
The Probabilistic Analysis of a Greedy
Satisfiability Algorithm

Alexis C. Kaporis, Lefteris M. Kirousis, Efthimios G. Lalas
Department of Computer Engineering and Informatics University Campus,

University of Patras, GR-265 04 Patras, Greece;
e-mail: {kaporis,kirousis,lalas}@ceid.upatras.gr

Received 7 March 2003; accepted 24 November 2004; received in final form 22 July 2005
Published online 8 November 2005 in Wiley InterScience (www.interscience.wiley.com).
DOI 10.1002/rsa.20104

ABSTRACT: On input a random 3-CNF formula of clauses-to-variables ratio r3 applies repeatedly
the following simple heuristic: Set to True a literal that appears in the maximum number of clauses,
irrespective of their size and the number of occurrences of the negation of the literal (ties are broken
randomly; 1-clauses when they appear get priority). We prove that for r3 < 3.42 this heuristic
succeeds with probability asymptotically bounded away from zero. Previously, heuristics of increasing
sophistication were shown to succeed for r3 < 3.26. We improve up to r3 < 3.52 by further exploiting
the degree of the negation of the evaluated to True literal. © 2005 Wiley Periodicals, Inc. Random Struct.
Alg., 28, 444–480, 2006

1. INTRODUCTION

Consider n Boolean variables V = {x1, . . . , xn} and the corresponding set of 2n literals
L = {x1, x1, . . . , xn, xn}. Each xi ∈ V may appear as positive literal xi or as negative xi in
a k-clause, k ≥ 2. A k-clause is a disjunction of k literals of distinct underlying variables.
A random formula φn,m in k conjunctive normal form (k-CNF) is the conjunction of m

Contract grant sponsor: University of Patras Research Committee under Project Carathéodory.
Contract grant number: 2445.
Contract grant sponsor: Research Academic Computer Technology Institute (RACTI).
Contract grant sponsor: European Social Fund (ESF), Operational Program for Educational and Vocational Train-
ing II (EPEAEK II), and PYTHAGORAS I.
Contract grant sponsor: Future and Emerging Technologies programme of the EU.
Contract grant number: EU 001907, “Dynamically Evolving, Large Scale Information Systems (DELIS)”.
© 2005 Wiley Periodicals, Inc.

444

PROBABILISTIC ANALYSIS OF A SATISFIABILITY ALGORITHM 445

clauses, each selected uniformly and independently among 2k
(n

k

)
possible clauses on n

variables in V . The density rk of a k-CNF formula φn,m is the clauses-to-variables ratio
m/n. A k-CNF formula φn,�rk n� is satisfiable if there exists an assignment of truth values
to the variables such that φn,�rk n� evaluates to 1. We say that for a given density rk almost
all formulas φn,�rk n� are (un)-satisfiable iff the the ratio of (un)-satisfiable to all possible
formulas approaches 1, as n → ∞.

It is conjectured that for each k ≥ 2 there exists a critical clauses-to-variables ratio r∗
k

such that almost all k-CNF formulas φn,�rn� with ratio (r > r∗
k)r < r∗

k are (un)-satisfiable,
as n → ∞. Friedgut [32] proved that for each k ≥ 2 there exists a sequence of threshold
values r∗

k (n), depending on the number n of variables, such that for any ε > 0 almost all
k-CNF formulas (φn,�(r∗k (n)+ε)n�)φn,�(r∗k (n)−ε)n� are (un)-satisfiable, as n → ∞. However, the
convergence limn→∞ r∗

k (n) = r∗
k for each k ≥ 3 still remains open. Let

r∗−
k = limn→∞r∗

k (n) = sup{rk : Pr[φn,�rk n�is satisfiable → 1]}
and

r∗+
k = limn→∞r∗

k (n) = inf{rk : Pr[φn,�rk n�is satisfiable → 0]}.
Therefore, r∗−

k ≤ r∗
k ≤ r∗+

k , if r∗
k exists.

Franco and Paull pioneered the study of random k-CNF formulas and proved the general
upper bound r∗+

k < 2k ln 2 in [31]. Then Chao and Franco established the general lower

bound 1
2

(
k−1
k−2

)k−2
2k/k < r∗−

k in [16]. These results suggested the simple law r∗−
k = r∗

k =
r∗+

k ∼ 2k ln 2. A series of experimental results comes up in favor of the threshold conjecture,
see [20, 25, 58]. Monasson and Zecchina, using the non-rigorous replica method from
statistical mechanics, predicted r∗

k ∼ 2k ln 2 in [61].
Chvátal and Reed in [17] proved the simple law 1

4 2k/k < r∗−
k and further proved that

r∗−
2 = r∗

2 = r∗+
2 = 1; also see [12, 17, 37, 67, 68]. Frieze and Suen improved to zk2k/k <

r∗−
k , where zk = O(1) depending on k, as the best algorithmic lower bound for general

k-CNF formulas in [33].
Wilson in [70] proved that for each k ≥ 2 the characteristic width of the phase transition

is at least �(n1/2), contradicting a number of empirical results in [35, 48, 49, 62, 63]. The
width denotes the amount of extra clauses needed to be added in the random formula for
the probability of satisfiability to drop from 1 − ε to ε.

In a recent advance, Frieze and Wormald [34] proved that 2k ln 2 < r∗−
k as k − log2 n →

∞, employing a second moment argument. Independently, Achlioptas and Moore [6] also
applied the second moment method to prove that 2k

2 ln 2 − zk < r∗−
k for any fixed value of

k ≥ 2, where zk > 0 is constant and depends on k. Recently, Achlioptas and Peres refined
this method, proving 2k(ln 2 + o(1)) < r∗−

k in [8].
An important question concerns the complexity to compute a satisfying assignment, or

on the contrary, to prove that none exists near the conjectured threshold value. To this end,
Haken, Urquhardt, and Chvátal and Szemerédi in [18, 39, 66] were led to the conclusion that
for k-CNF formulas of density rk > 2k ln 2 any resolution proof of unsatisfiability contains
at least (1 + ε)n clauses. Monasson et al, using statistical mechanics, showed that the first-
order phase transition correlates to the running time until a satisfying truth assignment is
returned, by heuristics that are based on the Davis–Putnam simplification rule [62, 63].
Furthermore, Mézard and colleagues [55, 56] suggest a linear time algorithmic criterion
that may improve the lower bound on r∗−

k . Achlioptas, Beame, and Molloy in [3] proved
a 2�(n) lower bound for the running time for the DPLL (for Davis, Putnam, Logemann,

446 KAPORIS, KIROUSIS, AND LALAS

and Loveland) procedures GUC, UC, and ORDERED-DLL; see [15, 16] and [21, 22].
Informally, a DPLL procedure spits a formula into two sub-formulas by setting a variable
to a fixed value and recursively invokes itself on each sub-formula.

For the particular case k = 3, upper bounds to r∗+
3 have been proven using probabilistic

counting arguments [26, 27, 42, 44, 47, 50, 53]; see the surveys [24, 51] about the techniques
employed. Dubois, Boufkhad, and Mandler proved r∗+

3 < 4.506 as the current best upper
bound in [27]. As a corollary of [32], to prove that c < r∗−

3 it suffices to prove that a random
3-CNF formula of density c has a satisfying truth assignment with the probability of at least
a positive constant. In this vein, Davis–Putnam algorithms of increasing sophistication
were rigorously analyzed [1, 9, 14, 15, 17, 33]; see the surveys [2, 30] describing in detail
various heuristics and techniques on their analysis. The best previous lower bound for the
satisfiability threshold thus obtained is 3.26 < r∗−

3 by Achlioptas and Sorkin in [9].

2. CONTRIBUTION

Almost all of the above algorithms (with the exception of the Pure Literal algorithm
[14, 29, 59]) take into account only the clause size where the selected literal appears. Due
to this limited information exploited on selecting the next variable, the simplified formula
in each algorithmic step remains random conditional only on the current numbers of 3;2-
clauses and variables. However, selecting the next variable only on the basis of the current
numbers of 3;2-clauses led to algorithms of increasing sophistication that gave the lower
bound 3.26 ≤ r∗−

3 .
The first part of this paper concerns the analysis of a greedy Davis–Putnam algorithm that

exploits degree information (number of literal occurrences) to select and set to True a literal
per free step (i.e., while there exist no 1-clauses); see Section 4.4. The algorithm is simple:
in each round evaluate to True a literal τ so as to satisfy the maximum number of clauses,
irrespective of the occurrences of τ . It succeeds for densities r3 ≤ 3.42 establishing that
r∗−

3 ≥ 3.42. Its simplicity, contrasted with the improvement over the previously obtained
lower bounds, suggests the importance of analyzing heuristics that take into account degree
information of the reduced formula. A preliminary version of this paper appeared in [45].

In the second part of this paper we exploit the number of occurrences of the negation τ of
the high degree literal τ selected per free step; see Section 5. Consider literals τ1, . . . , τs ∈ L,
all of the highest degree in the current formula. Then it seems natural to give priority for
satisfaction to literal τi, i ∈ {1, . . . , s}, whose negation τ i occurs in the fewest clauses.
Intuitively, obtaining control on complementary literals τ , τ ∈ L we maximize the number
of satisfied clauses and minimize the generation of new 1-clauses, increasing the probability
of success of the algorithm. Our heuristic succeeds for densities r3 ≤ 3.52 establishing that
3.52 < r∗−

3 . However, the ordering of selection of such pairs of literals is not trivial.
Assume that τ1 with deg(τ1) = � is the unique literal of currently maximum degree and
deg(τ 1) = 3. Should we better select literal τ2 with deg(τ2) = � − 1 and deg(τ 2) = 2?
Here, each pair of complementary literals has discrepancy � − 3. We provide a framework
for analyzing algorithms that under an arbitrary rule Select & Set a pair of complementary
literals per free step, irrespective of the clause sizes. By standard techniques, our algorithm
can be easily modified to run in linear time. Thus, not only the satisfiability threshold, but
also the threshold (experimental again) where the complexity of searching for satisfying
truth assignments jumps from polynomial to exponential is at least 3.52. This should be
contrasted with the value 3.9 for the complexity threshold given by theoretical (but not

PROBABILISTIC ANALYSIS OF A SATISFIABILITY ALGORITHM 447

mathematically rigorous) techniques of Statistical Physics [55, 56]. Hajiaghayi and Sorkin
independently analyzed heuristics similar to those of our paper and claim to have obtained
the same lower bound [38].

3. PLAN OF THE PAPER

The first part of this paper is Section 4. It concerns the probabilistic analysis of the algorithm
Greedy described in sub-Section 4A. We define the notion of a round of algorithm’s
operation in sub-Section 4B. We also point out the reason we use the current number of
rounds as the “time” parameter. Then we describe the model of generating a random formula
obtained at the end of each round of the algorithm in sub-Section 4C. Connections of this
model to existing ones are presented in sub-Section 4D. Furthermore, we initialize the
degree sequence of the formula and we prove useful statistical properties per round in sub-
Section 4E. A subcritical Galton Watson process of polylogarithmic total size establishes
that the sequence of forced steps does not dominate any round in sub-Section 4F. We
also prove a sufficient condition for positive probability of success for the algorithm. We
compute the expected change of each of (h + 3) parameters given which the reduced
formula retains randomness in sub-Section 4G. Then we show that a theorem of Wormald
applies in order to approximate within o(1) and probability 1 − o(1) each of these (h + 3)

parameters in sub-Section 4H. We write down the system of (h+3) differential equations, the
solution of which approximates within o(1) the dynamics of the algorithm per round in sub-
Section 4I. We employ a theorem proved by Wormald [72], which helps us to approximate
the dynamics of the algorithm with the solution of the system of differential equations,
with high probability; see sub-Section 4H. We implement the d.e. until we reach a round
where we can apply a theorem by Cooper Frieze and Sorkin [19] and safely terminate
the algorithm; see sub-Section 4J. Finally, numerical computations and experiments are
presented in sub-Section 4K.

The second part of this paper is devoted to the study of the dynamics of the algorithm
CL; see Section 5. The randomness invariance of the reduced formula in each round of the
algorithm is retained by keeping track of an appropriate degree sequence of (h + 1)2 + 3
parameters; see the details in sub-Section 5B. The statistical properties of the reduced for-
mula are presented in sub-Section 5C. We introduce the corresponding system of differential
equations to keep track of the parameters given which the formula retains randomness in
sub-Section 5D. Finally, we apply a criterion for the termination of the algorithm CL in
sub-Section 5F.

4. NEGATION BLIND DEGREE SEQUENCE

A. Algorithm

The algorithm is applied to a random 3-CNF formula with n variables and density r3. Let
h be an a priori decided integer parameter, say h = 10. At a first phase, the algorithm
arbitrarily selects and sets to True literals of degree at least h (during free steps), until they
are exhausted. At subsequent phases, it continues with literals of degree exactly h − 1 etc,
in decreasing order of the degree. Unit clauses, whenever they appear, are given priority
(forced step). In the numerical computations, we take h = 10 (a larger h gives a larger
lower bound, but only with respect to its second decimal digit). The degree or number of
occurrences of a literal τ in the formula is denoted deg(τ) in the definition below.

448 KAPORIS, KIROUSIS, AND LALAS

Definition 4.1.

Xj = {τ ∈ L | deg(τ) = j}, j = 0, . . . , h − 1, and Xh = {τ ∈ L | deg(τ) ≥ h}.
If τ ∈ Xh then we call τ heavy; otherwise we call it light.

Del&Shrink(τ) is the Davis–Putnam simplification rule: delete all clauses in the
current formula that contain literal τ , and delete τ from all clauses in which it appears.

Algorithm: Greedy
begin:
j ← h;
while unset literals exist do:

while Xj �= ∅ do:
Select τ ∈ Xj & Set τ = 1;
Del&Shrink(τ);
while 1-clauses exist do:

Select τ in a 1-clause & Set τ = 1;
Del&Shrink(τ);
end do;

end do;
j ← j − 1;

end do;
if a 0-clause is generated then report failure;
else report success;
end;

In all Select commands above, the selection can be based on a deterministic but
otherwise arbitrary rule, e.g., always select the object with the least index that satisfies the
corresponding requirements.

We prove that for h = 10 algorithm Greedy on input a random 3-CNF formula of
initial density r3 ≤ 3.42 computes a satisfying truth assignment with probability at least a
positive constant. Therefore:

Theorem 4.2. The lower bound on r∗−
3 is at least 3.42.

