of T is connected with the l−th vertex through an edge. Moreover set

acc(N, m, T ) := {(i1, · · · im+1) ∈ [N]m+1 : if l,n are connected in T for some n, l ∈ [m + 1] then {il , in} ∈ AN }.

Then

|acc(N, m, T )| ≤ N6dm
N

Proof. For the proof of this lemma we will use induction.
For m = 2 we will show that the number of non-identically 0 elements per row is at most 6dN and the

implication will follow. Fix i ∈ [N]. The number of non-identical 0 entries in the i−th row is bounded by
the number of times the lines y = i and x = i intersect with the boundary of the set A(N)

m for any m ∈ [dN ]
times the number of entries which are at a distance at most 1 from that intersection. By the 3−rd property
in Definition 2.10 we have that their are at most two such elements in the intersection for each segment.
Moreover, for any such intersection there are at most 3 elements in the axis y = i and 3 at most in the axis
x = i with natural coordinates of distance at most 1 from that intersection. Thus, the number of non-identical
0 entries in the i−th row is the bounded by 12dN .

Suppose that the desired inequality holds for any l : l ≤ m − 1. Fix T ∈ Cm . Enumerate the vertices of T

according to their appearance during a depth first search algorithm. Let vm+1 denote the last appearing leaf
of T during a depth first search algorithm and let vd denote its only neighbour in T , for some d ∈ [m − 1].
Then the tree T \ {vm+1} is a plane rooted tree with m − 1 edges for which the induction hypothesis holds. So

|acc(N, m, T )| ≤ |acc(N, m − 1, T \ {vm+1})|max
i∈[N]
|{(im+1, id) ∈ AN , given that id = i}| ≤ N(12dN )m−112dN

□

So by the uniform bound on the variance of AN in Assumptions 2.1 and Lemma 5.3 one has that for any
k < N

M (2)
N (k) ≤ N2k(12dN )k (5.4) {anisotita gia crucial part me ligous orous}{anisotita gia crucial part me ligous orous}

where M (2)
N (k) are the terms in (3.3) for the matrix A(2)

N . Now we are ready to prove the Theorem.

Proof of Theorem 2.15. One can show that similarly to the proof of Theorem 2.13, it is sufficient to prove (5.3)
under the extra assumption that the absolute value of the entries is bounded by CN

1
2−ϸ for some constants

C, ϸ > 0. So by Proposition 3.1 and (5.4) one has that for k = O(log2 N)

E tr{A(2)N }2k ≤ Nk+1
(12dN

N

)k

+

k∑
s=1

(4k5)2k−2s
(
(CN)

1
2−ϸ

)2k−2s
(s+1)∧k∑

t=1

(4k4)4(s+1−t)N t
(12dN

N

)t−1
(5.5) {anisotita poy balame thn diastasi ligoi kaki oroi}{anisotita poy balame thn diastasi ligoi kaki oroi}

The term on the right-hand side (5.5) can be treated completely analogously to right hand-side term of (4.6) in
the Proof of Proposition 4.2. Thus, one can conclude that for arbitrary small δ > 0 and for any k = O(log(N))
it is true that

P(λmax(
A(2)

N
√

N
) ≥ δ) ≤

1

(
√

Nδ)2k
Eλ2k

max(AN ) ≤
1

(
√

Nδ)2k
E tr{A(2)

N }
2k ≤ N

(
o(1)

δ

)2k
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which implies (5.3).
Moreover fix (i, j) ∈ [N]2 such that i < j. Then if (i, j)] ⊆ BN there exists some m ∈ [dN ] such that

{(k, x) ∈ [N]2 : dist
(
(i, j), (k, x)

)
≤ 1} ⊆

(
B

(N)
m

)o

But from Assumption (2.9) there exists some f ∈ [d2N ] such that

{(k, x) ∈ [2N]2 : dist
(
(2i, 2j), (k, x)

)
= 0 or 2} ⊆

(
B

(2N)
f

)o

but since
(
B

(2N)
f

)o is an orthogonally convex set one can conclude that

{(k, x) ∈ [2N]2 : dist
(
(2i, 2j), (k, x)

)
≤ 2} ⊆

(
B

(2N)
f

)o

and in particular due to (2.10),(2.11) one can conclude that the sequence of matrices A(1)
N satisfies Assumption

2.4.
□

Almost sure convergence under the extra Assumption 2.11. To improve the convergence in Theorem 2.15 one
can notice that if the matrix sequence of matrices AN satisfy Assumption 2.11 the same will be true for
the sequences of matrices A(1)

