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Interpolation formulas are the starting points in the derivations of many methods
in several areas of Numerical Analysis. The goal is always the same: to represent
the data by a classical geometrical entity. Fractal interpolation functions provide
a new means for fitting experimental data and their graphs can be used to approx-
imate natural scenes. We show how one can construct space—filling curves using
hidden variable linear fractal interpolation functions. These curves result from the
projection of the attractor of an iterated function system.

1 Introduction

Interpolation lies in the heart of classical Numerical Analysis. Almost all the
classical methods of numerical differentiation, numerical quadrature and nu-
merical integration of ordinary differential equations are directly derivable from
interpolation formulas. Because we are especially interested in computer appli-
cations, our approach to interpolation will not emphasize traditional interpo-
lation methods. We focus attention on a special class of continuous functions,
referred to as fractal functions, since their graphs usually have non-integral
dimension. These functions may be used for interpolation purposes and are in
this way analogous to splines and polynomial interpolations.

Based on a theorem of J. E. Hutchinson ([%], p.730) and using IFS theory,
M. F. Barnsley introduced a class of functions in (] which he called fractal in-
terpolation functions or FIF’s for short. He worked basically with linear FIF’s
in the sense that they are obtained using affine transformations. These func-
tions have in common with elementary functions that they are of a geometrical
character and that they can be computed rapidly. The main difference is their
fractal character. The graphs of these functions can be used to approximate
image components such as the profiles of mountain ranges, the tops of clouds
and horizons over forests, to name but a few.

Considering the projections of the graphs of higher—dimensional self-affine
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functions, M. F. Barnsley et al. in [*] have extend the class of one-dimensional
interpolation functions to the hidden variable FIF’s (see also [?] and [7]).

We use these functions to construct some space—filling curves in the plane.
These curves are projections of the graphs of some continuous functions. Fi-
nally, with the aid of microcomputer—generated plots, we examine these graphs
in the three—dimensional space using orthogonal and other projections. The
IFS code for this class of functions is given as well.

2 Iterated Function Systems

Within Fractal Geometry, the method of iterated function systems introduced
by J. E. Hutchinson in [®] and popularized by M. F. Barnsley and S. Demko
in [3], is a relatively easy way to generate fractal images.

A function f: X — Y is called a Hélder function of exponent a if

|f(z) = fw)| L clz—yl®

for z,y € X, a > 0 and for some constant ¢. Obviously, ¢ > 0. The function f
is called a Lipschitz function if a may be taken to be equal to 1. A Lipschitz
function is called contractive with contractivity factor c, if ¢ < 1. An iterated
function system or IFS for short, is a collection of a complete metric space
(X, p) together with a finite set of mappings wn: X — X, n = 1,2,..., N,
where p is a distance between elements of X. If w, are contractive with re-
spective contractivity factors s, for n = 1,2,..., N, then the IFS is termed hy-
perbolic. It is often convenient to write an IFS formally as {X; w1, ws,...,wn}
or, somewhat more briefly, as {X;w;_n}.

We introduce the associated map of subsets W: H(X) — H(X), given by

N
W(E) = | wa(E), for all E € H(X),

n=1

where H(X') is the metric space of all nonempty compact subsets of X with
respect to the Hausdorff distance. The map W itself is contractive with ratio
s = max{si, $2,....5~}. (Ref. [2], Theorem 7.1, p.81). The map W is called
the collage map to alert us to the fact that W (E) is formed as a union or collage
of sets. Sometimes H(X) is referred to as the ‘space of fractals in X’ (but note
that not all members of X are fractals). In what follows we abbreviate f* the
k—fold composition fo fo---0 f.

The attractor of an IFS is the unique set A for which limy_,. W*(Ep) = A
for every starting set Ey. The term attractor is chosen to suggest the movement
of Ey towards A under successive applications of W. By contrast, A is also
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the unique set in H(X) which is not changed by W, so W(A) = A, and from
this important perspective it is often called the invariant set of the IFS.

A transformation w is affine if it may be represented by a matrix A and
translation t as w(x) = Ax + ¢, or (if X = R?)

T G {
wl:y e ] y:|+ m | . (1)
Z Z r

The code of w is the 12-tuple (a,b,c,d, e, g, h,k,s,{,m,7) and the code of an
IFS is a table whose rows are the codes of wy,wa, ..., wy. We refer the inter-
ested reader to [?] or [®].
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3 Fractal Interpolation Functions

Let the continuous function f be defined on a real closed interval I = [zq, zn]
and with range a complete metric space (Y, py ), where zo,Z1,...,25 be N+1
distinct points and o < z1 < -+ < xpy. It is not assumed that these points
are equidistant. We shall write for brevity f(z;) = fi, ¢ = 0,1,...,N. The
function f is called an interpolation function corresponding to the generalized
set of data