The crucial property, proved in [59], that the negation of a 0-degree literal is a random
literal, motivated us to work with arbitrary j-degree literals. Hence, in each free step, we set
to True a j-degree literal, with j maximum, satisfying in this way the maximum number of
clauses while the number of shrinked clauses has the same expectation as if we had to set
to true a random literal.

We were motivated to give priority to large degrees from [2, 9], where the need to
capitalize on variable-degree information was pointed out and from [5], where, in the context
of the 3-coloring problem, the Brélaz heuristic [13] was analyzed. According to [5], vertices
of maximum degree are given priority, but only in case they can be legally colored by 2 of
3 possible colors.

Also in [36] Johnson’s heuristic [43] is evaluated experimentally. This heuristic selects at
each free step both a literal τ and its negation τ on the basis of their corresponding degrees
among 3,2-clauses. Algorithm Greedy is a simplification of this heuristic, since in a free
step it selects a literal τ of the biggest degree in the formula (irrespective of the clause sizes)
while τ is random.

PROBABILISTIC ANALYSIS OF A SATISFIABILITY ALGORITHM 449

Finally, we were motivated to put together all heavy literals from [14], ([64]), where pure
literals (light vertices) are set to True (deleted) in order to find a satisfying truth assignment
of a random formula (the k core of a graph), respectively.

B. Rounds

The algorithm proceeds in rounds. A round consists of one free step, i.e., a step where a
literal in Xj is set to True (j = h, . . . , 0), followed by a number of forced steps, i.e., steps
where 1-clauses are satisfied (the steps of the inner loop in the pseudo-code above). Of
course, each of these steps is followed by the call of a Del&Shrink procedure. At the end of
the sequence of forced steps only 3,2-clauses exist, and we reach the same reduced formula
irrespective of the ordering that the algorithm satisfies the 1-clauses.

As in [9], in the analysis of the evolution of the algorithm, we consider as discrete
time the number of rounds rather than the number of individual steps, which, for distinc-
tion, are to be called atomic steps. To explain why this choice of time is made, take into
account that as the solution to the differential equations will show (for r3 = 3.42 and
h = 10), the expected number of unit clauses generated at any atomic step is bounded
below 1; see sub-Section 4F.1. But then, during the course of the algorithm the num-
ber of unit clauses is equal to 0 unboundedly many times. This happens at the end of
each round; all rounds have O(1) atomic steps, so there are O(n) of them, assuming
no contradiction appears; see sub-Section 4F. As a consequence, if time corresponds to
atomic steps, the evolution of the number of unit clauses cannot be analyzed by the method
of differential equations. This is so because to apply this method, the rate of change,
from a current step to the next, of the parameter under examination should be given by a
smooth function (Lipschitz continuous function, see [72]) of the current scaled value of
the parameter. This is not possible for the number of unit clauses, as its rate of change
when there is at least one unit clause is discontinuously different from its rate of change
when there is none (in the former case we deterministically delete one unit clause). See,
for more details, sub-Section 4H. The technique of rounds, i.e., the change of the time
parameter to count the number of rounds, guarantees that Wormald’s theorem is appli-
cable for the study of the evolution of stochastic parameters by the use of differential
equations.

C. Randomness Invariance of the Formula in Each Round

We show that at the end of each round of the algorithm, the reduced formula is uniformly
at random distributed over the space of all formulas with a given degree sequence, as the
one in Definition 4.1 and with given number |Ci| of i-clauses, i = 2, 3.

Algorithm Greedy selects randomly a literal τ that has specified degree (or that appears
in a 1-clause), during each free (or forced) step. It transforms the current formula φ into
the reduced φ′, by deleting all clauses where τ appears and deleting all occurrences of τ̄ ,
schematically: φ′ ← Del&Shrink(φ, τ).

Consider Procedures A and B below (and C in Section 5.B), where Procedure A corre-
sponds to an atomic step of algorithm Greedy. We will show that B preserves conditional
randomness (as defined below). From this we will deduce that the same is true for A. We
refer by Model A (resp., Model B or C) to the processes corresponding to Procedure A (or
to Procedure B or C).

450 KAPORIS, KIROUSIS, AND LALAS

Procedure A.

1. Select a literal occurrence τ in a clause of length one, if any (forced atomic step),
2. or select a literal τ of specified degree (free atomic step),
3. φ′ ← Del&Shrink(φ, τ).

In addition, consider the simpler Model B, under which atomic steps such as

Procedure B.

1. select a literal occurrence τ in a clause of length one, if any (forced atomic step),
2. or select a literal τ (free atomic step),
3. φ′ ← Del&Shrink(φ, τ),

can be expressed. Notice that it differs from Model A in that it is not possible to select a literal
of specified degree. Observe that Model B cannot express each free step ofGreedy, while it
expresses each forced one. However, studying its limitations and modifying it accordingly,
we finally construct Model A, which is adequate to express any atomic step of Greedy.

Lemma 4.3. At the end of each algorithmic operation according to Model B, the reduced
formula remains random conditional on its current number |Ci| of i-clauses and its current
number |L| of literals, i = 2, 3.

Proof. A random formula conditional on the number |Ci| of i-clauses and the number |L|
of literals is constructed by selecting uniformly at random i-clauses from the space of all
possible clauses on these literals, i = 2, 3. Each of the i literal occurrences in an i-clause is
selected uniformly at random over |L| possible literals. This makes a total of 3|C3| + 2|C2|
clause occurrences that their underlying literal is unexposed or secret. The fact that these
literal occurrences are unexposed means that the corresponding clause places can be filled
uniformly at random over the |L| possible literals. We can interpret these 3|C3| + 2|C2|
literal occurrences as cards facing down, or registers with unexposed content. Also, let |L|
be unexposed registers containing each of the literals available. Working analogously as in
[46], we can view each i-clause as an i-tuple of unexposed clause-registers, each register
containing a secret pointer to one of the |L| literal-registers of the literals available. Similarly,
each of the |L| literals can be seen as an unexposed literal-register with secret pointers to
all the i-tuples that contain registers pointing to this literal. Also, each literal-register points
to the unexposed literal-register of the negation of its underlying literal.

All in all, the fact that the pointer of a clause-register is secret means that its content
can be specified uniformly at random among the |L| possible literals. (Note that all these
|L| literals need not appear in the formula.) In a symmetric fashion, the content of each
of the secret pointers in a literal-register can be specified uniformly at random among the
3|C3| + 2|C2| possible literal occurrences. This is done in an analogous manner as the
content of a card is revealed in the expository card game presented in [52].

Using Model B, we can Select & Set to True a random literal (or a random literal
occurrence in a clause of specified length), amounting to model’s B first (or second) kind
of permissible atomic steps. These are performed by the following operations:

1. Select uniformly at random a literal-register among the |L| possible (or select a literal
occurrence from a random i-tuple of clause-registers). Let τ its underlying literal.

PROBABILISTIC ANALYSIS OF A SATISFIABILITY ALGORITHM 451

2. Delete the content of the literal-register of τ ; delete the content of all the i-tuples
of clause-registers that contain a clause-register pointed by the literal-register of
τ , i = 2, 3; update the content of all the remaining registers. This amounts to deleting
τ and deleting all clauses in which it appears. Also delete the content of the literal-
register of τ̄ ; delete the content of all the clause-registers it points to; update all the
remaining registers. This amounts to deleting τ̄ and deleting all occurrences of τ̄ .

Observe that we cannot infer information about the current content of any register that
remains undeleted and unexposed. We should stress here that we cannot infer information
combining the knowledge exposed from the currently exposed registers and the ones that
were exposed during previous algorithmic steps. Therefore, the reduced formula remains
random conditional on the new numbers |C′

i | and |L′| of i-tuples of clause-registers and
literal-registers i = 2, 3, respectively.

Lemma 4.4. At the end of each algorithmic operation according to Model A, the reduced
formula remains random conditional on its current number |Ci| of i-clauses, i = 2, 3, its
number |L| of literals, and the number of literals of degree j = 0, . . . , 3|C3| + 2|C2|.

Proof. Model A is now easily constructed by assuming that each literal-register described
in Model B is adjacent to an exposed degree-register that contains an integer equal to the
degree of its underlying literal. In this way, an algorithm may Select & Set to True a random
literal of specified degree, during each free step. Once more we cannot infer information
about the content of unexposed registers, as soon as the update of all the registers that remain
undeleted is completed. Therefore, the reduced formula remains random conditional on its
current number of unexposed registers.

Lemma 4.5. At the end of each algorithmic step ofGreedy, the reduced formula remains
random conditional on its current number |Ci| of i-clauses, i = 2, 3, its number |L| of liter-
als, and the number |Xj|, j = 0, . . . , h, of literals (see Definition 4.1), where h is a sufficiently
high integer, say h = 10. More precisely, the formula is random given the vector

S = 〈�, c3, c2, x0, . . . , xh−1〉, (4.1)

where � = |L|/n; ci = |Ci|/n; xj = |Xj|/n, j = 0, . . . , h−1, and n is the number of variables
of the initial random formula.

Proof. The result follows easily by modifying slightly Model A described in the proof of
Lemma 4.4. In this case, each literal-register is adjacent to an exposed degree-register that
either contains the integer j = 0, . . . , h − 1, which equals the exact degree of its underlying
literal, or contains integer h if the corresponding degree is at least h. That is, we have no
information about the exact degree of any literal with degree-register equal to h. During each
algorithmic step, the deletion of some clauses may cause some literals of current degree
j ≥ h to finally get degree j < h. Although the degree content of such high degree-registers
is secret, to perform the corresponding updates we need to know their exact degree during
the simplification step. However, as soon as all updates are completed, it is not possible to
infer the content of any unexposed register from the combined knowledge of current and
previous information about the registers.

452 KAPORIS, KIROUSIS, AND LALAS

D. Connection to Other Models of Random Formulas

In the previous literature concerning algorithms for the k-SAT [1, 2, 9, 15, 16, 17, 33],
excluding Pure Literal [14, 29, 59], the models studied for generating random for-
mulas give only information about the total number of clauses and the set of variables that
a random formula can be constructed from.

The model that seems to capture all the computationally interesting aspects of k-
SAT is the following: Let V = {x1, . . . , xn} the set of variables and their literals L =
{x1, x1, . . . , xn, xn}. A k-clause is a disjunction of k literals of distinct underlying variables.
A random k-SAT formula φn,m is the conjunction of a random m-subset of distinct clauses,
selected uniformly from the set of all 2k

(n
k

)
possible clauses.

According to this model, no repetition of clauses is allowed to appear in the random
instance and no clause may contain multiple or complementary literals. However, to simplify
the probabilistic analysis, many papers have adopted slight modifications of this model,
which may allow repeated or complementary literals in a clause and repetitions of clauses.

A popular model [2, 7, 14, 27, 34, 59], not restricted to the study of algorithmic issues
concerning k-SAT, is the following: We construct a random φn,m by selecting, for each of
the km total clause positions in it, a literal in L uniformly at random with replacement.
Observe that multiplicities of clauses and literals may occur. An interested reader may find
in [7, 33] (Sections 4.1 and 8, respectively) explanatory details why multiplicities of clauses
or literals are irrelevant.

We adopt this model to construct the initial random formula, as seen in the proof of
Lemma 4.3. Then we modify it accordingly in Lemmata 4.4, 4.5, 5.3, and 5.4, in order to
handle degree information per step. We use the Principle of Deferred Decisions [52] and
give a simple proof of randomness of Lemma 4.3, working as in [46, 52]. An interested
reader may find early applications of this method in the context of myopic algorithms for
k-SAT in [2, 33] Sections 2.1 and 2, respectively.

Furthermore, a random formula as described in Lemmata 4.4, 4.5, 5.3, and 5.4, where
we need to handle degree information per algorithmic step, can be constructed using the
Configuration Model. For example, a random formula in view of Lemma 4.4 can be con-
structed as follows: create j copies of each literal of degree j = 0, . . . , 3|C3| + 2|C2|. Fill
each of the 3|C3|+2|C2| available clause positions of the formula by selecting a literal copy
uniformly with no replacement. Multiplicities of literals in clauses and multiple clauses in
the formula are insignificant; see also the discussion below.

The Configuration Model was introduced by Bender and Canfield in [10] and refined in
[12, 73]. The problem of handling degree information of a random structure has attracted
a lot of interest lately. Of particular interest is the issue of generating random r-regular
graphs [71, 74]. In such a graph all n vertices have degree r and is constructed by creating r
copies of each of the n vertices (or hanging semi-edges) and choosing a random matching
on these semi-edges. As long as no side effects such as multiple edges or self-loops occur,
the resulting graph is distributed uniformly at random. These side effects are of similar
nature as repetitions of literals or clauses and are discussed in detail in the Introduction of
[74]. Recently, the Configuration Model was used for analyzing an algorithm in the context
of coloring a random graph [5].

We should stress here that Lemma 4.3, or even 4.4 and 4.5, might be possible to prove
via counting arguments as in [64]. However, enumerating all formulas with an unbounded
or even bounded negation dependent degree sequence, as Lemmata 5.3 and 5.4 require,
would be quite complicated, we believe.

PROBABILISTIC ANALYSIS OF A SATISFIABILITY ALGORITHM 453

E. Statistics of the Literals

Algorithm Greedy is initialized with a formula having the degree sequence defined below:

Proposition 4.6. A random 3-SAT formula of density c on �n literals has w.h.p. the typical
single degree sequence:

xj = �e−λλj/j! + o(1), j = 0, . . . , h − 1, and xh = � −
h−1∑
j=0

xj + o(1),

where λ = 3c/� is the expected degree of a random literal.

Proof. Concerning 3-SAT random formulas, the basic idea for the proof of this proposition
can be found in [14], Lemma 4.3. In particular, Theorem 4.2 establishes that the scaled
number x0 of 0-degree literals is sharply concentrated to its expected value. In our paper
we simply generalize this argument, from 0-degree to arbitrary j-degree literals, 0 ≤ j < h,
where h is a given integer. Also, it is helpful to see [54] where the analogous case of the
degree sequence of the vertices of a random graph is studied. Finally, in papers [27, 28], a
similar argument was applied to prove concentration results for the corresponding double
degree sequence of the complementary literals of a random formula and the vertices of a
random graph; see Proposition 5.5 in subsection 5C.

We sketch here the basic lines of the proof. A random 3-SAT formula consisting of cn
3-clauses over �n literals can be constructed by a random balls into bins game. We represent
each of the 3cn clause positions of the formula as a distinct ball and each of the �n literals as
a distinct bin. Each ball (clause position) independently lands in a bin (literal). The degree
di of an arbitrary literal corresponds to the load of the underlying bin, i = 1, . . . , �n. It
follows that the joint distribution of the di’s is Multinomial(3cn; 1

�n , . . . , 1
�n).