N and A(2)
N . Note that due to Lemma 3.6 in [27] and (5.5), the almost sure

convergence of the E.S.D. of the matrices A(2)
N to the measure which is concentrated at 0 is implied. So with

these facts one can prove that the convergence in (5.3) can be improved to almost surely, similarly to the
proof of the almost sure convergence in Theorem 2.13. Lastly one can notice that the matrix A(1)

N satisfy the
assumptions for the almost sure convergence in Theorem 2.13 which ends the proof. □

6 Proof of Corollary 2.17

Firstly note that for any n ∈ N

λmax(
A(n)

N
√

N
)→ µ(n)

∞ , in probability (6.1) {anisotita kales prosegiseis}{anisotita kales prosegiseis}

Also if we extra assume that A′N satisfies Assumption 2.11 the convergence in (6.1) improves into almost
surely. Next fix ϸ > 0 and n0 large enough such that for every n ≥ n0 it is true that µ∞ + ϸ ≥ µ(n)

∞ . Then, due
to Weyl’s inequality, one has that

P(λmax(
AN
√

N
) ≥ µ∞ + 2ϸ) ≤ P(λmax(

AN
√

N
) ≥ µ(n)

∞ + ϸ) ≤ P(λmax(
AN − A(n)

N
√

N
) + λmax(

A(n)
N
√

N
) ≥ µ(n)

∞ + ϸ)) (6.2)

≤ P(λmax(
AN − A(n)

N
√

N
) ≥

ϸ

2
) + P(λmax(

A(n)
N
√

N
) ≥ µ(n)

∞ +
ϸ

2
) (6.3) {pano fragma gia proseggisimous pinakes}{pano fragma gia proseggisimous pinakes}

The second term in (6.3) is asymptotically negligible due to (6.1). For the first term one can show, similarly

to the proof of Theorem 2.13, that it suffices to prove that λmax( AN−A(n)
N√

N
) is negligible, when for each N the

absolute values of the entries of the matrix AN − An
N are concentrated in (0, CN

1
2−ϸ) for some C, ϸ > 0. . But Why?

one can easily show that Is this ok?

M ′N (t) ≤ N t+12t

(
max

i,j
{ΣN }i,j − {Σ

(n)
N }i,j

)t

where M ′N (t) are the terms defined in 3.3 for the matrices AN − A(n)
N . In particular due to Proposition 3.1,

one can show that the largest eigenvalue of AN − A(n)
N is asymptotically negligible, similarly to the proof of

Theorem 2.13.
So after increasing n0 if necessary, we conclude that the proof.
The improvement to almost sure convergence under the extra Assumption 2.11 for the sequence of matrices

A′N can be proven similarly to the proof of the analogous part of Theorem 2.15 and therefore it is omitted.
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7 Examples

In this section we present examples on which our theorems can be applied.

7.1 Wigner and Wigner-type matrices

Our theory would not be complete if it couldn’t be applied to the most widespread random matrix models the
Wigner matrices, i.e., the case that the entries of AN are i.i.d. In what follows we establish the convergence of
the largest eigenvalue of Wigner matrices perturbed by an error term matrix.

{theorempertwigner}
Theorem 7.1. Let A∞ be an infinite symmetric matrix with i.i.d. entries all with zero mean, unit variance and

bounded 4-th moment. Then define a sequence of increasing dimension matrices such that

AN = A(1)
N + ΣN ⊙ A(1)

N

where A(1)
N is an N × N symmetric sub-matrix of A∞ and the entries of the matrices A(2)

N := ΣN ⊙ A(1)
N satisfy

lim
N→∞

max
i,j
|E{A(2)

N }
2
i,j | = 0. (7.1) {mikres diasporesclassicwigner}{mikres diasporesclassicwigner}

Then

lim
N→∞

λmax(
AN
√

N
) = 2 a.s.

Proof. Firstly note that the sequence of matrices A(1)
N satisfy Assumptions 2.1, Assumptions 2.3, 2.8 and

4.27. Note that its limiting distribution is the semicircle law. So by Theorem 2.13 one has that

λmax (
A(1)

N
√

N
) = 2 a.s.

By Weyl’s inequality one has that

max
i∈[N]
|λi(

AN
√

N
) − λi(

A(1)
N
√

N
)| ≤ max

i
|λi(

A(2)
N
√

N
)| = λmax(

A(2)
N
√

N
)

So it is sufficient to show that the largest eigenvalue of N−
1
2 A(2)

N tends to 0. Note that the sequence of matrices
A(2)

N satisfy Assumption 2.11. Thus similarly to the proof of the almost sure convergence in Theorem 2.15, it
is sufficient to prove that the largest eigenvalue of N−

1
2 A2

N tends to 0 under the extra assumption that the
absolute value of the entries of A(2)

N are supported in (0, CN
1
2−ϸ), for some C, ϸ > 0. So by Proposition 3.1 one

can show that for k = O(log2 N) it is true that

E tr{A(2)
N }

2k ≤ Nk+1
(
max

i,j
E{A(2)

N }
2
)k

which implies that the largest eigenvalue of N−
1
2 A2

N tends to 0. □

7.2 Random matrix with variance profile given by a step function

The next example we provide are Random Matrices whose variance profile is given by a step function. It is
also a widespread random matrix model.

