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Interpolation formulas are the starting points in the derivations of many methods in
several areas of Numerical Analysis. The goal is always the same: to represent the
data by a classical geometrical entity. Fractal interpolation functions provide a new
means for fitting experimental data and their graphs can be used to approximate natural
scenes. We show how the theory of linear fractal interpolation functions together with
the Deterministic Algorithm can be used to construct space—filling curves.

1 Introduction

Interpolation lies in the heart of classical Numerical Analysis. Almost all the clas-
sical methods of numerical differentiation, numerical quadrature and numerical in-
tegration of ordinary differential equations are directly derivable from interpolation
formulas.

Because we are especially interested in computer applications, our approach to
interpolation will not emphasize traditional interpolation methods. We focus atten-
tion on a special class of continuous functions, referred to as fractal functions, since
their graphs usually have non-integral dimension. These functions may be used
for interpolation purposes and are in this way analogous to splines and polynomial
interpolations.

Based on a theorem of J. E. Hutchinson ([®], p.730) and using IFS theory, M. F.
Barnsley introduced a class of functions in [!] which he called fractal interpolation
functions or FIF’s for short. He worked basically with linear FIF’s in the sense that
they are obtained using affine transformations. More general transformations than
the affine ones are discussed in [®] and in [©] but there is no evidence therein that
they may be used as an interpolation model. The linear FIF’s have in common with
elementary functions that they are of a geometrical character and that they can be
computed rapidly. The main difference is their fractal character. The graphs of
these functions can be used to approximate image components such as the profiles
of mountain ranges, the tops of clouds and horizons over forests, to name but a few.

2 Iterated Function Systems

Within Fractal Geometry, the method of iterated function systems introduced by
J. E. Hutchinson in [#] and popularized by M. F. Barnsley and S. Demko in [?], is
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a relatively easy way to generate fractal images.
A function f: X — Y is called a Hélder function of exponent a if

|f(z) = Fy)| < cle —y|*

for z,y € X, a > 0 and for some constant ¢. Obviously, ¢ > 0. The function f is
called a Lipschitz function if a may be taken to be equal to 1. A Lipschitz function
is called contractive with contractivity factor ¢, if ¢ < 1. An iterated function system
or IFS for short, is a collection of a complete metric space (X, p) together with a
finite set of mappings w,: X — X, n =1,2,..., N, where p is a distance between
elements of X. If w, are contractive with respective contractivity factors s,, for
n=12,...,N, then the IFS is termed hyperbolic. It is often convenient to write
an IFS formally as {X;w,ws,...,wn} or, somewhat more briefly, as {X;w;_n}.
We introduce the associated map of subsets W:H(X) — H(X), given by

N
W(E) = | ] wn(E), for all E € H(X), (1)

n=1

where H(X) is the metric space of all nonempty compact subsets of X with re-
spect to the Hausdorff distance. The map W itself is contractive with ratio s =
max{si1, 82,...,8n}. (Ref. [?], Theorem 7.1, p. 81). The map W is called the
collage map to alert us to the fact that W (E) is formed as a union or collage of
sets. Sometimes 7{(X) is referred to as the ‘space of fractals in X’ (but note that
not all members of X are fractals). In what follows we abbreviate f* the k—fold
composition fo fo.--o f.

The attractor of an IFS is the unique set A for which limy_,., W*(Ey) = A for
every starting set Ey. The term attractor is chosen to suggest the movement of E
towards .4 under successive applications of W. By contrast, A is also the unique
set in H(X) which is not changed by W, so W(A) = A, and from this important
perspective it is often called the invariant set of the IFS.

A transformation w is affine if it may be represented by a matrix A and trans-
lation t as w(x) = Ax +t, or (if X = R?)

o5 1=12 23 1+ e @)

The code of w is the 6-tuple (a, b, ¢, 5,d, ), and the code of an IFS is a table whose
rows are the codes of wy,ws, ..., wy. We refer the interested reader to [2] or [7].

3 Fractal Interpolation Functions

Let the continuous function f be defined on a real closed interval I = [zg, zx] and
with range a complete metric space (Y, py), where zg,21,...,25 be N + 1 distinct
points and zy < 1 < --- < zy. It is not assumed that these points are equidistant.
We shall write for brevity f(x;) = fi, i = 0,1,...,N. The function f is called an
interpolation function corresponding to the generalized set of data '

{(zi,f)€eIxY :i=0,1,...,N}.
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The points (z;, f;) are called the interpolation points. We say that the function f
interpolates the data and that (the graph of) f passes through the interpolation
points. We focus on the existence and construction of such functions whose graphs
are attractors of IFS. Throughout this section we will work in the complete metric
space K = I xY with respect to the Euclidean, or to some other equivalent, metric.