Unfortunately the random variables di’s are not independent, since the knowledge that a
particular di = k (that is, the load of a specific bin is k) affects the load distribution of any
other dj, j �= i (since now there remain 3cn − k balls to be distributed to the other bins).

However, consider the independent Poisson(λ) random variables d ′
i ’s with mean λ =

3c/� that equals the expected load of a random bin in the above process. Let the random
variable

∑�n
i=1 id ′

i = M. Then M is a Poisson(3cn) random variable with the nice property
of concentration of its probability mass to its expected value 3cn, that is,

Pr[M = 3cn] = poly(n)−1.

Given that M = 3cn (which corresponds to the total number of balls in a random formula),
then the d ′

i ’s are distributed as di’s,

Pr[d1 = k1, . . . , d�n = k�n] = Pr[d ′
1 = k1, . . . , d ′

�n = k�n | M = 3cn]
= Pr[d ′

1 = k1, . . . , d ′
�n = k�n] · poly(n)−1,

by deconditioning on M = 3cn. Using the independence of d ′
i ’s, the number |Xj| of bins

(literals) with load j is a Binomial(�n, Poisson(λ; j)) random variable, where

Poisson(λ; j) = e−λ(λ)j/j!, j = 0, . . . , 3cn,

which is the probability that a particular bin receives j balls. Applying a Binomial
large-deviation inequality, we obtain that |Xj| deviates by a constant factor from its

454 KAPORIS, KIROUSIS, AND LALAS

expectation E[|Xj|] with exponentially small probability. Then we get that the scaled, i.e.,
divided by n, number of literals of degree j is with high probability equal to

xj = E[|Xj|]
n

= �e−λ(λ)j/j!, j = 0, . . . , h − 1.

Heuristics that Select & Set a literal without exploiting degree information enjoy the
property that the remaining unset literals obey the Poisson distribution and the reduced
formula is random given S = 〈�, c3, c2〉. Any degree guided heuristic, for example Pure
Literal [14, 29, 59], violates this nice randomness property. In this simple example, the
formula is random given the vector S0 = 〈�, c3, x0〉, i.e., we also need to keep track of
the scaled number x0 of pure (light) literals per step. The following theorem that describes
the distribution of literals in X1 (the set of literals with degree ≥ 1), will be generalized
in Theorem 4.8, part 1, which describes the distribution of literals in Xh (the set of literals
with degree ≥ h), where h is an appropriate constant, say 10.

Theorem 4.7. [Broder, Frieze, and Upfal [14], Mitzenmacher [59]] Let X1 be the set
of literals with degree k ≥ 1 at the end of each step of the Pure Literal algorithm. Each
literal τ ∈ X1 follows a truncated at 0 Poisson probability distribution:

P1(µ; k) = Pr[deg(τ) = k | τ ∈ X1] = µk

(eµ − 1)k! , k ≥ 1,

where µ is the solution of the equation,

λ1 = µeµ

eµ−1 , and

λ1 = 3c3
x1

is the average load of a heavy bin.

Proof. The reduced formula at the end of each step of the algorithm Pure Literal
can be generated uniformly at random by using the model described in Lemma 4.5 and
setting h = 1. According to this model, each of the 3c3n clause-registers points to one of
the x1n literal-registers uniformly at random, such that each literal-register is pointed by at
least one clause-register. This is equivalent to throwing randomly 3c3n distinct balls into
x1n distinct bins such that no bin remains empty. Then it is well known that the probability
that a bin (literal) τ ∈ X1 has load (degree) j ≥ 1 is a truncated at 0 Poisson distribution:

µ j

(eµ−1)j! . Parameter µ is the solution of the equation λ1 = µeµ

eµ−1 , where λ1 = 3c3/x1 is the
expected load of a heavy bin.

A crucial observation, see also [59], is that the expected load of a random bin (expected
degree of a random literal) equals the current density of the formula λ1

x1
�

= 3c3
�

= ρ3. An
important aspect of the algorithm Greedy is that at any atomic step, the literal to be set
to True is selected on the basis of information about itself and irrespective of properties
of its negation. To describe this situation, we say that literals are decoupled from their
negation. As a consequence, the literal set to False at any atomic step is always uniformly
random over all literals (the restriction that it has to be different from the literal set to True
introduces an o(1) discrepancy, which is neglected). It is because of this that we can work
with a degree sequence based on literals and not, as is usually the case, with a 2-dimensional

PROBABILISTIC ANALYSIS OF A SATISFIABILITY ALGORITHM 455

degree sequence that at each (i, j) gives the number of variables that have i positive and
j negative occurrences. From the fact that the literals that are set to False are uniformly
random literals, it immediately follows that the expected number of unit clauses generated
at any atomic step is the expected number of occurrences in 2-clauses of a random literal.
This number is trivially the current density ρ2 of 2-clauses at that atomic step.

Theorem 4.8. Any literal τ ∈ L and any literal occurrence b in a formula that is random
given the vector S in (4.1) has the following properties:

1.

Ph(µ; k) = Pr[deg(τ) = k | τ ∈ Xh] = µk(
eµ−∑h−1

s=0
µs
s!

)
k! , k ≥ h,

where µ is the solution of the equation:

λh =
µ

(
eµ−∑h−2

j=0
µj

j!
)

eµ−∑h−1
j=0

µj
j!

, and λh equals

λh = 3c3+2c2−∑h−1
j=0 jxj

�−∑h−1
j=0 xj

, i.e., it is the average load of a heavy bin.

2. Pr[∃τ : deg(τ) > ln n | τ ∈ Xh] ≤ e−(1−o(1)) ln n ln ln n.
3. Pr[τ ∈ Xi] = xi

�
, i ≤ h.

4.

Pr[Literal occurrence b ∈ Xi] = ζh
i xi
p , i ≤ h,

we define: ζ h
i =

{
i, i < h,

λh, i = h.

5. m = E[deg(b) | b is a literal occurrence] = 3
2ρ3 + ρ2.

6.

ε1 = E[deg(b) in 2, 3-clauses| b appears in a 1-clause]
=

∑h−1
s=0 s2xs

p +
xh

(
µ2eµ+µeµ−∑h−1

s=0
s2µs

s!
)

p

(
eµ−∑h−1

j=0
µj
j!

) − 1

Proof. 1. The proof is generalization from h = 1 to an arbitrary integer h of the one given
in Theorem 4.7. Now we have phn = (3c3 + 2c2 − ∑h−1

j=0 jxj)n distinct balls that are thrown
uniformly at random into xhn = (� − ∑h−1

j=0 xj)n distinct bins, in a way that all bins receive
at least h balls. Then the probability mass of the number of literals of degree k, for any fixed
integer k ≥ h, follows a truncated at (h − 1) Poisson distribution. This means that for any
k ≥ h, the probability that a heavy literal has degree k is

µk(
eµ − ∑h−1

j=0
µj

j!
)

k!
,

where µ is the solution the equation

λh =
µ

(
eµ − ∑h−2

j=0
µj

j!
)

eµ − ∑h−1
j=0

µj

j!
,

and λh = ph/xh is the expected load of a heavy bin.

456 KAPORIS, KIROUSIS, AND LALAS

2. Inequality (4.2) of Theorem 4.2 in [14] applies verbatim for each heavy literal in Xh;
therefore,

Pr[∃ Literal with degree > ln n] ≤ e−(1−o(1)) ln n ln ln n,

i.e., we have sharp concentration to the expected load.
3. According to the model in Lemma (4.5), there are xin literal-registers with underlying

literal into the set Xi, i = 0, . . . , h. The desired probability follows by selecting uniformly
at random one literal-register among the �n possible literal-registers.

4. Also, there are pn = (3c3 +2c2)n possible clause-registers, i.e., literal occurrences. In
case i < h, among these clause-registers there are ixin ones pointing to literal-registers with
underlying literals in Xi. Selecting uniformly at random a clause-register (literal occurrence)
b we obtain

Pr[b ∈ Xi] = ixi

p
.

In case i = h, consider a heavy literal τ ∈ Xh. From part 1 above, we have that deg(τ) = k ≥
h with probability Ph(µ; k). Therefore, there are xhPh(µ; k)n literals in Xh each of degree
k ≥ h. Since each such literal is pointed by k clause-registers (literal occurrences), there
are

(∑∞
k=h kPh(µ; k)

)
xhn = λhxhn clause-registers, among pn possible, that point literal-

registers with underlying literals in Xh. Notice here that by the definition of the expectation
it holds that

∑∞
k=h kPh(µ; k) = λh. Selecting uniformly at random a clause-register (literal

occurrence) b we obtain

Pr[b ∈ Xh] = λxh

p
.

5. Selecting at random a literal occurrence b amounts to selecting at random a clause-
register. In turn, this points to the corresponding literal-register. This literal-register is
adjacent to an unexposed literal-register with underlying literal b̄. Since the register is
unexposed, this means that b̄ is selected uniformly at random among all literals. Then it has
degree j with probability

xj
�

, according to part 3 above, j ≤ h. As in [59], we obtain

E[deg(b)|b is literal occurrence] = m =
h−1∑
j=0

j
xj

�
+ λh

xh

�
= 3c3 + 2c2

�
= 3

2
ρ3 + ρ2.

6. According to parts 1 and 4 above we have

Pr[deg(b) = s | b ∈ 1-clause] =
{

sxs
p , s < h,

sxhPh(µ;s)
p , s ≥ h.

Then the expectation equals

ε1 =
h−1∑
s=1

(s − 1)
sxs

p
+

∑
s≥h

(s − 1)
sxhPh(µ; s)

p

=
h−1∑
s=1

s2 xs

p
+ xh

p
(

eµ − ∑h−1
j=0

µj

j!
) ∑

s≥h

s2 µs

s! − 1

=
h−1∑
s=1

s2 xs

p
+

xh

(
µ2eµ + µeµ − ∑h−1

s=0
s2µs

s!
)

p
(

eµ − ∑h−1
j=0

µj

j!
) − 1.

PROBABILISTIC ANALYSIS OF A SATISFIABILITY ALGORITHM 457

F. Inside a Round

F.1. A Galton–Watson process. Assume, for the moment, that the density ρ2 of 2-
clauses remains constant during a round (we will elaborate on this point below). Then the
generation of the 1-clauses during the forced steps of the round follows the pattern of a
Galton–Watson branching process (see [23]). Such a process starts with a pater familias
or root (or alma mater) and then at every step all individuals born at the previous step
generate a number of offspring. The number of offspring in a Galton–Watson tree may
follow an arbitrary fixed distribution whose mean is known as the Malthus parameter µ. If
the Malthus parameter is <1, then, irrespective of other characteristics of the distribution of
the offspring, the population certainly becomes extinct, eventually. Formally this means that
with probability 1, the size of the Galton–Watson tree, i.e., the total number of individuals
of all generations, is finite. Such processes are called subcritical. For a subcritical process,
the expected size of the tree is equal to 1 + µ + µ2 + · · · = 1/(1 − µ).

In our case, each atomic step amounts to selecting a literal-register (or clause-register)
containing literal τ . According to Lemma 4.5, each such literal or clause-register is adjacent
to an unexposed literal-register, which points to τ̄ . Since this literal-register is unexposed, τ̄
corresponds to a random literal. This means that at each of these steps we choose a random
literal. Therefore, the expected number of new 1-clauses during the jth atomic step may
fluctuate since it equals the current density ρ2(j) of 2-clauses. That is, if the total number
|T | of 1-clauses generated in this round is large, this may affect the expected number of
new 1-clauses, mainly due to repetitions of some already selected literals into the same
clause.

Consider the G–W tree with starting node a random literal τ (bin). Its number of off-
springs is Poisson-like distributed with mean ρ2. Each child node corresponds to a random
literal τ ′ whose number of offsprings has the same distribution. For each node-literal of
the tree of the above G–W process, mark with symbol ×(→) its neighboring occurrences
among 2-clauses (3-clauses). Perform no deletion or shrinking of clauses of the current
formula. That is, symbol ×(→) denotes that the marked clause position corresponds to
1-clauses (2-clauses). If the literal of a new node has occurrence on a previously marked
as → position then mark its neighboring position with ×. It is possible to mark multiply
some clause positions or for some clauses to receive more than one mark. However, if
we condition on |T |, such bad events occur with probability O(|T |2/n), where |T | is the
total number of nodes of the G–W tree. Taking the expectation (removing the condition on
|T |), the expected length of the round is 1

1−ρ2
+ E[|T |2]/n = 1

1−ρ2
+ o(1), as follows by

Proposition 4.9.

Proposition 4.9. Consider the G–W precess that corresponds to the generation of
1-clauses. If the first moment E[ξ] of the number of 1-clauses offsprings equals ρ2 < 1
and the second moment E[ξ 2] is O(1) then the first and second moment E[|T |], E[|T |2],
respectively, of the size |T | of the 1-clauses G–W tree, are both O(1).

Proof. Let f (s) be the generating function of the number of offspring ξ of the above ficti-
tious G–W process representing the evolution of 1-clauses. Also let y(s) be the generating
function of the size (total number of offspring) |T | of the 1-clauses of this process. In Theo-
rem 5.8 in [23] it is proved that y(s) = sf (y(s)). From this, by differentiation we can easily
show that the second moment E[|T |2] = O(1) in terms of the first E[ξ] = ρ2 < 1 and the
second moment E[ξ 2] of the number of offspring.

458 KAPORIS, KIROUSIS, AND LALAS

Having in mind the above fictitious process, observe that on each forced step during t +1
round the conditional on S(t) and |T | expected change of each parameter Yj, j = 1, . . . , h
in vector (4.1) is given by

E[Yj(per forced step) | S(t), |T |] = fj(t/n, Y1(t)/n, . . . , Yh(t)/n) + |T |
n

,

where each fj is a Lipschitz continuous functions. Then during all |T | forced steps during
t + 1 round we get

E[Yj(t + 1) − Yj(t) | S(t), |T |] = fj(t/n, Y1(t)/n, . . . , Yh(t)/n)|T | + |T |2
n

,

and averaging over |T | we get

E[Yj(t + 1) − Yj(t) | S(t)] = fj(t/n, Y1(t)/n, . . . , Yh(t)/n)
ρ2

1 − ρ2
+ o(1),

since E[|T |2]/n = o(1), by Proposition 4.9.