{theoremstepfunction}
Theorem 7.2. Let {AN }N∈N be a sequence of symmetric random matrices each of them with dimension N .

Suppose there exist two other sequence of matrices ΣN , A′N such that AN = ΣN ⊙ A′N . Suppose that the entries of

A′N for all N are independent (up to symmetry) and identically distributed random variables with zero mean,

unit variance and finite 4-th moment. Moreover suppose that for each i, j ∈ [N]

• {ΣN }i,j = σ( i
N , j

N ) for some σ : [0, 1]2 → [0, 1].

• The function σ is symmetric, i.e. σ(x, y) = σ(y, x)) for any x.y ∈ [0, 1]. Furthermore suppose that there

exist m ∈ N, disjoint intervals {Ii}i∈[m] such that [0, 1] = ∪i∈[m]Ii and {si,j}1≤i≤j≤m ∈ [0, 1]
m(m+1)

2 such that

σ(x, y) =
∑

i,j∈[m]

σmax{i,j},min{i,j}1Ii (x)1Ij (y)
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Then the sequence of matrices AN satisfy Assumptions 2.1. It also satisfies 2.3 due to Theorem 1.2 of [22],

So there exists a limiting measure µ of the E.S.D. of N−
1
2 AN with bounded support. Set µσ

∞ to be the largest

element of the support of µ. Then

lim
N→∞

λmax(
AN
√

N
) = µσ

∞ a.s.

Proof. It is sufficient to show that the deviation profile matrix ΣN satisfy the Assumptions of Theorem 2.15.
Note that for the number of times that the values of σ( i

N , j
N ) may differ for i, j ∈ [N]2 are at most m2. Moreover

the underlying sets from Definition 2.14 are

B
(N)
i,j = {(x, y) ∈ R2 : (

x

N
,

y

N
) ∈ (Io

i × Io
j )} ∩ {(x.y) ∈ R2 : 0 ≤ x ≤ y ≤ N}for any i, j ∈ [m] (7.2) {defnofsetsvar}{defnofsetsvar}

It is obvious that the sets in 7.2 satisfy the first two assumptions of Definition 2.14. For the third one,
we may easily modify the sets {Ii}i∈[m] to some intervals {I (N)

i }i∈[m] depending on N , but for which the edges
of the sets are irrational numbers and such that the variances of the matrices AN will remain the same.
This implies the third assumption of Definition 2.14. Lastly note that the sequence of matrices satisfy the
Assumption 2.11, see Remark 2.12. So we can apply Theorem 2.15 and complete the proof. □

{coraproxstep}
Corollary 7.3. Suppose that AN is a sequence of matrices such that it can decomposed in the following sense

AN = A(1)
N + ΣN ⊙ A(1)

N ,

where A(1)
N satisfies the assumptions of Theorem 7.2 and the matrices A(2)

N := ΣN ⊙ A(1)
N satisfy

limN→∞maxi,j |E{A
(2)
N }

2
i,j | = 0. Then

lim
N→∞

λmax(
AN
√

N
) = µσ

∞ a.s.

Proof. The proof is completely analogous to the proof of Theorem 7.1 and therefore it is omitted. □

7.3 Random matrix with variance profile given by a continuous function

The next example we provide are Random Matrices whose variance profile is given by a the continuous
functions. It is also a widespread random matrix model.

{theoremconfunction}
Theorem 7.4. Let {AN }N∈N be a sequence of symmetric random matrices each of them with dimension N .

Suppose there exist two other sequence of matrices ΣN , A′N such that AN = ΣN ⊙ A′N . Suppose that the entries of

A′N for all N are independent (up to symmetry) and identically distributed random variables with finite 4-th

moment. Moreover suppose that for each i, j ∈ [N]

• {ΣN }i,j = σ( i
N , j

N ) for some σ : [0, 1]2 → [0, 1].

• The function σ is symmetric and continuous.

Then the sequence of matrices AN satisfy Assumptions 2.1. It also satisfy 2.3 and so there exists a limiting

measure µ of the E.S.D. of N−
1
2 AN with bounded support. Set µσ

∞ to be the largest element of the support of µ.

Then

lim
N→∞

λmax(
AN
√

N
) = µσ

∞ a.s.