{(zi;, ;) €IxY:i=0,1,...,N}L

The points (z;, f;) are called the interpolation points. We say that the function
f interpolates the data and that (the graph of) f passes through the interpo-
lation points. We focus on the existence and construction of such functions
whose graphs are attractors of IFS. Throughout this and next section we will
work in the complete metric space K = I x ¥ with respect to the Euclidean,

or to some other equivalent, metric.
Set I, = [Tn—1,%n] and let L,:I — I,, forn=1,2,..., N, be contractive
homeomorphisms such that

Ln(-rU) = Tn-—1, LH(IN) = In, (2)

|Ln(b1) — La(b2)| < 1|by — b2 (3)

whenever b1, bs € I, for some [ € [0,1).
Furthermore, let mappings M,: K — Y be continuous such that

Mn(zo, fo) = fa1, Mn(zn, fN) = frs (4)
py (Mn(z,b1), Mn(z,b2)) < 50y (b1,b2), (5)
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for all x € I, by,b2 € ¥ and for some s € [0,1). Condition (5) means that M,

are contractive in the second variable, forn =1,2,..., V.
Now define functions w,: K — K by
wn(2,y) = (Ln(z), Mn(z,¥)) (6)

for all (z,y) € K andn=1,2,...,N.
Theorem 1 The IFS {K;wi_n} defined above has a unique attractor G €
H(K). Furthermore, G is the graph of a continuous function f:I — Y which
obeys
e = i 8=0; Lo Vs

Proof. See '], Theorem 1, p.306. O
Definition 1 The function f whose graph is the attractor of an IFS as de-
scribed in Theorem 1, is called o fractal interpolation function or FIF for short.

Notice that the IFS {K;w;_n} may not be hyperbolic. To construct a
hyperbolic IFS whose attractor is the graph of a function, we assume that the
mappings M,, n=1,2,...,N not only satisfy Condition (5) but also

oy (Mn(b1,y), Mn(b2,y)) < clby — be (7)

forally €Y, by,bo € I, n =1,2,..., N and for some ¢ > 0. This condition

means that M, are uniformly Lipschitz in the first variable, forn =1,2,..., N.
Since the completeness depends on the choice of metric we have the fol-

lowing :

Theorem 2 There is a metric py on K, equivalent to the Euclidean metric,

such that the IFS {K;wi_n} is hyperbolic with respect to pg.

Proof. See [°]. O

4 Hidden variable Fractal Interpolation Functions

Now, we will restrict our attention to affine transformations. Let N be a
positive integer greater than 1. Define L,,: I — I, by

Ln(z) = anx + kn,

where the real numbers an, k,, for n = 1,2,..., N, are chosen to ensure that
Condition (2) holds, i.e. L,(f) =I,. Thus, for n =1,2,..., N,

Tn — Tpn—1

an = —, (8)
IN —To
INTpn—1 — Tok
kn - Ndn—1 0 n‘ (9)
IN — X
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Since N > 2, |an| < 1, so L, are contractive homeomorphisms, for n =
1,2,..., N, as they obey Condition (3) with [ = max{la.|:n=1,2,...,N}.
Let Y = R? and define M,: K — Y by

|y =["”]x+An[g}+[ b ]

2 an My,
where
dn €n
=l 5]
and cn,Gn,dn,€n, Ay Sn, ln, My, are real numbers, for n = 1,2,...,N. Let

us replace f, in Condition (4) by (f.,Hn). The real constants c,, gn, ln, Mn,
depending on the adjustable real parameters dn, en, fin, Sn, are chosen to ensure
that Condition (4) holds. That is,

n - Jn— - H _H
o = Iz, fv—fo  Hy-—Ho (10)
TN — TQ TN — Ip rN — Zo
H,—H,_ == Hy — H,
g = “—l—han fo_sn v Ho an
N — To N — Tp TN — Tp
1 - - Hy—zgH
i e TN fn-1 $ofn_dn$Nfo ’w"ofN_enIN 0 — Zg N (12)
TN = o N — 2o N — Zo
H,_1—zH, - —zoH
_— zyHn 1 — 120 n_hanfo ﬂfofN_SnS?NHo Zy N (13)
N — o TN — To TN — X

forn=1,2,...,N. Let us define
¢'= max{max{e., 9.} :n=1,2,...,N}.

Then Condition (7) is true. Assume that the linear transformation 4,:R? —
R? is contractive with contractivity factor s € [0,1). Then Condition (5) is
true. Define functions w,, as in Eq. 6. Then the IFS is of the form {K;wi_n},
where the maps are affine transformations as in (1) and, in particular, of the
special structure

T a, 0 0 T kn
w y = Cn dn e?’1. y + l'ﬂ- b
z gn hn  Sn z Min

where an, Cn, dn, €ny Gny Pn, Sns En, ln, My are real numbers. These transforma-
tions, constrained by Conditions (2) and (4), are giving

Iy In—1 TN Tn
wn| fo | =] famr | andwn | fv | =] fo |, (14)
HO an,—l HN Hn



forn=1,2,...,N. Then we have the following
Theorem 3 The attractor of the IFS {K;w,_y} defined above is the graph
of @ continuous function f:I = Y which obeys

filas) =0y 9 =10, LiadV
Proof. The proof is analogous to the proof of Theorem 1. O

Now write
f(z) = (Fi(z), Fa(z)).