F.2. Positive probability of success. At a fixed round again, conditional on the size
|T | of the Galton–Watson tree, it is easy to see that the probability that both a lit-
eral and its negation appear in the unit clauses is O(|T |2/n) (the decoupling of a literal
from its negation is needed here). Therefore, we immediately conclude that the uncon-
ditional probability of contradiction during the round is O(E[|T |2]/n) (when the tree is
subcritical). Therefore, for all rounds, the probability that no contradiction occurs is
(1 − O(E[|T |2]/n))n = e−O(E[|T |2]) = �(1) > 0, according to Proposition 4.9. There-
fore, the probability of success of the algorithm, as long as the generation of unit clauses is
subcritical, is bounded below by a positive constant.

Improper events are for example, multiple occurrences of a literal in the same clause or the
simultaneous occurrence of pairs of literals l, l in the same clause. Given |T | the probability
for an improper event to occur is O(|T |2/n); see sub-Section 4F.1. Then averaging over
all possible |T |’s during a round, we get that the probability of at least one improper event
is O(E[|T |2]/n) = o(1). Therefore, improper events introduce vanishing terms in each
differential equation described in sub-Section 4I. In this way, we can safely discard such
events, as n → ∞.

G. Expected Changes per Round

Let t ∈ [0, 1) denote the scaled number of rounds performed by the algorithm. We partition
“time” interval [0, 1) into subintervals [0, Th] ∪ (Th, Th−1] ∪ (Th−1, Th−2] ∪ . . . ∪ (T2, T1],
each sub-interval corresponding to a j-phase of the algorithm, j = h, . . . , 1. Initially the
algorithm is in the h-phase while the current scaled number of rounds t ∈ [0, Th]. During
this phase the algorithm Selects&Sets to True literals from the set Xh. Let Th ∈ [0, 1) be
the scaled number of rounds such that xh(Th) = 0.000005. Here Th is the time instance that
the scale number xh of literals with degree ≥ h has become insignificant. In the sequel, the
algorithm enters (h − 1)-phase and the current scaled number of rounds is t ∈ (Th, Th−1]. In
this phase, it Selects&Sets to True literals from the set Xh−1 until it reaches a round Th−1

such that xh−1(Th−1) = 0.000005. Similarly, it enters (h − 2)-phase and so on.

PROBABILISTIC ANALYSIS OF A SATISFIABILITY ALGORITHM 459

Lemma 4.10. Suppose that during round t ∈ [0, 1) the algorithm Greedy has entered
the jth phase, j = h, . . . , 1. Then the expected change of each parameter conditional on the
current vector,

S = 〈�, c3, c2, x0, . . . , xh−1〉,
of the (h + 3) scaled parameters such that ρ2 < 1, are within o(1) equal to

(a) E[�[|L|]| S] = −2 − 2
ρ2

1 − ρ2
,

(b) E[�[|C3|]| S] = −3

(
εjc3

p
+ ρ3

2

)
− 3

(
ε1c3

p
+ ρ3

2

)
ρ2

1 − ρ2
,

(c) E[�[|C2|]| S] = 3ρ3

2
− 2εjc2

p
− ρ2 +

(
3ρ3

2
− 2ε1c2

p
− ρ2

)
ρ2

1 − ρ2
,

(d) E[�[|Xs|]| S] = (6c3 + 2c2)
(s+1)xs+1−sxs

p2 ε j − xs
�

− δs, j

+
(
(6c3 + 2c2)

(s+1)xs+1−sxs

p2 ε1 − xs
�

− sxs
p

)
ρ2

1−ρ2
,

for s = 0, . . . , h − 2,

(e) E[�[|Xh−1|]| S] = (6c3 + 2c2)
hyh−(h−1)xh−1

p2 ε j − xh−1
�

− δh−1, j

+
(
(6c3 + 2c2)

hyh−(h−1)xh−1
p2 ε1 − p+�(h−1)

�p xh−1

)
ρ2

1−ρ2
,

where

δs, j =
{

1 if j = s,

0 otherwise,
s = 0, . . . , h − 1,

ε j =
{

λh if j = h,

j if j < h,

yh = xhµ
h(

eµ − ∑h−1
s=0

µs

s!
)

h!
.

(a) In paragraph 4F.1 we prove that the expected number of forced steps per round is
ρ2

1−ρ2
. Therefore, (1 + ρ2

1−ρ2
) steps are expected per round, where in each 2 literals are set.

(b) and (c) During each free (forced) step, a literal(clause)-register is selected that is
adjacent to an unexposed literal-register that contains the negation of this selected literal.
Since this literal-register is unexposed, its negation is a random literal. Therefore, it is
expected in k

�
ck = k

2ρk k-clauses, k = 3, 2; see also Lemma 4.8, part 4. In a free (forced)
step of the round, the evaluated to True literal τ has expected degree εj(ε1); see Lemma 4.8,
part 6. Then, in the free step, each occurrence of τ (a ball) is expected in εj kck

p k-clauses,
while in each forced step it is expected in ε1

kck
p k-clauses, k = 3, 2, since the total of balls is

pn and kckn of them belong in k-clauses. Expected changes (b) and (c) are obtained by the
expected change of the free step plus the expected change of a single forced step multiplied
by the expected number of forced steps ρ2

1−ρ2
.

(d) As above, in the free step, the evaluated to True literal is expected to occur in
εj kck

p k-clauses deleting εj kck
p (k − 1) neighboring literal occurrences. In each forced step,

460 KAPORIS, KIROUSIS, AND LALAS

the evaluated to True literal is expected in ε1
kck
p k-clauses deleting ε1

kck
p (k − 1) neighbor-

ing occurrences, k = 3, 2. Now, each of these occurrences has degree s with probability
sxs
p introducing a flow-out from the set Xs and has degree s + 1 with probability (s+1)xs+1

p
introducing a flow-in to Xs, s = 0, . . . , h−2. This gives the expected change due to the dele-
tion of the neighboring occurrences in the satisfied and deleted clauses that the evaluated
to True literal appears per step. It remains to compute the expected change in Xs due to the
deletion of the evaluated to True literal and its negation per step. In each free/forced step the
negation of the selected literal is a random literal and is removed from Xs with probability
xs
�

. In each forced step the 1-clause literal is a literal occurrence and is removed from Xs

with probability sxs
p . Finally, in the free step we deterministically remove the selected literal

from Xs iff s = j. This is why we introduce the indicator variable δs,j.
(e) Here the expected changes per step go verbatim as in (d). A subtle difference is that

xh denotes the scaled number of literals of degree ≥ h. However, to compute the expected
flow of literals into set Xh−1 we need the scaled expected number of literals of degree exactly
h. This number equals yh = xh Prh(µ; h); see Theorem 4.8, part 1.

H. Wormald’s Theorem

As we already pointed out, our analysis is based on the method of differential equations.
For an exposition of how the relevant Wormald’s theorem is applied to the satisfiability
problem, see [2]. Roughly, the situation is as follows: suppose that Yj, j = 1, . . . , a are
stochastic parameters related to a formula, e.g., the number of clauses with a specified
size or the number of literals with a specified degree. In our case, the Yj’s are the h + 3
parameters in S. We want to estimate the evolution of the parameters Yj during the course of
a Davis–Putnam algorithm. The formula initially is a 3-CNF formula with n variables and
is uniformly random conditional on given initial values Yj(0), j = 1, . . . , a. These initial
values in our case are constant multiples of n (in general, they may be random numbers).
As the formula is random with respect to the names (labels) of the literals, we assume that
the Davis–Putnam algorithm selects at any atomic step the first literal (in some arbitrary
ordering of the labels) that is subject to the restrictions of the algorithm. In other words, the
algorithm is assumed to be deterministic and the sample space is determined by the initial
formula only.

Suppose that the expected change of each Yj, j = 1, . . . , a, from time step t to t + 1,
conditional on the values Yj(t), j = 1, . . . , a of the parameters at t, for all possible values of
the random parameters Yj(t), is given by

E[Yj(t + 1) − Yj(t) | Y1(t), . . . , Ya(t)] = fj(t/n, Y1(t)/n, . . . , Ya(t)/n) + o(1),

and each fj : �a+1 → � is a Lipschitz continuous function, according to conditions (ii) and
(iii) of Theorem 2 in [72]. Suppose also that the probability that |Yj(t + 1) − Yj(t)| > n1/5

is at most o(n−3), i.e., the change of each parameter is concentrated to its expected change
per step. Then the solution of the system of differential equations,

dyj(x)/dx = fj(x, y1(x), . . . , ya(x)), j = 1, . . . , a,

with the initial point yj(0) = Yj(0)/n, satisfies for all t with probability 1 − o(1) as n tends
to infinity:

yj(t/n) = (1/n)Yj(t) + o(1), j = 1, . . . , a.

PROBABILISTIC ANALYSIS OF A SATISFIABILITY ALGORITHM 461

In applications, an open, connected, and bounded domain D that contains the initial point
(Y1(0)/n, . . . , Ya(0)/n) and a time interval [0, tf) is considered, and it is assumed that
the hypotheses of the theorem hold up to the last time instant T < tf such that for all
t ∈ [0, T], (Y1(t)/n, . . . , Ya(t)/n) ∈ D (T is a random variable). Then the conclusion of
the theorem holds, for large enough n, up to any t < tf such that for all x ∈ [0, t/n],
(y1(x), . . . , ya(x)) ∈ D. In this context, it is sufficient that the Lipschitz continuity of the
fj’s holds over [0, tf /n) × D. The above is only a rough outline of Wormald’s theorem, not
in its full generality, but restricted to the purposes of our particular problem.

In our case, we can see that Wormald’s conditions hold for each expected change (a)–(e)
described in Lemma 4.10, as we demonstrate below.

• Each atomic step in a round is equivalent to the deletion of the content of balls (literal
occurrences) of a pair of bins (literals). Part 2 of Theorem 4.8 establishes the Poisson-
like tail bounds for the probability of the load of any bin exceeding ln n. Then during
the fictitious G–W process, each unscaled parameter in vector (4.1) is concentrated to
its conditional expected change described in Eqs. (a)–(e) of Lemma 4.10, as required
from condition (i′) of Theorem 2 in [72].

• Observe that Eqs. (a)–(e) of Lemma 4.10 give the expected change of the corre-
sponding h + 3 unscaled parameters in vector (4.1) within an o(1) error, as required
from condition (ii) of Theorem 2 in [72]. This is due to the fact that any unscaled
parameter in vector (4.1) may change by at most O(ln2 n) during an arbitrary round,
with high probability. This may introduce at most o(1) fluctuation per round from the
corresponding expected change described in Eqs. (a)–(e) of Lemma 4.10.

• Finally, according to condition (iii) of Theorem 2 in [72] the right-hand side of each
differential equation (a)–(e) in Lemma 4.10 is Lipschitz continuous. Recall that
each parameter in vector (4.1) is strictly positive. Therefore, each fractional term
appearing in the free and forced part of each equation (a)–(e) is bounded since it has
denominator > 0; see Remark 4.11. Furthermore, during round t we condition upon
a subcritical degree sequence S such that ρ2 < 1 and the term ρ2

1−ρ2
is bounded too.

We conclude that for each equation (a)–(e) there exists an absolute Lipschitz constant
Lj(ρ2), while ρ2 remains <1.

Notice that a given subcritical degree sequence S(t) may yield a supercritical
S(t + 1) one with ρ2 ≥ 1. Clearly, we cannot apply Wormald’s theorem on S(t + 1)

to compute S(t + 2). However, the theorem remains true if we restrict its application
to a domain D = {〈S(t), t〉| such that ρ2(t) < 1} ⊆ �(h+3)+1 consisting only of these
[(h + 3) + 1]-dimensional vectors that have the property ρ2 < 1.

I. Differential Equations

Wormald’s Theorem is described in sub-Section 4H. Here we apply this theorem to map the
expected changes of Lemma 4.10 into a system of differential equations. As a consequence,
we obtain Lemma 4.12, which approximates within o(1) and with probability 1 − o(1) the
values of each scaled parameter of vector S.

Remark 4.11. Each differential equation (a)–(e) consists of two parts. The first part
is the expected change of the parameter under consideration of the single free step. The
second part is the expected change in a single forced step multiplied by the factor ρ2

1−ρ2
,

which is the expected number of forced steps.

462 KAPORIS, KIROUSIS, AND LALAS

Lemma 4.12. Suppose that the algorithmGreedyhas entered the jth phase, j = h, . . . , 1.
Then, in each round the h + 3 parameters in the vector

S = 〈�, c3, c2, x0, . . . , xh−1〉,
such that ρ2 < 1, are approximated within o(1) and with probability 1−o(1) by the solution
of the following system of differential equations:

(a)
d�

dt
= −2 − 2

ρ2

1 − ρ2
,

(b)
dc3

dt
= −3

(
εjc3

p
+ ρ3

2

)
− 3

(
ε1c3

p
+ ρ3

2

)
ρ2

1 − ρ2
,

(c)
dc2

dt
= 3ρ3

2
− 2εjc2

p
− ρ2 +

(
3ρ3

2
− 2ε1c2

p
− ρ2

)
ρ2

1 − ρ2
,

(d)
dxs

dt
= (6c3 + 2c2)

(s+1)xs+1−sxs

p2 εj − xs
�

− δs, j

+
(
(6c3 + 2c2)

(s+1)xs+1−sxs

p2 ε1 − xs
�

− sxs
p

)
ρ2

1−ρ2
,

for s = 0, . . . , h − 2,

(e)
dxh−1

dt
= (6c3 + 2c2)

hyh−(h−1)xh−1
p2 εj − xh−1

�
− δh−1, j

+
(
(6c3 + 2c2)

(hyh−(h−1)xh−1
p2 ε1 − xh−1

�
− (h−1)xh−1

p

)
ρ2

1−ρ2
,

where

δs, j =
{

1 if j = s,

0 otherwise,
s = 0, . . . , h − 1,

εj =
{

λh if j = h,

j if j < h,

yh = xhµ
h(

eµ − ∑h−1
s=0

µs

s!
)

h!
.

Initial conditions:

� = 2, c3 = c, c2 = 0, xs = 2e−3c/2(3c/2)s

s! , for s = 0, . . . , h − 1.

Proof. The fact that conditions (i′)–(iii) of Theorem 2 in [72] hold for the expected changes
described in Lemma 4.10 is proved in sub-Section 4H.