Proof. It is sufficient to show that the deviation profile matrix ΣN satisfy the Assumptions of Corollary 2.17.
This is true by approximating the matrix ΣN ⊙ A′N by matrices Σ(n)

N A′N where the entries of Σ(n)
N are given by

some appropriately chosen step functions which will depend on n, similarly to the proof of Lemma 6.4 of
[22]. □

{coraproxcon}

Corollary 7.5. Suppose that AN is a sequence of matrices such that it can decomposed in the following sense

AN = A(1)
N + ΣN ⊙ A(1)

N ,
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where A(1)
N satisfies the assumptions of Theorem 7.4 and the entries of the matrices A(2)

N := ΣN ⊙ A(1)
N satisfy the

following

lim
N→∞

max
i,j
|E{A(2)

N }
2
i,j | = 0.

Then

lim
N→∞

λmax(
AN
√

N
) = µσ

∞ a.s.

Proof. The proof is completely analogous to the proof of Theorem 7.1 and therefore it is omitted. □

Remark 7.6. In Theorem 1.3 [22] the author proved the analogous results to Corollaries 7.3 and 7.5 under
the extra assumption that the entries of the matrix A′N have sub-Gaussian Laplace and in particular finite
moments. transforms.

7.4 Generalized step functions, more examples

In the Random Matrix Theory literature what is commonly described as Random matrices with variance-profile
given by a step function are more or less what we describe in Theorem 7.2. In this subsection we give some
examples which are covered by the generalized version of this variance-profile matrices but not from the
"standard" step functions.

Theorem 7.7 (Non-Periodic Band Matrices with Bandwidth proportional to the dimension). Let A′N be a

sequence of symmetric random matrices with i.i.d entries all following a law with 0 mean, unit variance and

finite 4-th moment. Set AN to be the matrix with entries

{AN }i,j = 1|i−j|≤pN {A
′
N }i,j, i, j ∈ [N],

for some p ∈ (0, 1]. Then for the sequence of matrices AN Assumptions 2.1 hold. Moreover due to Theorem 4 of

[7] Assumptions 2.3 also hold for the sequence of matrices AN . So

lim
N→∞

λmax(
AN
√

N
) = µ∞ a.s.

Proof. This is a straightforward application of Theorem 2.15, where the underlying sets described in Definition
2.14 are

A
(N)
1 := {(x, y) ∈ [0, N]2 : |x − y| ≤ p} ∩ {(x, y) ∈ R2 : x ≤ y}, and A(N)

2 := {(x, y) ∈ R2 : 0 ≤ x ≤ y ≤ N}

and the underlying numbers are s1 = 1 and s2 = 0. □

Remark 7.8. The random band matrix models have been extensively studied after the novel work in [7] and
have tremendous application in various research areas. When the bandwidth of the matrices is periodic, i.e.,
the distance from the diagonal outside which the entries are 0 is periodic, the operator norm of such matrices
has been extensively studied, see for example [24] or the survey [10]. Moreover when the bandwidth of such
matrices is non-periodic but the bandwidth (the maximum non identically zero entries per row) is o(N) but
tends to infinity has also been examined in [5]. To the best of our knowledge the convergence of the largest
eigenvalue of non-Periodic Band Matrices with Bandwidth proportional to the dimension was not established.

7.4.1 Random Gram Matrices

Lets X be an N × M matrix with independent, centered entries with unit variance, where M
N converges to

some positive constant as N → ∞. It is known that the empirical spectral distribution of XXT , after rescaling.
converges to the Marˇcenko-Pastur law [23]. Moreover the convergence of largest eigenvalue to the largest
element of its support has been established, see for example [1], However, some applications in wireless
communication require understanding the spectrum of XXT , where X has a variance profile, see for example
[19] or [14]. Such matrices are called random Gram matrices. In this subsection we establish the convergence
of the largest eigenvalue of random Gram matrices to the largest element of the support of its limiting
distribution, assuming that there exists a limiting distribution for the E.S.D. Firstly we give some necessary
definition.
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{defnfewbadperrowcov}

Definition 7.9. Let AN,M be a sequence of N ×M matrices, where M = ⌈cN⌉ for some constant c ∈ [0, 1]+ and
for N large enough. Suppose that the matrix ON,N

 AT
N,M

0N−M,N

[
AN,M 0N,N−M

]
ON,N


are random matrices with a variance profile given by a generalized step function, see Definition 2.14, where
Ok,l is an k × l matrices with all of its entries equal to 0. The we will say that the random matrices AN,M are
non-symmetric random matrices with their variance profile given by a generalized step function.