Set I, = [zn_1,2,] and let L,:I — I,, for n = 1,2,..., N, be contractive
homeomorphisms such that

L'n.(a;O) = Tn—1, Ln(mN) = Tn, (3)

|Ln(b1) — La(b2)| < ]by — b2 (4)

whenever by, bg € I, for some [ € [0,1).
Furthermore, let mappings M,: K —+ Y be continuous such that

Mn(-'rOafD)=.fn—11 Mﬂ(mNafN)zf'n.a (5)
py (Mn(z,b1), Mn(z,b2)) < spy (b1, b2), (6)
for all z € I, b1,b2 € Y, for some s € [0,1). Condition (6) means that M, are
contractive in the second variable, forn =1,2,..., N.
Now define functions w,: K — K by
wn(,y) = (Ln(z), Mn(z,)) (7

for all (z,y) € K andn=1,2,...,N.
Theorem 1 The IFS {K;wi_n} defined above has a unique attractor G € H(K).
Furthermore, G is the graph of a continuous function f:I — Y which obeys

flzs)=f, i=0,1,...,N.

Proof. See [!], Theorem 1, p.306. O
Definition 1 The function f whose graph is the attractor of an IFS as described
in Theorem 1, is called a fractal interpolation function or FIF for short.
If the points z;, ¢ = 0,1,..., N are not linearly ordered then we obtain a fractal
curve instead of a fractal function.

Notice that the IFS {K;w;_ 5} may not be hyperbolic. To construct a hyper-
bolic IFS whose attractor is the graph of a function, we assume that the mappings
My, n=1,2,...,N not only satisfy Condition (6) but also

PY(Mn(bL,Q)’Mn(bmy)) S Clbl - bzl (8)

forally €Y, by,bo € I, n=1,2,...,N and for some ¢ > 0. This condition means
that M, are uniformly Lipschitz in the first variable, forn =1,2,..., N.

Since the completeness depends on the choice of metric we have the following
Theorem 2 There is a metric py on K, eguivalent to the Euclidean metric, such
that the IFS {K;wi_n} is hyperbolic with respect to pg.
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Proof. See [13]. O
Now, we will restrict our attention to affine transformations. Let N be a positive
integer greater than 1. Define L,: I — I, by

L,(z) = anz + dn,

where the real numbers a,,d,, for n = 1,2,..., N, are chosen to ensure that con-
dition (3) holds, i.e. L,(I) = I,. Thus, forn=1,2,..., N,
Tp — Tp—1
n, = ———,
TN — Zo
INTn—1 — ToTn
d, = ——————,
Ny — To
Since N > 2, |ax| < 1, so L, are contractive homeomorphisms, for n = 1,2,..., N,

as they obey Condition (4) with I = max{|a,|:n=1,2,...,N}
Now define M,: K = R by

M. (z,y) = cnz + 5,4 + €5

where the real constants ¢, and e, depending on the adjustable real parameter s,,
are chosen to ensure that condition (5) holds. That is, s, € (—1,1) is chosen and
then
fn_fn—l g fN_fO
IN —Xp & TN — Xg ’
TN fn-1— Tofx g zn fo — ZofN
TN — Zo " rN — Xp
forn=1,2,...,N. The mappings M,,n = 1,2,..., N obey Condition (6) with s =
max{|s,| :n =1,2,..., N} and Condition (8) with ¢ = max{|e,| : n =1,2,...,N}.
Define functions w,, asin Eq. 7, replacing ¥ with R. Then the IFS is of the form
{K;wi_n}, where the maps are affine transformations as in (2) and, in particular,

of the special structure
[ a, 0 } [ T ] [ dn, ]
Ch. 8u y €n

T
| 2
where a.,, Cp, §n,d, and e, are real numbers. The transformations w, are shear
transformations, where s, are their vertical scaling factors. These transformations,
constrained by conditions (3) and (5), are giving

Cn =

en =

o[ )=l e R )= [R] om0

By choosing s, € (—1,1) to be the free parameter, we are able to specify the vertical
scaling produced by the transformation.

Combining Theorems 1 and 2 with the IFS {K;w;_n} defined above, we have
the following
Definition 2 The function f whose graph is the attractor of an IFS as described
above, is called @ linear fractal interpolation function or LFIF for short.
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4 Space-filling curves

G. Peano in 1890 constructed the first curve that passes through every point of the
unit square [0, 1] x [0,1]. Continuous mappings from [0,1] (or any other interval)
into the plane (or space) with this property are called space—filling or Peano curves.
Further examples by D. Hilbert (in 1891), E. H. Moore (in 1900), H. Lebesgue (in
1904), E. Cesaro (in 1905), W. Sierpiriski (in 1912), G. Pélya (in 1913), and others
followed.