J. Implementation and Termination of the Algorithm

Recall the definition of the jth phase of the algorithm, j = h, . . . , 0 that is given in the
beginning of sub-Section 4I. A j-phase corresponds to the middle loop with the constraint
|Xj| > 0.00005n of the pseudo-code of the algorithm. Each j-phase has length of �(n)

rounds and in each round exactly one literal is selected from Xj. The j-phase ends as soon

PROBABILISTIC ANALYSIS OF A SATISFIABILITY ALGORITHM 463

as |Xj| = xjn = 0.00005n = �(n), i.e., when the scaled number of literals with degree
j becomes insignificant. In this way, each transition from a j-phase to a (j − 1)-phase,
j = h, . . . , 1, satisfies condition (iii) of Theorem 1 in [72]. As soon as the j-phase ends, the
leftover quantity of j-degree literals is insignificant. Furthermore, it introduces an expected
change to the system of d.e. that always diminishes as the process evolutes.

Observe that the system of d.e.’s is a non-stiff one. Each parameter in vector (4.1) is a
smooth function of time t. Matlab [57] employing a second-order Runge–Kutta method can
solve this system with arbitrary precision.

On input a random 3-CNF formula of initial density c = 3.42, the Malthus parameter
ρ2 remained <1 during all rounds of Greedy. We simulated the system of d.e.’s until we
reached a round t∗ such that we could apply Lemma 4.14 and safely terminate the algorithm.
That is, the reduced random formula at the end of round t is almost surely satisfiable and it is
easy to compute a satisfying truth assignment. This lemma is a consequence of Theorem 1
in [19], which we describe in detail below (Theorem 4.13).

Consider the set of 2-CNF formulas,

�d = {φ : degree(xi) = di ∧ degree(x̄i) = d̄i, i = 1, . . . , n},
such that the degree of each literal xi, x̄i corresponds to a fixed degree sequence d =
d1, d̄1, . . . , dn, d̄n with di + d̄i ≥ 1 for each i. Let �d the maximum degree with respect
to d and

D1 =
n∑

i=1

(di + d̄i) = 2M ≥ n, D2 =
n∑

i=1

did̄i,

where M is the number of the 2-clauses in φ. A degree sequence d is �-proper if (i) �d ≤ �

and (ii) �1 = 2M.

Theorem 4.13. [Cooper, Frieze, and Sorkin [17]] Let 0 < ε < 1 be constant and
n → ∞. Let d be any �-proper literal-degree sequence over n variables, with � = n1/11,
and let φ be a uniform random simple formula with degree sequence d.

• If 2D2 < (1 − ε)D1 then P[φ is satisfiable] → 1.
• If 2D2 > (1 + ε)D1 then P[φ is satisfiable] → 0.

Both limits are uniform in n (independent of d).

As a consequence we get the following lemma.

Lemma 4.14. A random formula given the degree sequence S in (4.1) is almost surely
satisfiable if there exists ε > 0 such that ρ2 + ρ3 < 1 − ε.

Proof. Consider a random formula φ given the current degree sequence S. From part 2 of
Theorem 4.8 it holds w.h.p. that the maximum degree �d of any literal in S is at most ln n <

nα , α < 1/11. Since the current formula φ consists of 3;2-clause-registers, delete exactly
one random clause-register (literal occurrence) from each 3-tuple of clause-registers. Such
deletions are feasible, since the 3-tuples of clause-registers are exposed; see Lemma 4.5.
This results in a formula φ′ consisting of (c3 + c2)n 2-tuples of clause-registers (2-clauses)

464 KAPORIS, KIROUSIS, AND LALAS

and, therefore, D1 = 2(c3 +c2)n. Clearly, almost sure satisfiability of φ′ implies almost sure
satisfiability of φ. However, φ′ is random given a new degree sequence S ′. Furthermore, to
compute D2 we denote as nκλ(t∗) the number of unset variables with κ positive occurrences
and λ negative occurrences, while n(t∗) = �(t∗)/2 is the total number of currently unset
variables. In this way,

D2 =
n∑

i=1

d ′
id

′
i =

∑
κ ,λ

κλ nκλ(t
∗). (4.2)

Also, an arbitrary variable x has κ positive occurrences and λ negative occurrences with
probability

pκλ(t
∗) = Pr[x ∈ Xκ(t

∗) ∧ x ∈ Xλ(t
∗)] = xκ(t∗)xλ(t∗)

�2(t∗)
= nκλ(t∗)

n(t∗)

⇔ nκλ(t
∗) = xκ(t∗)xλ(t∗)

�2(t∗)
�(t∗)

2
. (4.3)

Here, by abuse of the truncated on h notation, Xκ(t∗) and xκ(t∗) denote the set and the
number of literals with arbitrary degree κ at round t∗, respectively. The independence among
complementary literals is crucial in establishing Eq. (4.3) above. From (4.3), Eq. (4.2)
becomes

D2 =
∑
κ ,λ

κλ
xκ(t∗)xλ(t∗)

�2(t∗)
�(t∗)

2
=

(
0x0(t∗)
�(t∗)

+ · · · + κxκ(t∗)
�(t∗)

+ · · ·
)2

�(t∗)
2

=
(

2c2(t∗) + 2c3(t∗)
�(t∗)

)2
�(t∗)

2
.

That is, according to Theorem 1 in [19], the resulting formula at the end of round t∗ is
satisfiable with high probability if it holds

2D2 ≤ (1 − ε)D1 ⇔ 2

(
2c2(t∗) + 2c3(t∗)

�(t∗)

)2
�(t∗)

2
≤ (1 − ε)(2c2(t

∗) + 2c3(t
∗))

⇔ r2(t
∗) + r3(t

∗) ≤ (1 − ε), ε > 0.

K. Numerical Results

The simulation of the algorithm was implemented on C. For the generation of random 3-
CNF formulas, we made use of the code freely distributed at SAT–The Satisfiability Library
[65]. Our implementation was influenced and makes use of the code for the implementation
of GSAT, also available at the above site. The simulation was implemented for 5 × 105

variables.
The simulation results for the parameters in S are very close to the corresponding values

obtained from the numerical solution of the differential equations as can be seen from
Table 1 in the Appendix. In this table, each line initiated with “d.e.” contains the vector
solution of the system of differential equations while each following “sim.” line contains
the corresponding experimental values.

PROBABILISTIC ANALYSIS OF A SATISFIABILITY ALGORITHM 465

5. NEGATION DEPENDENT DEGREE SEQUENCE

The remainder of the paper is devoted to the analysis of the algorithm CL. Algorithm CL is
a modification of the algorithm Greedy presented in sub-Section 4A. Recall that Greedy
sets to True a literal of maximum degree per free step, irrespective of its negation. Therefore,
it obtains no control on the number of new 2;1-clauses generated per free step. This is a
serious limitation since the probability of an 0-clause generation (contradiction) increases
significantly as 2;1-clauses accumulate.

The main contribution of CL is that it sets to True a literal on the basis of its degree and
the degree of its negation per free step. Therefore, CL improves significantly over algorithm
Greedy on handling both deleted and shrunk clauses per free step by setting True a literal
τ of high degree while τ̄ has low degree.

Notice that at the end of each round performed by Greedy, the simplified formula
remained random given the current number |Xj| of literals with degree j = 0, . . . , h (see
Lemma 4.5) and the number |Ci| of i-clauses, i = 2, 3. Now, for the probabilistic analysis
of CL, we additionally have to keep track of the current number |Xi,j| of literals with degree
i = 0, . . . , h whose negation has degree j = 0, . . . , h. More formally, we introduce the
following negation-dependent degree sequence; see also the corresponding definition of
the negation-blind degree sequence for Greedy in Definition 4.1 in sub-Section 4A.

Definition 5.1.

Xi,j = {τ ∈ L | deg(τ) �h i and deg(τ) �h j}, (i, j) ∈ A = {0, . . . , h}2,

where we define the relation �h as

deg(τ) �h i ⇔
{

deg(τ) = i, i < h,

deg(τ) ≥ h, i = h.

If a literal τ ∈ L belongs in Xh,i, i = 0, . . . , h is called heavy; otherwise it is called light.

Remark 5.2. If τ ∈ Xi,j then τ ∈ Xj,i and |Xi,j| = |Xj,i|, ∀(i, j) ∈ A. Also, if τ ∈ Xi,i then
τ ∈ Xi,i, 0 ≤ i ≤ h.

A. Algorithm

In this section we describe algorithm CL:

Algorithm: CL
begin:

while unset literals exist do:
(s, t)← Choose-Bucket;

Select τ ∈ Xs,t & Set τ = 1;
Del&Shrink(τ);
while 1-clauses exist do:

Select τ in a 1-clause & Set τ = 1;
Del&Shrink(τ);

end do;
end do;

end;

466 KAPORIS, KIROUSIS, AND LALAS

In all Select commands above, the selection can be based on a deterministic but
otherwise arbitrary rule, e.g., always select the object with the least index that satisfies the
corresponding requirements.

Let m2(t) be the rate of generation of new 1-clauses during the round of forced steps that
follow a free step t (t will denote both a step and the content of the step counter before this
step is taken) performed by algorithm CL. This rate remains constant—a.a.s. and within
o(1)—during the round. In other words, m2(t) is the expected flow of shrunk 2-clauses into
1-clauses during the round of forced steps.

We will see that m2(t) is the expected number of occurrences in 2-clauses of the negation
of a random literal chosen among the literal-occurrences in 2-clauses, just before the step t
is taken. This will become clear in Theorem 5.6, part 5, in sub-Section 5C. So m2(t) does
not depend on which particular literal is chosen to be set true at free step t; it only depends
on the distribution of literals in the clauses just before step t.

It is worth reminding the reader at this point that choosing randomly a literal is a different
random process from choosing randomly a literal-occurence. If we think of the literal-
occurrences as balls thrown into bins that correspond to literals, then choosing a random
literal-occurrence corresponds to choosing a ball, while choosing a literal corresponds to
choosing a bin.

Of course, once a literal-occurrence is randomly chosen, then we can consider the cor-
responding literal. So by the preceding paragraph, to compute m2(t), we choose a random
literal-occurrence among those in 2-clauses, we then consider the corresponding literal;
then we take its negation and finally count the expected number of occurrences in 2-clauses
of the latter.

Let also m3(t) be the rate of generation of new 2-clauses during the round of forced steps
that follow t. This rate remains constant—a.a.s. and within o(1)—during the round. In other
words, m3(t) is the expected flow of shrunk 3-clauses into 2-clauses during the round of
forced steps.

Similarly, we will show that m3(t) is the expected number of occurrences in 3-clauses
of the negation of a random literal chosen among the literal-occurences in 2-clauses just
before step t is taken. This will become clear in Theorem 5.6, part 5, of sub-Section 5C.
Again, m3(t) does not depend on which particular literal is chosen to be set true at step t; it
only depends on the distribution of literals into clauses just before step t.

Also if t is a free step, let t′ be the step counter at the beginning of the next round of
forced steps, i.e., just before the next free step is taken (in other words, t′ − t is the number
of forced steps that follow t). Notice again that m2(t′) and m3(t′) do not depend on which
literal is selected to be made true at the free step t′, but certainly depend on which literal
was selected to be made true at step t.

During a free step t, suppose that we set True a literal τ ∈ Xi, j. Then we define the ratio

R(i, j) = m2(t′) − m2(t)

m3(t′) − m3(t)
.

Notice that this ratio counts the marginal increase in the flow of 2-clauses into 1-clauses
between two consecutive rounds of forced steps per unit of the marginal decrease in the
flow of 3-clauses into 2-clauses between the same two consecutive rounds.

In the description of Algorithm CL below, at every free step the procedure
Choose-Bucket selects the next literal to be set to True so that this ratio is maxi-
mized. For more details about the implementation of this procedure see sub-Section 5F.

PROBABILISTIC ANALYSIS OF A SATISFIABILITY ALGORITHM 467

Notice that the dependence of m2(t′) and m3(t′) on the literal selected at t but not on the
literal selected at t′ renders the above criterion a well-defined one.

Because m3(t′) − m3(t) is negative, this criterion minimizes the increase between two
consecutive rounds of forced steps of the flow of 2-clauses to 1-clauses per unit of decrease
of the flow of 3-clauses to 2-clauses. Intuitively, it makes good sense to increase as little
as possible the flow from 2-clauses to 1-clauses, while decreasing as much as possible the
rate of flow from 3-clauses to 2-clauses.

It is worth mentioning here that in [9] it is proved that this criterion of selecting literals at
the free steps of a DPLL heuristic is optimal among the ones that take into account only the
number of 2-clauses and 3-clauses present before a free step and not the degree distribution
of the literals (such heuristics were called “myopic” in [9]).

B. Randomness Invariance of the Formula in Each Round

Each atomic step of CL can be expressed as follows.

Procedure C.

1. Either select a literal occurrence τ in a clause of length one (forced atomic step)
2. or select a literal τ of degree i whose complement has degree j (free atomic step);
3. φ′ ← Del&Shrink(φ, τ).

Lemma 5.3. At the end of each algorithmic operation according to Model C, the reduced
formula remains random conditional on the number |Ci| of i-clauses, i = 2, 3 and the
number of literals of degree i whose negation has degree j, with i, j ∈ {0, 1, . . . , 3|C3| +
2|C2|}.
Proof. Model C is easily constructed by assuming that each literal-register described in
Model A (see Lemma 4.4) is adjacent to an exposed degree-register that contains an integer i
equal to the degree of its underlying literal and also contains an integer j equal to the degree
of the negation of it, with i, j ∈ {0, 1, . . . , 3|C3| + 2|C2|}.

In this way, an algorithm may select and set to True a random literal of specified degree
i whose negation has degree j during each free step. Once more we cannot infer information
about the content of unexposed registers as soon as we complete the update of all the registers
that remain undeleted. Therefore, the reduced formula remains random conditional on its
current number of unexposed registers.

Now, we easily truncate all the high degree literals in the above model as follows.

Lemma 5.4. At the end of each algorithmic step of CL, the reduced formula remains
random conditional on the number |Ci| of i-clauses, i = 2, 3; the number |Xi,j| of comple-
mentary literals (see Definition 5.1), where h is a sufficiently high integer, say h = 10. More
precisely, the formula is random given the vector

S = 〈�, c3, c2, x0,0, x0,1, . . . x0,h, . . . , xh,0, xh,1, . . . , xh,h〉, (5.1)

where � = |L|/n; ci = |Ci|/n; xi,j = |Xi,j|/n, i, j = 0, . . . , h − 1, and n is the number of
variables of the initial random formula.