{thmgrammatrix}
Theorem 7.10. Let AN,M be a sequence of N ×M matrices, where M = ⌈cN⌉ for some constant c ∈ [0, 1]+ and for

N large enough. Suppose that the entries of AN,M are independent and satisfy Assumptions 2.1. Furthermore

suppose that there exists a non-trivial probability measure µ with compact such that the E.S.D. of the matrices

N−1AN,MAT
N,M converges to µ. Set µ∞ to be the largest element in the support of µ. Then if one of the next

Assumptions holds

• The matrices AN,M are non-symmetric random matrices with their variance profile given by a generalized

step functions

• The matrix AN,M can be decomposed in the following sense NA BALO STHN ARXH HADAMARD

PRODUCT AN,M = ΣN,M ⊙ A′N.M , for two sequence of N ×M matrices ΣN,M , A′N,M such that the entries of

A′N,M are centered, independent random variables with unit variance and bounded 4-th moment and

ΣN,M is a sequence of matrices with values given by a continuous function similarly to Theorem 7.4.

It is true that

λmax(
AN,MAT

N,M

N
)→ µ∞ in probability (7.3) {convofgram matr}{convofgram matr}

Moreover if there exists a random variable X with 0 mean, unit variance and finite 4-th moment that stochastically

dominates, in the sense of 2.6, the entries of AN,M for all N, M then the convergence in (7.3) can be improved to

almost surely.

Proof. Firstly set
AN :=

[
AN,M 0N,N−M

]
where 0N,N−M denotes the N × N −M matrix with 0 one every entry. Note that the matrix AN symmetric so
that AN,MAT

N.M = ANAT
N . Next define the sequence of matrices

ÃN =

 0 AT
N

AN 0


Note that

det(λ2IN − ANAT
N ) = det(

λ · IN AT
N

AN λ · IN

) = det(λ · I2N + ÃN )

where Ik is the k × k identity matrix for any k ∈ N. Thus, the eigenvalues of ÃN are the square root of ANAT
N

and their negative ones. The matrix ÃN is called the symmetrization of AN .
Now the sequence of matrices ÃN satisfy Assumptions 2.1. Moreover the Assumptions 2.3 are also satisfied

and if ν is the limiting probability measure of the E.S.D. of ÃN , then if X ∼ ν and Y ∼ µ it is true that X2 has
the same law as Y .

Lastly note that Definition (7.9) implies the Assumptions of Theorem 2.15 for the sequence of Matrices ÃN

and the second Assumption implies the Assumptions of Theorem 7.4. Thus by a direct application of one of
the Theorems above the proof is complete. □
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Remark 7.11. In [19] the authors showed that if the variances of the entries of AN,M are given by the values
of a continuous function (and some extra assumptions such as bounded 4 + ϸ moments of the entries) the
limiting distribution of the E.S.D. of AN AT

N does exist. So in Theorem 7.10 we prove the convergence of the
largest eigenvalue of these models as well. The authors in [19] also studied the non-centered version of these
models, i.e. when the entries of the matrix do not have 0 mean, but we do not cover this case with our result.

Corollary 7.12 (Triangular matrices). Let {AN }N∈N be a sequence of N × N lower triangular matrices. with iid

entries all following a law with 0 mean, unit variance and finite 4-th moment. Then

lim
N→∞

λmax (
AN AT

N

N
) = e a.s.

Proof. As is also explained in the proof of Theorem 7.10 the asymptotic behavior of the eigenvalues a sample
covariance random matrix model, i.e. AN AT

N , can be equivalently described as the asymptotic behavior of
symmetric matrices with independent entries. More precisely set

ÃN =

 0 AT
N

AN 0


The eigenvalues of ÃN are the square roots of the eigenvalues of AN AT

N and their negative ones. Moreover
in [11] it is shown that the E.S.D. of N−1AN AT converges to a probability measure whose support’s largest
element is e. Equivalently the largest element of the support of limiting measure of the E.S.D. of ÃN is

√
e,

see Remark 2.2 of [9] for a more detailed discussion on this phenomenon. Moreover the sequence of matrices
ÃN satisfies the Assumptions of Theorem 2.15, where the underlying sets described in Definition 2.14 are

A
(N)
1 := {(x, y) ∈ [0, N2 : x +

N

2
≤ y} and A(N)

2 := {(x, y) ∈ R2 : 0 ≤ x ≤ y ≤ N}

and the underlying number are s1 = 1 and s2 = 0. So after an application of Theorem 2.15 for the sequence
of matrices ÃN , the proof is completed. □

7.5 Random Block Matrices

The Random Block Matrix models have application in Modeling and Optimization problems. Their spectral
properties have been investigated in [17] and [15], under various assumptions. Next, in [27] the author
proves the convergence of the E.S.D. under very general conditions. Next we present the Random Block
Matrices.