Then Fi:I — R is a continuous function such that
F(z)=f;, i=0,1,...,N.

Definition 2 The function Fi(x) constructed above ts called e hidden variable
linear fractal interpolation function or HLFIF for short.

5 Space-filling curves

G. Peano in 1890 constructed the first curve that passes through every point
of the unit square [0, 1] X [0, 1]. Continuous mappings from [0,1] (or any other
interval) into the plane (or space) with this property are called space—filling
or Peano curves. Further examples by D. Hilbert (in 1891), E. H. Moore (in
1900), H. Lebesgue (in 1904), E. Cesaro (in 1905), W. Sierpiniski (in 1912), G.
Pélya {in 1913), and others followed. For more examples of such curves the
interested reader is referred to [®] and [7] . '

We can apply Theorem 3 to construct some space-filling curves. Notice

that we now require equidistant points =g, z1,...,Zy, With g = fo = Ho =0,
zy = fv =1 and Hy = 0. Then the attractor of the IFS {R3; w;_y}, where
the maps w,, n = 1,2,..., N are the affine transformations
z I/N 0 0 z (n—-1)/N
we |y | = 0 ap, by y |+ dn : (15)
z 0 Cn Sn z €n

is the graph G of a continuous function f:[0,1] = R? such that f([0,1]) = A,
where .4 is a nonempty pathwise—connected compact set. The range of this
function is the projection of G into the (y, z) plane. The projections of G into
(z,y) and (z,z), are graphs of hidden variable fractal functions. The easiest
method for computing the graph of a hidden variable fractal interpolation
function is with the aid of the Random [teration Algorithm or RIA for short.

In the RIA we calculate at each stage just one new point ,4; from its
predecessor Z,, by Tn4+1 = w;(z,) with a randomly chosen i from 1,2,...,N.
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Given a large number of iterations—say 40,000, it works. Beneath the danc-
ing iterated point the attractor emerges miraculously from the mist. See [?]
or [ 5] for more details on this subject. We must first calculate the coeffi-
cients in the three-dimensional affine transformations from Eq. 8 to Eq. 13
and then apply the RIA to the resulting IFS. Finally, we render each point in
a color that depends on its z—coordinate. This helps us to visualize the ‘hid-
den’ three—dimensional character of the curve. In all of the examples below
the interpolation points are marked with a circle.

a b c s 3

a c 5
0.25 0375 05 -0.25
0.5 0 0 05 05 05 05 -05

0.25 -0.375 -0.5 -0.25 alds 05 05 =i
(a) (b)

Table 1: The IFS code for the space—filling curves constructed (a) in Example 1 and (b) in
Example 2.

=&

w o =8

Example 1 Let us take N = 3 and the set of data
{(0,0,0),(0.33,0.25,0.5), (0.66,0.75,0.5), (1,1,0) }..

The maps wn, n = 1,2,..., N are of the form (15) and chosen so that (14)
holds. The solution of (15) and (14) yields the constants a,, ¢,,d, and e,. For
the other constants we require that also the following conditions hold:

1/2 1/6 1/2 { 3/6 } { 1/2 ] l 5/6 }
wh 1/2 = 1/2 , W 1/2 = 1/2 , W3 1/2 = ]./2 i
1 0 1 1 1 0

The resulting constants are given in Table 1(a). Several views of the attractor
G for the IFS defined above are illustrated in Figure 1. We see that & is a
Sierpinski triangle when viewed from the yz—plane.

Example 2 Let us take V = 2 and the set of data
{(0,0,0),(0.5,0.5,0.5), (1,1,0)}.

The solution of (15) and (14) yields the constants an,cn,d» and e,, whereas
for the other constants we set b, = ¢, and s, = —a, forn =1,2,...,N. The
resulting constants are given in Table 1(b). Several views of the attractor G
for the IFS defined above are illustrated in Figure 2. We see that G is a Peano
curve when viewed from the yz—plane.
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Figure 1: Three orthogonal projections of the attractor for the IFS in Example 1.
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Figure 2: Three orthogonal projections of the attractor for the IFS in Example 2.

Example 3 Let us take N = 4 and the set of data
{(0,0,0), (0.25,0.33,0), (0.5,0.5,0.43), (0.75,0.66,0), (1,1,0)}.

The solution of (15) and (14) yields the constants an,cn,dn and e,, whereas
for the other constants we set b, = —c, and s, = a, forn=1,2,...,N. The
resulting constants are given in Table 2. Several views of the attractor G for
the IFS defined above are illustrated in Figure 3. We see that G is a Koch
curve when viewed from the yz—plane.
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w a b c ]
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