Proof. The result follows easily by modifying slightly model C described in the proof
of Lemma 5.3. Here, each literal-register is adjacent to an exposed degree-register, which

468 KAPORIS, KIROUSIS, AND LALAS

contains a pair of integers (i, j) ∈ {0, . . . , h}2. In each such pair, integer i gives information
about the degree of the underlying literal of this literal-register, while j gives information
about the degree of the negation of it. If at least one integer of (i, j) equals h then the
corresponding literal has degree ≥ h (no information is given about its exact degree). On
the contrary, each integer <h in (i, j) denotes the exact degree of the corresponding literal.

During each algorithmic step, the deletion of some clauses may cause some literals of
initial degree ≥ h to finally get degree j < h. Although the degree content of such high
degree-registers is secret, to perform the corresponding updates we need to know their exact
degree during the simplification step. However, as soon as all updates are completed, it is
not possible to infer the content of any unexposed register from the combined knowledge
of current and previous information about the registers.

C. Statistics of the Literals

Algorithm CL is initialized with a formula having the degree-sequence defined below.

Proposition 5.5. A random 3-SAT formula of density c has w.h.p. the typical double
degree sequence:

xi,j = �e−2(3c/�) (3c/�)i+j

i!j! + o(1), (i, j) ∈ {0, . . . , h − 1}2, i, j < h,

xi,h = xh,i = �e−(3c/�) (3c/�)i

i!

(
1 −

h−1∑
s=0

e−(3c/�) (3c/�)s

s!

)
+ o(1), i < h,

xh,h = � −
h−1∑
s,t≥0

xs,t − 2
h−1∑
s=0

xs,h + o(1).

Proof. The proof is analogous to the one given in Proposition 4.6.

Theorem 5.6. Any literal τ ∈ L and any literal occurrence b in a formula that is random
given vector S in Definition 5.1 has the following properties:

1.

Ph(µ; k) = Pr[deg(τ) = k| τ ∈ Xh,j] = µk(
eµ−∑h−1

s=0
µs
s!

)
k! , k ≥ h, j ≤ h,

λh =
µ

(
eµ−∑h−2

j=0
µj

j!
)

eµ−∑h−1
j=0

µj
j!

,

where µ is the solution of the equation,

λh = p−
(∑h−1

s=0,t>s(s+t)xs,t+∑h−1
s=0 (sxs,h+sxs,s)

)
∑h

s=0 xs,h
and

λh is the average load of a heavy bin.

2. Pr[∃τ : deg(τ) > ln n| τ ∈ Xh,j] ≤ e−(1−o(1)) ln n ln ln n, j ≤ h.
3. Pr[τ ∈ Xi,j] = xi,j

�
, (i, j) ∈ A2.

4.

Pr[Literal occurrence b ∈ Xi,j] = ζh
i xi,j

p , (i, j) ∈ A2,

we define: ζ h
i =

{
i, i < h,

λh, i = h.

PROBABILISTIC ANALYSIS OF A SATISFIABILITY ALGORITHM 469

5.
m = E[deg(b)| b is a literal occurrence] = 1

p

∑h
s,t=0 ζ h

s ζ h
t xs,t , and,

mi = m ici
p , i = 2, 3.

6.
ε1 = E[deg(b) in 2, 3-clauses| b is a literal occurrence in a 1-clause]

= 1
p

(∑h−1
s=2

∑h
t=0(s − 1)txs,t + ∑h

s=0 xh,s
µ2eµ−∑h−1

s=2
s(s−1)µs

s!
eµ−∑h−1

s=0
µs
s!

)
.

Proof. 1. The proof is generalization to an arbitrary integer h of the analogous ones given
in Theorems 4.7 and 4.8. We have

phn =
(

p −
(

h−1∑
s=0,t>s

(s + t)xs,t +
h−1∑
s=0

(sxs,h + sxs,s)

))
n

distinct balls (representing clause-registers with the degree-register of their underlying lit-
eral in the form (h, j), j = 0, . . . , h) thrown uniformly at random into xhn = ∑h

s=0 xh,sn
distinct bins (representing literal-registers with their degree-register in the form (h, j), j =
0, . . . , h) such that each bin gets load at least h. Then the probability mass of the number of
literals of degree i, for any fixed i ≥ h, follows a truncated at h − 1 Poisson distribution:

Ph(µ; k) = µk(
eµ − ∑h−1

s=0
µs

s!
)

k!
, k ≥ h, where µ is the solution the equation

λh =
µ

(
eµ − ∑h−2

s=0
µs

s!
)

eµ − ∑h−1
s=0

µs

s!
, and λh = ph/xh is the expected load of a heavy bin.

2. Inequality (4.2) of Theorem 4.2 in [14] applies verbatim in the balls into bins game;
therefore,

Pr[∃ Heavy bin with load > ln n] ≤ e−(1−o(1)) ln n ln ln n,

i.e., we have sharp concentration to the expected load.

3. Literal τ ∈ L corresponds to a random bin of �n possible and there are exactly xi,jn bins
with underlying literals in the set Xi,j, (i, j) ∈ A2.

4. Each literal occurrence b corresponds to a ball, from pn = (3c3 + 2c2)n possible, that
u.a.r. lands to a bin. If i < h, the bins with underlying literals in Xi,j receive randomly ixi,jn
balls, among pn possible, j ∈ {0, . . . , h}. Therefore, the probability that a random literal
occurrence b belongs into Xi,j is

iXi,j

p
.

If i = h, consider a heavy literal τ ∈ Xh,j. From part 1 above, deg(τ) = k ≥ h with
probability Ph(µ; k). Therefore, there are Ph(µ; k)xh,jn literals (bins) in Xh,j each having
exact degree k ≥ h. Their corresponding bins contain exactly kPh(µ; k)xh,jn balls. Then
in the bins of Xh,j, j ∈ {0, . . . , h}, there are exactly

(∑∞
k=h kPh(µ; k)

)
xh,jn = λhxi,jn balls

among pn possible balls. In this case the probability that a random literal occurrence b
belongs into Xh,j is

λhXh,j

p
.

5. Suppose that during a forced step a random literal occurrence b is selected. Observe
that the degree k of b is dictated by the corresponding set Xj,k that the random literal

470 KAPORIS, KIROUSIS, AND LALAS

occurrence b may belong, j = 1, . . . , h. In this way, if k < h then Pr[deg(b) = k] = Pr[b ∈
X1,k ∪ · · · ∪ Xh,k]. Since the sets Xj,k , j = 1, . . . , h, are disjoint, by part 4 above we get

Pr[deg(b) = k] = 1x1,k + 2x2,k + . . . + λhxh,k

p
, k < h. (5.2)

If k ≥ h, then

Pr[deg(b) = k] = Pr[deg(b) = k ∧ (b ∈ X1,h ∪ . . . ∪ Xh,h)]

=
h∑

j=1

Pr[deg(b) = k ∧ b ∈ Xj,h], (5.3)

since the sets Xj,h, j = 1, . . . , h are disjoint. From part 4 we obtain

Pr[deg(b) = k ∧ b ∈ Xj,h] = ζ h
j xj,h

p
Ph(µ; k). (5.4)

Summing (5.4) over j = 1, . . . , h and plugging in (5.2) we obtain for all k

Pr[deg(b) = k] =
{

1x1,k+2x2,k+...+λhxh,k
p , k < h,

1x1,h+2x2,h+...+λhxh,h
p Ph(µ; k), k ≥ h.

(5.5)

Using (5.5) we obtain

E[deg(b)] =
h−1∑
k=0

k Pr[deg(b) = k] +
∞∑

k=h

k Pr[deg(b) = k]

= 1

p

h−1∑
k=0

h∑
i=1

kζ h
i xi,k + 1

p

∞∑
k=h

kPh(µ; k)

h∑
i=1

ζ h
i xi,h

= 1

p

h−1∑
k=0

h∑
i=1

kζ h
i xi,k + 1

p
ζ h

h

h∑
i=1

ζ h
i xi,h = m.

6. First consider the case that the 1-clause literal occurrence b of total degree s appears
in the 3, 2-clauses exactly s − 1 times, with s < h (its occurrence in the 1-clause is
subtracted). This happens iff b ∈ Xs,1 ∪ · · · ∪ Xs,h. These events are disjoint. That means
that, if s < h then b appears in s − 1 other clauses, excluding its 1-clause, with probability
Pr[b ∈ Xs,1] + · · · + Pr[b ∈ Xs,h] = 1

p

∑h
t=0 sxs,t , since each literal in Xs,t , 0 ≤ t ≤ h,

corresponds to a bin with exactly s balls. In this case we obtain the term

1

p

h−1∑
s=2

h∑
t=0

(s − 1)txs,t . (5.6)

It remains to compute the expected occurrences of b in 3, 2-clauses excluding its 1-clause,
that is to compute the expected deg(b) − 1, when b ∈ Xh,0 ∪ · · · ∪ Xh,h. Since the above
events are disjoint, we obtain

pr(k − 1) = Pr[deg(b) = k ∧ (b ∈ Xh,0 ∪ · · · ∪ Xh,h)]
= Pr[deg(b) = k ∧ b ∈ Xh,0] + · · · + Pr[deg(b) = k ∧ b ∈ Xh,h].

PROBABILISTIC ANALYSIS OF A SATISFIABILITY ALGORITHM 471

Consider the event: {deg(b) = k ∧ b ∈ Xh,j}, 0 ≤ j ≤ h. There are xh,jPh(µ; k)n literals
(bins) in Xh,j containing k ≥ h balls each. Then b appears in these xh,jPh(µ; k)n bins
of Xh,j with probability 1

p xh,jPh(µ; k)k, which equals the probability Pr[deg(b) = k ∧ b ∈
Xh,j], 0 ≤ j ≤ h. Therefore, b appears in k−1 other 3, 2-clauses with probability pr(k−1) =
1
p Ph(µ; k)k

∑h
j=0 xh,j. Summing over k ≥ h we get

∞∑
k=h

(k − 1)pr(k − 1) = 1

p

h∑
j=0

xh,j

∞∑
k=h

(k − 1)kPh(µ; k)

= 1

p

h∑
j=0

xh,j

µ2eµ − ∑h−1
s=2

s(s−1)µs

s!
eµ − ∑h−1

s=0
µs

s!
. (5.7)

Summing (5.6) and (5.7) we get ε1.

D. Expected Changes per Round

Lemma 5.7. Suppose that during round t ∈ [0, 1) the algorithm CL selects a pair of
complementary literals (τ , τ) ∈ Xi,j and sets τ to True, with arbitrary fixed indices (i, j) ∈
A2. Then the expected change of each parameter conditional on the current vector

S = 〈�, c3, c2, x0,0, x0,1, . . . x0,h, . . . , xh,0, xh,1, . . . , xh,h〉

of the (h + 1)2 + 3 scaled parameters such that ετ < 1, are within o(1) equal to

(a) E[�[|L(t)|] | S] = −2(1 + ετ),

(b) E[�[|C3(t)|] | S] = −(deg(τ) + deg(τ))
3c3

p
− (ε1 + m)

3c3

p
ετ ,

(c) E[�[|C2(t)|] | S] = deg(τ)
3c3
p − (deg(τ) + deg(τ))

2c2
p

+
(

m3 − (ε1 + m)
2c2
p

)
ετ ,

(d) E[�[|Xi,j(t)|] | S] = deg(τ)
6c3+2c2

p2 f (i, j) − δ
τ ,τ
i,j

+
(
ε1

6c3+2c2
p2 f (i, j) − g(i, j)

xi,j
p

)
ετ ,

∀(i, j) ∈ {0, . . . , h}2 \ (h, h),

where

ετ = deg(τ)
2c2

p(1 − m2)
, and p = 3c3 + 2c2.

mk = m
kck

p
, k = 2, 3, also:

δ
τ ,τ
i,j =

1, i �= j and i = deg(τ), j = deg(τ) or i = deg(τ), j = deg(τ),

2, i = j = deg(τ) = deg(τ),

0, otherwise.

472 KAPORIS, KIROUSIS, AND LALAS

f (i, j) =

(i + 1)xi+1,jθ
h
i + (j + 1)xi,j+1θ

h
j − (i + j)xi,j, i, j < h,

(k + 1)xk+1,h − kxk,h − hxk,hθ
h
h−1, (i, j) ∈ B,

hxh,hθ
h
h−1 − (h − 1)xh−1,h − hxh−1,hθ

h
h−1, (i, j) ∈ G,

where: B = {(h, k), (k, h)}, k ≤ h − 2,

and: G = {(h − 1, h), (h, h − 1)},

also: θ h
s =

{
Ph(µ; h), s = h − 1,

1, otherwise.

g(i, j) =

i + j, 0 ≤ i, j ≤ h − 1,

k + λh, (i, j) ∈ B,

h − 1 + λh, (i, j) ∈ G.

Initial conditions:

� = 2, c3 = c, c2 = 0.00005, and each xi,j, (i, j) ∈ A2 is as in Proposition 5.5.

Proof. (a) During the free step deg(τ) clauses are shrunk. Among them, deg(τ)
2c2
p many

correspond to 2-clauses that are shrunk to 1-clauses. Then, each such 1-clause corresponds
to the root of a Galton–Watson process that gives rise to the subsequent offspring of 1-
clauses, according to sub-Section 5A. Each such process has a Malthus parameter equal to
m2, where this parameter is defined in Theorem 5.6, part 5. Therefore, (1 + ετ) steps are
expected in the round, and two literals are set and thus deleted per step.

(b) and (c) In the free step, the satisfied i-clauses are deg(τ)ici/p while the unsatisfied
are deg(τ)ici/p, in expectation, i = 2, 3. This follows from Lemma 5.4, since each literal
occurrence (ball) appears in an i-clause (deleting or shrinking it) with probability ici/p, i =
2, 3. In each of the ετ expected forced steps, we select a literal occurrence b that corresponds
to a 1-clause. According to part 6 of Theorem 5.6, ball b is expected to appear in ε1

ici
p other

balls corresponding to i-clauses. From part 5 of Theorem 5.6, its negation b is expected to
appear in m ici

p = mi other balls in i-clauses, i = 2, 3. So in the forced steps of the round we
expect to lose (ε1 + m)

3c3
p ετ 3-clauses and

(
m3 − (ε1 + m)

2c2
p

)
ετ 2-clauses.