Definition 7.13. Let A and B be two matrices of dimension N × M and K × L respectively. Let ai,j be the
(i, j)−th entry of A. We define the Kronecker product of A and B to be the NK ×ML matrix

A ⊗ B :=



a1,1B a1,2B · · ·a1,MB

a2,1B a2,2B · · ·a2,MB

· · · · · · · · ·

· · · · · · · · ·

aN,1B aN,2B · · ·aN,MB


{denf random block }

Definition 7.14. Fix d ∈ N and a set of numbers {ai}i∈[d] ⊆ (0, 1]d such that
∑

i∈[d] ai = 1. Let AN be an N ×N

matrix such that AN =
∑

k,l∈[d]2 Ek,l ⊗ Ak,l
N , where Ek,l is the matrix with 1 in the (k, l)−entry and 0 in every

other entry and A(k,l)
N is an a(N)

k × a(N)
l matrix under the extra convention that

(
A(k,l)

N

)T
= A(L,K)

N . Each of the
matrices A(k,l) has i.i.d. entries and the sequences a(N)

k are sequences such that

lim
N→∞

aN
k

N
= ak , for k ∈ [d]

and
d∑

i=1

a(N)
i = N for any N ∈ N

Then the sequence of matrices AN will be called random block matrix model.
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Theorem 7.15. Let AN be a random block matrix model. Assume that the entries of AN satisfy the Assumptions

2.1. Moreover assume that there are some numbers {si,j}(i,j)∈[d]2 such that for the variance of the entries of the

(k, l)−th block is equal to sk,l for any N ∈ N.

Then there exists a probability measure µ with compact support such that the E.S.D. of AN√
N

tends to µ. Set µ∞
to be the largest element in the support of µ. Then

lim
N→∞

λmax(
AN
√

N
) = µ∞ a.s.

Proof. The existence of the limiting distribution µ follows from Theorem 6.1 of [27]. The convergence of the
largest eigenvalue is a consequence of Corollary 7.3 with the underlying sets being

Ii =
(∑

j<i

ai

∑
j≤i

ai

]
, for any i ∈ [d].

and the underlying values of the step function being {si,j}(i.j)∈[d]2 □

In the previous theorem the number of blocks of the matrix AN is fixed. Next we give present an analogue
of these matrices with the number of blocks tending to infinity. Under some extra assumptions we prove the
convergence of the largest eigenvalue. Until this point we have presented examples for which Theorem 2.15
is applied but the number of orthogonally convex sets in Definition 2.14 is fixed. So next we give an example
where this does not hold. {denf random block growing}

Definition 7.16. Fix a non-decreasing sequence of natural numbers, dN tending to infinity. For each N ∈ [N]
fix a set of numbers {a(dN )

i }i∈[dN ] ⊆ (1, N]dN such that
∑

i∈[dN ]⌊a
(dN )
i ⌋ = N . Let AN be an N × N matrix such that

AN =
∑

k,l∈[dN ]2 Ek,l ⊗Ak,l
N , where Ek,l is the matrix with 1 in the (k, l)−entry and 0 in every other entry and A(k,l)

N

is an ⌊a(N)
k ⌋ × ⌊a

(N)
l ⌋ matrix under the extra convention that

(
A(k,l)

N

)T
= A(l,k)

N . Each of the matrices A(k,l)
N has

i.i.d. entries whose distribution does not dependent on N and has 0 mean, sk,l variance and bounded 4 − th

moment. Moreover the sequences a(dN )
k are such that

lim
N→∞

a(dN )
k

N
= ak , for k ∈ N and some ak ∈ [0, 1]

such that
∞∑

i=1

ai = 1.

Then the sequence of matrices AN will be called random block matrix model with increasing block number.
{thmrandomblockincreasing}

Theorem 7.17. Let AN be a random block matrix model with increasing block number. Assume that the

matrices AN satisfy the Assumptions 2.1, 2.3. Moreover the variances of the blocks of are fixed for all N , i.e. the

variance of the entries of the k, l block are all equal s(N)
k,l = sk,l . the matrices each {M, L} ∈ N assign a number

sM,L assume that for each N , there are some numbers {s(dN )
i,j }(i,j)∈[dN ]2 such that for the variance of the entries of

the (k, l)−th block of AN is equal to s(N)
k,l , so that s(2N)2k,2l = s(N)

k,l .