(d) First we compute the expected change of Xi,j with indices i, j < h. Consider the deletion
of the neighboring literal occurrences (balls) to the evaluated to True literal per step. In the
free step, the evaluated to True literal (a ball) is expected in deg(τ)

kck
p k-clauses deleting

deg(τ)
kck
p (k − 1) neighboring balls, k = 3, 2. In each forced step, the selected literal is

expected in ε1
kck
p k-clauses deleting ε1

kck
p (k − 1) neighboring balls, k = 3, 2. Flow into

Xi, j is created by the deletion of balls that belong into Xi+1, j and Xi, j+1 with corresponding
probabilities (i + 1)xi+1, jθ

h
i

1
p and (j + 1)xi, j+1θ

h
j

1
p . Flow out from Xi, j is created by the

deletion of balls that belong to Xi, j and Xj, i with corresponding probabilities ixi, j
1
p and

jxi, j
1
p . Now, consider the deletion of the evaluated to True literal τ and its negation τ per

step. This creates a flow out of Xi,j with probabilities (i + j)xi, j
1
p = Pr[τ ∈ Xi, j ∪ τ ∈ Xj, i].

Next we compute the expected change of Xi,j with (i, j) ∈ B where we define B =
{(h, k), (k, h)}, k < h − 1. Consider the deletion of the neighboring literal occurrences
(balls) to the evaluated to True literal per step. For example, flow into Xk,h, k < h −
1 is created from Xk+1,h with probability (k + 1)xk+1,h

1
p . Flow out from Xk,h is created

PROBABILISTIC ANALYSIS OF A SATISFIABILITY ALGORITHM 473

with probability (kxk,h + hxk,hθ
h
h−1)

1
p . Now, consider the deletion of the evaluated to True

literal τ and its negation per step. This creates a flow out from Xk,h with probabilities
(k + λh)xk,h

1
p = Pr[τ ∈ Xk,h ∪ τ ∈ Xh,k].

Finally, we compute the expected change of Xi,j with (i, j) ∈ G where we define
G = {(h − 1, h), (h, h − 1)}. First consider the deletion of the neighboring literal occur-
rences (balls). For example, flow into Xh−1,h is created from Xh,h with probability
hxh,hθ

h
h−1

1
p . Flow out from Xh−1,h is created with probability ((h−1)xh−1,h −hxh−1,hθ

h
h−1)

1
p =

Pr[neighboring ball ∈ Xh−1,h] + Pr[neighboring ball ∈ X �

h,h−1]. Now, consider the deletion
of the evaluated to True literal τ and its negation per step. This creates a flow out from
Xh−1,h with probabilities (h − 1 + λh)xh−1,h

1
p = Pr[τ ∈ Xk,h ∪ τ ∈ Xh,k].

E. Wormald’s Theorem and Differential Equations

We can show that conditions (i′)–(iii) of Theorem 2 in [72] hold working analogously as
in sub-Section 4H. The proof is omitted. This allows us to approximate within o(1) error
and probability 1 − o(1) the trajectories of the expected changes described in Lemma 5.7
by the solution of the following system of differential equations.

Lemma 5.8. Suppose that for O(n) rounds the algorithm CL selects pairs of complemen-
tary literals (τ , τ) ∈ Xi,j and sets τ to True, with arbitrary fixed indices (i, j) ∈ A2.

Then the (h + 1)2 + 3 parameters in the vector

S = 〈�, c3, c2, x0,0, x0,1, . . . x0,h, . . . , xh,0, xh,1, . . . , xh,h〉
are approximated within o(1) and with probability 1 − o(1) by the solution of the following
system of differential equations:

(a)
d�

dt
= −2(1 + ετ),

(b)
dc3

dt
= −(deg(τ) + deg(τ))

3c3

p
− (ε1 + m)

3c3

p
ετ ,

(c)
dc2

dt
= deg(τ)

3c3

p
− (deg(τ) + deg(τ))

2c2

p
+

(
m3 − (ε1 + m)

2c2

p

)
ετ ,

(d)
dxi,j

dt
= deg(τ)

6c3+2c2
p2 f (i, j) − δ

τ ,τ
i,j +

(
ε1

6c3+2c2
p2 f (i, j) − g(i, j)

xi,j
p

)
ετ ,

∀(i, j) ∈ {0, . . . , h}2 \ (h, h),

where

ετ = deg(τ)
2c2

p(1 − m2)
, and p = 3c3 + 2c2.

mk = m
kck

p
, k = 2, 3, also:

δ
τ ,τ
i,j =

1, i �= j and i = deg(τ), j = deg(τ) or i = deg(τ), j = deg(τ),

2, i = j = deg(τ) = deg(τ),

0, otherwise.

474 KAPORIS, KIROUSIS, AND LALAS

f (i, j) =

(i + 1)xi+1, jθ
h
i + (j + 1)xi, j+1θ

h
j − (i + j)xi, j, i, j < h,

(k + 1)xk+1,h − kxk,h − hxk,hθ
h
h−1, (i, j) ∈ B,

hxh,hθ
h
h−1 − (h − 1)xh−1,h − hxh−1,hθ

h
h−1, (i, j) ∈ G,

where: B = {(h, k), (k, h)}, k ≤ h − 2,

and: G = {(h − 1, h), (h, h − 1)},

also: θ h
s =

{
Ph(µ; h), s = h − 1,

1, otherwise.

g(i, j) =

i + j, 0 ≤ i, j ≤ h − 1,

k + λh, (i, j) ∈ B,

h − 1 + λh, (i, j) ∈ G.

Initial conditions:

� = 2, c3 = c, c2 = 0.00005, and each xi,j, (i, j) ∈ A2 is as in Proposition 5.5.

Proof. We show that conditions (i′)–(iii) of Theorem 2 in [72] hold working analogously
as in sub-Section 4H.

F. Implementation and Termination of the Algorithm

We plugged into the system of d.e. of Lemma 5.8 initial conditions corresponding to
r3 = 3.52. At round 0 we computed m2(0) and m3(0). Recall from part 5 of Theorem 5.6
that mi(t) equals the expected number of unsatisfied i-clauses in each forced step during
round t, i = 2, 3. For each (i, j) ∈ A2, we performed ε = 1/100000 rounds (restarting from
round 0 each time) and we computed the corresponding R1(i, j) = m2(ε)−m2(0)

m3(ε)−m3(0)
. Let R1(i1, j1)

be the maximum value. This preprocessing step of computing R1(i1, j1) corresponds to the
procedure Choose-Bucket of algorithm CL and the pair of indices (i1, j1) is returned.
Then we restarted from round 0 and for T1 = O(n) rounds we always set literals from
Xi1,j1 . Similarly, we performed ε rounds (this time starting from round T1 each time) and we
computed the corresponding R2(i, j) = m2(T1+ε)−m2(T1)

m3(T1+ε)−m3(T1)
, ∀(i, j) ∈ A2. Let R2(i2, j2) be the new

maximum value (see procedure Choose-Bucket). Now, we restarted from round T1 and
for T2 = O(n) rounds we always set literals from Xi2,j2 , etc., taking always into account that
each scaled parameter in S remains >0. For initial density r3 = 3.52 the Malthus parameter
m2 remained always <1. We simulated the differential equations until we reached a round
t∗ such that we could apply Lemma 5.9 and safely terminate the algorithm. Applying Theo-
rem 4.13 proved by Cooper, Frieze, and Sorkin in [19] (which is included in sub-Section 4J),
we end up with a proof for Lemma 5.9. This lemma is a generalization of Lemma 4.14.

Lemma 5.9. A random formula given S in (4.1) is almost surely satisfiable if it holds:
2D2 ≤ (1 − ε)D′

1, where D′
1 = 2(c2 + c3)n and

D2 = 1

2

(
h−1∑
s,t≥0

stxs,t + 2λh

h−1∑
s=0

sxh,s + λ2
hxh,h

)
n.

Recall that λh, defined in part 2 of Theorem 4.8, is the expected load of a heavy bin.

PROBABILISTIC ANALYSIS OF A SATISFIABILITY ALGORITHM 475

Proof. Consider a random formula φ given the current degree sequence S. From part 2
of Theorem 4.8 it holds w.h.p. that the maximum degree �d of any literal in S is at most
ln n < nα , α < 1/13. Since the current formula φ consists of 3, 2-clauses, delete exactly
one random clause-register (literal occurrence) from each 3-tuple clause-register. Such
deletions are feasible since clause-registers are exposed; see Lemma 5.4. This results in a
2-SAT formula φ′ with (c3+c2)n 2-tuples of clause-registers. Almost sure satisfiability of φ′

implies almost sure satisfiability of φ. φ′ is random given a new degree sequence S ′. Since we
delete literal occurrences, then for each variable xi its new numbers of positive d ′

i and negative
d

′
i occurrences are at most equal to its old di, di. That is, D2 = ∑n

i=1 didi ≥ D′
2 = ∑n

i=1 d ′
id

′
i.

The new total number of literal occurrences is D′
1 = 2(c3 + c2)n. Since D2 ≥ D′

2 we obtain
the following useful inequality,

2
D2

D′
1

≥ 2
D′

2

D′
1

, (5.8)

which allows us to compute easily D2 instead of D′
2.

To that end, we work as follows.
For t, s ∈ N define Vart,s = |{xi ∈ V | xi ∈ X �

t,s}| where X �
t,s consists of literals with

degree exactly t while their complements have degree s.

D2 =
n∑

i=1

didi =
∑

s,t

stVars,t =
h−1∑
s=0

h−1∑
t=0

stVars,t +
∞∑

s=h

h−1∑
t=0

stVars,t

+
h−1∑
s=0

∞∑
t=h

stVars,t +
∞∑

s=h

∞∑
t=h

stVars,t . (5.9)

If s, t < h and xi ∈ V , then

Pr{xi ∈ X �
t,s} = xs,t

�
= Vars,t

(�/2)n
⇔ Vars,t = xs,t

2
n. (5.10)

If s ≥ h, t < h (by symmetry of indices the case s < h, t ≥ h is similar) then

Pr{xi ∈ X �
t,s} = xh,tPh(µ; s)

�
= Vars,t

(�/2)n
⇔ Vars,t = xh,tPh(µ; s)

2
n. (5.11)

It remains the case s ≥ h, t ≥ h:

Pr{xi ∈ X �
t,s} = xh,hPh(µ; s)Ph(µ; t)

�
= Vars,t

(�/2)n

⇔ Vars,t = xh,hPh(µ; s)Ph(µ; t)

2
n (5.12)

We plug (5.10), (5.11), and (5.12) into the corresponding sums of (5.9). Notice that the
expectation

∑∞
s=h sPh(µ; s) of the truncated Poisson distribution equals λh. Then we easily

obtain D2 that appears in Lemma 5.9.

476 KAPORIS, KIROUSIS, AND LALAS

APPENDIX

TABLE 1. Comparison of Values Obtained from the Numerical Solution of the Differential
Equations with the Values Given by the Simulation

t � ρ2 ρ3 x0 x1 x2 x8

d.e. 0.000000 2.000000 0.000000 3.420000 0.011833 0.060703 0.155705 0.140772
sim. 0.000000 2.000000 0.000000 3.420000 0.012078 0.060154 0.155992 0.141078
d.e. 0.010000 1.979478 0.051372 3.294281 0.013127 0.065913 0.165471 0.131459
sim. 0.010000 1.979436 0.051455 3.294243 0.013392 0.065444 0.165650 0.131904
d.e. 0.020000 1.957801 0.102948 3.165518 0.014615 0.071725 0.176000 0.121703
sim. 0.020000 1.957622 0.102767 3.165561 0.014962 0.071308 0.175780 0.122222
d.e. 0.030000 1.934832 0.154631 3.033612 0.016330 0.078224 0.187345 0.111393
sim. 0.030000 1.934700 0.154814 3.033580 0.016772 0.077558 0.187116 0.111658
d.e. 0.040000 1.910425 0.206383 2.898391 0.018320 0.085510 0.199558 0.100470
sim. 0.040000 1.910484 0.206123 2.898846 0.018770 0.084898 0.199070 0.100874
d.e. 0.050000 1.884366 0.258116 2.759672 0.020639 0.093699 0.212686 0.088941
sim. 0.050000 1.884208 0.258151 2.759493 0.021228 0.092942 0.212402 0.089040
d.e. 0.050510 1.882988 0.260752 2.752500 0.020767 0.094143 0.213381 0.088338
sim. 0.050510 1.882800 0.260922 2.752160 0.021382 0.093422 0.213088 0.088480
d.e. 0.060000 1.856401 0.310999 2.632164 0.022984 0.101647 0.224767 0.077376
sim. 0.060000 1.856256 0.311209 2.631981 0.023624 0.100960 0.224676 0.077812
d.e. 0.070000 1.826188 0.364454 2.500700 0.025703 0.110515 0.237584 0.064064
sim. 0.070000 1.826040 0.364570 2.500637 0.026374 0.109922 0.237944 0.064476
d.e. 0.076105 1.806463 0.397338 2.417882 0.027596 0.116482 0.245831 0.055433
sim. 0.076105 1.806744 0.396826 2.418985 0.028210 0.115870 0.246294 0.055834
d.e. 0.080000 1.793301 0.418885 2.367798 0.028785 0.120138 0.250699 0.046740
sim. 0.080000 1.793068 0.419080 2.367642 0.029412 0.119574 0.251230 0.047058
d.e. 0.090000 1.757114 0.474996 2.234567 0.032230 0.130388 0.263740 0.027271
sim. 0.090000 1.756488 0.475355 2.233755 0.032886 0.130000 0.263852 0.027436
d.e. 0.104000 1.669236 0.555691 2.034841 0.038258 0.147221 0.283259 0.006595
sim. 0.104000 1.699116 0.556006 2.035145 0.038954 0.146628 0.283420 0.006798
d.e. 0.109955 1.671313 0.590879 1.944219 0.041385 0.155450 0.291943 0.000005
sim. 0.109955 1.671960 0.590224 1.946347 0.042202 0.154384 0.292072 0.000180
d.e. 0.120000 1.617999 0.654258 1.790959 0.047159 0.169702 0.305322 0.000005
sim. 0.120000 1.617592 0.654565 1.790711 0.047866 0.169326 0.305842 0.000000
d.e. 0.130000 1.553796 0.721099 1.620394 0.054604 0.186559 0.318659 0.000004
sim. 0.130000 1.554480 0.720315 1.622145 0.055456 0.186224 0.318190 0.000000
d.e. 0.140000 1.470975 0.793518 1.421630 0.064857 0.207177 0.330796 0.000003
sim. 0.140000 1.475280 0.789439 1.430790 0.065046 0.206406 0.329776 0.000000
d.e. 0.150000 1.346948 0.880189 1.170968 0.080346 0.232620 0.336419 0.000002
sim. 0.150000 1.346224 0.880747 1.169965 0.080994 0.232604 0.335538 0.000000
d.e. 0.155000 1.235824 0.936604 0.979773 0.094423 0.249925 0.330070 0.000001
sim. 0.155000 1.234012 0.937041 0.978266 0.095532 0.249156 0.329176 0.000000
d.e. 0.170000 0.600820 0.803173 0.222643 0.179484 0.225146 0.137641 0.000000
sim. 0.170000 0.595608 0.797578 0.219674 0.179668 0.223954 0.135280 0.000000
d.e. 0.171605 0.585324 0.782149 0.207836 0.182467 0.221233 0.130492 0.000000
sim. 0.171605 0.579056 0.774584 0.203503 0.183088 0.219382 0.127930 0.000000

PROBABILISTIC ANALYSIS OF A SATISFIABILITY ALGORITHM 477

ACKNOWLEDGMENTS

Discussions of the second author with D. Achlioptas were crucial in developing the ideas
in this work. Also we thank two anonymous referees for their comments that helped us to
improve the presentation of this work.

REFERENCES

[1] D. Achlioptas, Setting two variables at a time yields a new lower bound for random 3-SAT,
Proc. 32nd Annual ACM Symposium on Theory of Computing (STOC ’00), pp. 28–37.

[2] D. Achlioptas, Lower bounds for random 3-SAT via differential equations. Theor Comput Sci
265 (2001), 159–185.

[3] D. Achlioptas, P. Beame, and M. Molloy, A sharp threshold in proof complexity. Proc. 31st
Annual ACM Symposium on Theory of Computing (STOC ’01), pp. 337–346.

[4] D. Achlioptas and M. Molloy, The analysis of a list-coloring algorithm on a random graph.
Proc. 38th Annual Symposium on Foundations of Computer Science (FOCS ’97), pp. 204–212.

[5] D. Achlioptas and C. Moore, Almost all graphs with average degree 4 are 3-colorable. Proc.
34th Annual ACM Symposium on Theory of Computing (STOC ’02), pp. 199–208.

[6] D. Achlioptas and C. Moore, The asymptotic order of the random k-SAT threshold. Proc. 43rd
Annual Symposium on Foundations of Computer Science (FOCS ’02), pp. 779–788.

[7] D. Achlioptas and C. Moore, Random k-SAT: Two moments suffice to cross a sharp threshold,
SIAM Journal of Computing, to appear.

[8] D. Achlioptas and Y. Peres, The threshold for random k-SAT is 2k(ln 2 + o(1)). Proc. 35th
Annual ACM Symposium on Theory of Computing (STOC ’03).

[9] D. Achlioptas and G. B. Sorkin, Optimal myopic algorithms for random 3-SAT. Proc. 41st
Annual Symposium on Foundations of Computer Science (FOCS ’00), pp. 590–600.

[10] E. A. Bender and E. R. Canfield, The asynptotic number of labelled graphs with given degree
sequences. J Comb Theory A 24 (1978), 296–307.

[11] B. Bollobás, Random Graphs, Academic Press, London, 1985.

[12] B. Bollobás, C. Borgs, J. T. Chayes, J. H. Kim, and D. B. Wilson, The scaling window of the
2-SAT transition. Random Struct Algor 18 (2001), 201–256.

[13] D. Brélaz, New methods to color the vertices of a graph. Commun ACM 22 (1979), 251–256.

[14] A. Broder, A. Frieze, and E. Upfal, On the satisfiability and maximum satisfiability of random
3-CNF formulas. Proc. 4th ACM-SIAM Symposium on Discrete Algorithms (SODA ’93),
pp. 322–330.

[15] M. T. Chao and J. Franco, Probabilistic analysis of two heuristics for the 3-satisfiability problem.
SIAM J Comput 15 (1986), 1106–1118.

[16] M. T. Chao and J. Franco, Probabilistic analysis of a generalization of the unit-clause litteral
selection heuristics for the k-satisfiability problem. Inform Sci 51 (1990), 289–314.

[17] V. Chvátal and B. Reed, Mick gets some (the odds are on his side). Proc. 33rd Annual
Symposium on the Foundation of Computer Science (FOCS ’92), pp. 620–627.

[18] V. Chvátal and E. Szemerédi, Many hard examples for resolution. J Assoc Comput Mach 35
(1988), 759–768.

[19] C. Cooper, A. Frieze, and G. B. Sorkin, A note on random 2-SAT with prescribed literal degrees.
Proc. 13th ACM-SIAM Symposium on Discrete Algorithms (SODA ’02), pp. 316–320.

[20] M. J. Crawford and L. D. Auton, Experimental results on the crossover point in random 3-SAT.
Artifi Intelli 81 (1996), 31–57.

478 KAPORIS, KIROUSIS, AND LALAS

[21] M. Davis, G. Logemann, and D. Loveland, A machine program for theorem-proving. Commun
ACM, 5 (1962), 394–397.

[22] M. Davis and H. Putnam, A computing procedure for quantification theory. J Assoc Comput
Mach 7 (1960), 201–215.

[23] L. Devroye, Branching processes and their applications in the analysis of tree structures and
tree algorithms. In: M. Habib, C. McDiarmid, R. Alfonsin, and B. Reed (eds.): Probabilistic
Methods for Algorithmic Discrete Mathematics. Lecture Notes in Computer Science, Springer-
Verlag, Berlin (1998), pp. 249–314.

[24] O. Dubois, Upper bounds on the satisfiability threshold. Theor Comput Sci 265 (2001),
187–197.

[25] O. Dubois, P. André, Y. Boufkhad, and J. Carlier, SAT versus UNSAT. In: D. S. Johnson and
M. A. Trick (eds.): Second DIMACS Challenge. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. AMS (1993), 415–436.

[26] O. Dubois and Y. Boufkhad, A general upper bound for the satisfiability threshold of random
r-SAT. J Algor 24 (1997), 395–420.

[27] O. Dubois, Y. Boufkhad, and J. Mandler, Typical random 3-SAT formulae and the satisfiability
threshold. Proc. 11th Symposium on Discrete Algorithms (SODA ’00), pp. 126–127. Available
at: http://www.eccc.uni-trier.de/eccc-local/Lists/TR-2003.html

[28] O. Dubois and J. Mandler, On the 3-colourability of random graphs. Available at:
http://arxiv.org/abs/math.CO/0209087

[29] J. Franco, Probabilistic analysis of the pure literal heuristic for the satisfiability problem. Ann
Oper Res 1 (1984), 273–289.

[30] J. Franco, Results related to threshold phenomena research in satisfiability: Lower Bounds.
Theor Comput Sci 265 (2001), 147–157.

[31] J. Franco and M. Paull, Probabilistic analysis of the Davis–Putnam procedure for solving the
satisfiability problem. Discrete Appl Math 5 (1983), 77–87.

[32] E. Friedgut (Appendix by J. Bourgain), Sharp thresholds of graph properties, and the k-SAT
problem. J AMS 12 (1997), 1017–1054.

[33] A. Frieze and S. Suen, Analysis of two simple heuristics for random instances of k-SAT. J Algor
20 (1996), 312–355.

[34] A. Frieze and N. Wormald, k-SAT: A tight threshold for moderately growing k. Proc. 5th
International Symposium on the Theory and Applications of Satisfiability Testing (2002),
pp. 1–6.

[35] I. Gent and T. Walsh, The SAT phase transition. In A. Cohn (ed.): 11th European Conference
on Artificial Intelligence, Wiley, New York, 1994.

[36] C. Giannella, On extending two threshold algorithms to non-threshold algorithms by attach-
ing the unit clause rule, Master Thesis, University of Indiana, (1999). Available at:
http://www.cs.indiana.edu/˜cgiannel/work.html

[37] A. Goerdt, A threshold for unsatisfiability. J Comput Syst Sci 33 (1996), 469–486.

[38] M. T. Hajiaghayi and G. Sorkin, personal communication, 2002.

[39] A. Haken, The intractability of resolution. Theor Comp Sci 39 (1985), 297–308.

[40] G. Istrate, Phase transitions and all that. Submitted. CoRRcs.CC/0211012 (2002).

[41] S. Janson, T. Łuczak, and A. Ruciński, Random graphs. Wiley, New York, 2000.

[42] S. Janson, Y. C. Stamatiou, and M. Vamvakari, Bounding the unsatisfiability threshold of
random 3-SAT. Random Struct Algor 17 (2000), 103–116.

[43] D. S. Johnson, Approximation algorithms for combinatorial problems. J Comp Syst Sci 9
(1974), 256–278.

PROBABILISTIC ANALYSIS OF A SATISFIABILITY ALGORITHM 479

[44] A. Kamath, R. Motwani, K. Palem, and P. Spirakis, Tail bounds for occupancy and the
satisfiability threshold conjecture. Random Struct Algor 7 (1995), 59–80.

[45] A. C. Kaporis, L. M. Kirousis, and E. G. Lalas, The probabilistic analysis of a greedy satis-
fiability algorithm. In: Proc. 10th Annual European Symposium on Algorithms (ESA 2002),
Track A, pp. 574–585.

[46] A. C. Kaporis, L. M. Kirousis, and Y. C. Stamatiou, How to prove conditional randomness
using the Principle of Deferred Decisions. Special Volume on Computational Complexity and
Statistical Physics. Santa Fe Institute, Studies in the Sciences of Complexity. Oxford Uni-
versity Press. To appear. Available at: www.ceid.upatras.gr/faculty/kirousis/
kks-pdd02.ps

[47] A. C. Kaporis, L. M. Kirousis, Y. C. Stamatiou, M. Vamvakari, and M. Zito, The unsatisfiability
threshold revisited. Discreto Mathematics, Elsevier, to appear.

[48] S. Kirkpatrick, G. Györgyi, N. Tishby, and L. Troyansky, In: J. Cowan, G. Tesauro, and
J. Alspector (eds.): The statistical mechanics of k-satisfaction. Adv Neur Inform Proc Syst 6
(1993), 439–446.

[49] S. Kirkpatrick and B. Selman, Critical behavior in the satisfiability of random Boolean
expressions. Science 264 (1994), 1297–1301.

[50] L. M. Kirousis, E. Kranakis, D. Krizanc, and Y. C. Stamatiou, Approximating the
unsatisfiability threshold of random formulas. Random Struct Algor 12 (1998), 253–269.

[51] L. M. Kirousis, Y. C. Stamatiou, and M. Zito, The unsatisfiability threshold conjecture: The
techniques behind upper bound improvements. Special Volume on Computational Complexity
and Statistical Physics. Santa Fe Institute, Studies in the Sciences of Complexity. Oxford
University Press. To appear.

[52] D. E. Knuth, Stable marriage and its relation to other combinatorial problems: an introduction to
the mathematical analysis of algorithms (English edition: CRM Proceedings & Lecture Notes
10, American Mathematical Society, 1997; first French edition: Les Presses de l’Université de
Montréal, 1976). Also see: D. Knuth, R. Motwani, and B. Pittel, Stable husbands, Random
Struct Algor 1 (1990), 1–14.

[53] M. Maftouhi and W. Fernandez de la Vega, On random 3-SAT. Combin Probabil Comp 4 (1995),
190–195.

[54] B. McKay and N. C. Wormald, The degree sequence of a random graph. I. The models. Random
Struct Algor 11 (1997), 97–117.

[55] G. Parisi, M. Mézard and R. Zecchina, Analytic and algorithmic solution of random
satisfiability problems. Science 297 (2002), 812.

[56] M. Mézard and R. Zecchina, The random k-Satisfiability problem: From an analytic solution
to an efficient algorithm. Physical Review E, Vol. 66, (2002).

[57] http://www.mathworks.com/

[58] D. Mitchell, B. Selman, and H. Levesque, Hard and easy distribution of SAT problems. Proc.
10th National Conference on Artificial Intelligence (AAAI ’92), pp. 459–465.

[59] M. Mitzenmacher, Tight thresholds for the pure literal rule. TR, Digital Equipment Corporation
(1997). Available at: www.research.compaq.com/SRC/

[60] M. Molloy, The probabilistic method. In: M. Habib, C. McDiarmid, R. Alfonsin, and
B. Reed (eds.): Probabilistic Methods for Algorithmic Discrete Mathematics. Lecture Notes
in Computer Science, Springer-Verlag, Berlin (1998), pp. 1–35.

[61] R. Monasson and R. Zecchina, Statistical mechanics of the random k-Sat problem. Phys Rev E
56 (1997), 1357–1361.

[62] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky, Determining
computational complexity from characteristic phase transitions. Nature 400 (1999), 133–137.

480 KAPORIS, KIROUSIS, AND LALAS

[63] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky, 2+p-SAT Relation of
typical-case complexity to the nature of the phase transition. Random Struct Algor 15 (1999),
414–435.

[64] B. Pittel, J. Spencer, and N. C. Wormald, Sudden emergence of a giant k-core in a random
graph. J Combin Theor B 67 (1996), 111–151.

[65] SAT–The Satisfiability Library, www.intellektik.informatik.tu-darmstadt.de/SATLIB/

[66] A. Urquhart, Hard examples for resolution. J Assoc Comput Mach 34 (1987), 209–219.

[67] W. Fernandez de la Vega, On random 2-SAT. Manuscript (1992).

[68] Y. Verhoeven, Random 2-SAT and unsatisfiability. Inform Proc Lett 72 (1999), 119–123.

[69] J. S. Vitter and P. Flajolet, Average-case analysis of algorithms and data structures. In: J. van
Leeuwen (ed.): Algorithms and Complexity. Handbook of Theoretical Computer Science A,
MIT Press, Amsterdam (1990), pp. 431–524.

[70] D. Wilson, On the critical exponents of random k-SAT. Random Structures & Algorithms,
21(2), 182–195 (2002).

[71] N. C. Wormald, Models of random regular graphs. In: J. D. Lamb and D. A. Preece (eds.):
Surveys in Combinatorics London Mathematical Society Lecture Note Series. Cambridge
University Press Cambridge, Vol. 276 (1999), pp. 239–298.

[72] N. C. Wormald, Differential equations for random processes and random graphs. Ann Appl
Probabil 5 (1995), 1217–1235.

[73] N. C. Wormald, Some problems in the enumeration of labelled graphs, Ph.D. Thesis, Newcastle
University (1978).

[74] A. Steger and N. C. Wormald, Generating random regular graphs quickly. Combin Probabil
Comput 8 (1999), 377–396.