Furthermore assume that,

• The number of blocks does not grow too fast, i.e.,

lim
N→∞

dN

N
= 0

• The growth of the sequences a(dN )
k is almost linear meaning that there exists a N0 such that for all

N ≥ N0 it is true that for all k ∈ [dN ]

{2m : m ∈

∑
i<k

⌊a(dN )
i ⌋,

∑
i≤k

⌊a(dN )
i ⌋

 ∩ N} = {m ∈ ∑
i<k

⌊a(d2N )
i ⌋,

∑
i≤k

⌊a(d2N )
i ⌋

 ∩ 2N} (7.4) {growrateofblocks}{growrateofblocks}

Set µ∞ to be the largest element in the support of µ. Then

lim
N→∞

λmax(
AN
√

N
) = µ∞ a.s.
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{remnotfastgrowth}
Remark 7.18. The equality (7.4) allows the number of blocks to grow to infinity but the "growth" of each new
interval will be very slow. For example say that the matrix AN0 has d−blocks. For the first interval

(0, ⌊a
(dN0 )
1 ⌋)

the value of a(2N0) can be a number for which it is true that ⌊2a(dNo )⌋ = ⌊x⌋. So assuming that a
(dN0 )
1 is not a

natural number, there exists some small ϸ > 0 for which we can set

a
(d2N0 )
1 := 2a

(d2N0 )
1 − ϸ

This allows us to add any number of disjoint new intervals whose union will be the interval (a(d2N0)

1 , 2a
(dN0 )
1 ]

and their length will add up to ϸ, and still (7.4) will hold. For simplicity say we add 1 new interval. We can
continue with that procedure and create new intervals of small length between all the previous d intervals.
Again for simplicity assume that their length is all equal to ϸ. But these new intervals will not contain any
natural numbers for any N < O( 1

ϸ )N0 and so they will not contribute to the blocks of the matrices AN for all
that N .

Proof of Theorem 7.17. The proof is a direct application of Theorem 2.15 and therefore it is ommited.
□

8 A lemma
{CountLemma}

In the next lemma, we prove the crucial estimate we invoked in the proof of Proposition 3.1. We adopt and
present the terminology of Section 5.1.1 of [1].

{CycleCountLemma}
Lemma 8.1. NT,a1,a2,...,as ≤ (4k4)4(s+1−t)+2(k−s)

Note to us: We don’t use the values of a1, a2, . . . , as.

Proof. Take a cycle i := (i1, i2, . . . , i2k) and assume that it has edge multiplicities a1, a2, . . . , as ≥ 2. Each step
in the cycle we call a leg. More formally, legs are the elements of the set {(r, (ir , ir+1)) : r = 1, 2, . . . , 2k}, which
become exactly the edges of G(i) if we replace (ia , ia+1) with {ia , ia+1}.

For 1 ≤ a < b, we say that the leg (a, (ia , ia+1)) is single up to b if {ia , ia+1} , {ic, ic+1} for every c ∈

{1, 2, . . . , b − 1}, c , a. We classify the 2k legs of the cycle into 4 sets T1, T2, T3, T4. The leg (a, (ia , ia+1))
belongs to

T1: if ia+1 < {i1, . . . , ia}. I. e., the leg leads to a new vertex.

T3: if there is a T1 leg (b, (ib, ib+1)) with b < a so that a = min{c > b : {ic, ic+1} = {ib, ib+1}}. I. e., at the
time of its appearance, it increases the multiplicity of a T1 edge of G(i) from 1 to 2.

T4: if it is not T1 or T3.

T2: if it is T4 and there is no b < a with {ia , ia+1} = {ib, ib+1}.
I.e., at the time of its appearance, it creates a new edge but leads to a vertex that has
appeared already.

Moreover, a T3 leg (a, (ia , ia+1)) is called irregular if there is exactly one T1 leg (b, (ib, ib+1)) which has b < a,
va ∈ {ib, ib+1}, and is single up to a. Otherwise the leg is called regular.
It is immediate that a T4 leg is one of the following three kinds.

a) It is a T2 leg.

b) Its appearance increases the multiplicity of a T2 edge from 1 to 2.

c) Its edge marks the third or higher order appearance of an edge.

The number of edges of G1(i) is s and the number of its vertices is t (since T (i) ∼ T ∈ Ct−1). Call

ℓ: the number of edges of G1(i) that have multiplicity at least 3.
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m: the number of T2 legs.

r: the number of regular T3 legs.

We have for r, t, and |T4| the following bounds

r ≤ 2m, (8.1) {rBound}{rBound}

t = s + 1 −m ≤ k, (8.2) {tBound}{tBound}

|T4| = 2m + 2(k − s). (8.3) {T4Bound}{T4Bound}

The first relation is Lemma 5.6 in [1]. The second is true because if we remove the m edges traveled by T2

legs, we get a tree with s −m edges and t vertices, and in any tree the number or vertices equals the number
of edges plus one. Then the inequality is true because s ≤ k (all edges of G(i) have multiplicity at least 2) and
if s = k then m ≥ 1 since the cycle is bad. For the last relation, note that |T3| = |T1| = t − 1 and thus, using
(8.2) too, we have |T4| = 2k − 2(t − 1) = 2k − 2(s −m).
Now back to the task of bounding NT,a1,...,as . We fix a cycle as in the beginning of the proof and give each
vertex an index in {1, 2, . . . , t} which records the order of the first appearance of the vertex in the cycle.
Then, we record

• for each T4 leg, a) its order in the cycle, b) the index of its initial vertex, c) the index of its final
vertex, and d) the index of the final vertex of the next leg in case that leg is T1. This gives a
Q1 ⊂ {1, 2, . . . , 2k} × ({1, 2, . . . t}2 ∪ {1, 2, . . . t}3) with |T4| elements.

• for each regular T3 leg, a) its order in the cycle, b) the index of its initial vertex, and c) the index of
its final vertex. This gives a Q2 ⊂ {1, 2, . . . , 2k} × {1, 2, . . . , t}2 with r elements.

We call U the set of all indices that appear as fourth coordinate in elements of Q1. These are indices of final
vertices of T1 legs.
We claim that, having Q1, Q2, T (i) we can reconstruct the cycle i.

We determine what kind each leg of the cycle is and what the index of its initial and its final vertex is.
These data are known for the T4 and T3 regular legs. The remaining legs are T1 or T3 irregular. We discover
the nature of each of them by traversing the cycle from the beginning as follows. The first leg is T1 since the
graph (?) G(i, j) does not have loops (each of its edges connects an I-vertex with a J-vertex ?). Assume that
we have arrived at a vertex vi in the cycle with the smallest i for which the nature of the leg ℓi := (i, (vi , vi+1))
is not known yet. If the vertex vi has no children in Ĝ(i, j) that we haven’t encountered up to the leg ℓi−1,
then ℓi is T3 irregular. If the vertex vi does have such children, call z the oldest among them (that is, the one
that appears earlier in the cycle).
• If z ∈ U , then in case it was included in Q1 because of ℓi−1 (and we have the date to check this), we have

z

w
vi

vj

ℓi

ℓp

ℓj

ℓq

Figure 1: The case z < U .The legs ℓi , ℓj(i < j) are T3, while ℓp, ℓq are T1. {graphCase}

that ℓi is T1 with vi+1 = z, while in case it was included with a leg ℓi′ with index i′ ≥ i, we have that ℓi can’t be
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T1 (because then vi+1 would be a child of vi appearing earlier than z, contradicting the choice of z), thus ℓi is
T3 irregular.
• If z < U , we will show that ℓi = (i, (vi , w)) is T1. Assume on the contrary that it is T3 irregular. Clearly

z , w, and call ℓp (p < i) the T1 leg that has vertices vi , w and is single up to i − 1. The cycle will visit the
vertex vi at a later point, with a leg ℓj = (j, (vj, vi)) with j > i and vj , z, vj , vi , in order to create the edge that
connects vi with z (that is, ℓj+1 = (j + 1, (vi , z)) will be T1), see Figure 1. The leg ℓj is not T1 because vi has
been visited by an earlier leg, and it is not T4 because we assumed that z < U . It has then to be T3. Thus,
there is a leg ℓq connecting vertices vi , vj that is T1.

If q < i, then we consider two cases. If vj = w, then ℓj is T4, because the edge vi , w has been traveled
already by ℓp, ℓi , and this would force z ∈ U , a contradiction. If vj , w, then ℓi would have been T3 regular as
there are at least two T1 legs (ℓp, ℓq) with order less than i with one vertex vi , traveling different edges, and
single up to i − 1, again a contradiction because ℓi is T1 or T3 irregular.

If q > i, then vj(, z) is a child of vi (that is, the T1 leg ℓq goes from vi to vj) that appears after leg ℓi but
earlier than z, which contradicts the definition of z. We conclude that ℓi is T1.

Thus, having Ĝ(i, j), Q1, Q2 allows to determine the index of the initial and final vertex of all legs, and the
only thing remaining for the recovery of all the data of the cycle (??) is the elements ir , jr in the legs. This is
determined in the next two steps.
The above imply that the number of bad cycles with given t, r is at most

(2kt2(t + 1))|T4 |(2kt2)r ≤ (4k4)r+|T4 |. (8.4) {MapCount}{MapCount}

Then (8.1) and (8.3) give r + |T4| ≤ 4m + 2(k − s), and finally using (8.2), and we get the desired bound. □
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