Such curves are usually constructed using the following technique. We start
with an énitiator which may be a straight line or a polygon. FEach side of the
initiator is then replaced by a generator which is a connected set of straight lines
which form a path from the beginning to the end of the line being replaced. Then,
each straight line segment of the new figure is replaced by a scaled down version of
the generator. This process continues infinitely. For more examples of such curves
the interested reader is referred to [°], [1°], [*!] and [12].

Let .4 denote a nonempty pathwise-connected compact subset of R2. We show
how to construct a continuous function f:[0,1] — R? such that f([0,1]) = A.
To motivate the development we take A = [0,1] x [0,1]. Let Ey € #H(A) and
consider the sequence of sets {Ey = WF(Ey)}2,, where W is defined by (1). It
follows from [2], Theorem 7.1, p.81 that this sequence converges to A with respect
to the Hausdorff metric. This method which can be used to compute the graph
of a spacefilling curve, is called the Deterministic Algorithm. When we use this
method we take each point on our display screen and apply to it each of the affine
transformations that make up our IFS for a particular desired figure. The new
points are then plotted and then the same process is applied again as many times
as necessary to obtain a final result. All of the figures presented here are obtained
by application of the Deterministic Algorithm to an IFS. In the following examples
the interpolation points are marked with circles only where the initiator and the
generator are concerned.

Example 1 Let us take N = 4 and the set of data
{(0,0),(0,0.5),(0.5,0.5),(1,0.5), (1,0)}.

The maps w,, n = 1,2,..., N are of the form (2) and chosen so that (9) holds.
Remember that the matrix A must be contractive. The solution of (2) and (9)
yields the constants a,,cn,d, and e,, whereas for the other arbitrary constants
we set b, = ¢, and s, = a, for n = 1,2,...,N. The resulting constants are
given in Table 1(a). We then have the three following subcircumstances with their
corresponding figures:

Figure 1 is obtained by letting the initiator Ey € H(.A) denote a simple curve
that connects the point (0,0) with the point (1,0). Here we take Ep to be a straight
line such that Ep N 0A = {(zo, fo), (xn, fn)}. This last condition says that the
curve lies in the interior of the unit square box, except for the two endpoints of the
curve. So, Ey is a simple curve for £ = 0, 1, ... that connects the point (zq, fo) with
the point (zy, fn). The generator in this case is the set E;.

Figure 2 is obtained by letting the generator Ey € H(A) denote again a simple
curve that connects the point (0, 0) with the point (1,0) and, particularly, it consists
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w | a b c s d e w| a b c 8 d e
1 0 0.5 0.5 0 0 0 1 0 05 -05 0 0 05
2105 0 0 05 0 05 21-05 0 0 05 05 05
3105 0 0 0.5 0.5 0.5 3| 0.5 0 0 0.5 05 0.5
410 -05 -05 0O 1 0.5 4 0 -05 -05 O 1 05
(a) (b)
Table 1: The IFS code for the space-filling curves constructed (a) in Examples 1, 2, 3 and (b) in
Example 4.
0.1/2)(1/2,172)1.142)
o —
0.0 (1.0) (0.0) (1.0
ED WH(ED) W7 2(ED) W*3(ED)

WAED W"5(ED) W B(ED) W*?(ED)

Figure 1: A sequence of sets ‘converging to’ a space—filling curve.

of two sides of an isosceles triangle. Finally, E} is again a simple curve for k =
0,1,... that connects the point (2o, fo) with the point (zn, fx). The initiator in
this case is the generator of the previous case.

Figure 3 is obtained by letting the generator Ey € H(A) denote a simple curve
that does not connect the point (0,0) with the point (1,0). This curve is similar to
the first level of the Cesaro Triangle curve. The initiator in this case is again the
set E; of Figure 1.

Example 2 This example is Hilbert’s construction of Peano’s original space-filling
curve. In many ways this is an archetypical example exhibiting the general charac-
teristics of Peano curves and their relation to hyperbolic IFS’s. Let us take N = 4
and the set of data

{(0,0.25), (0.25,0.25), (0.25,0.75), (0.75,0.75), (0.75, 0) }.

The constants ay, b, Cn, Sn,dn and e, are given in Table 1(b). Sequences of Hilbert
curves are illustrated in Figure 4. Let us remark that the generator Ey of the Hilbert
curve has two additional ‘legs’ as compared with the usual one, the straight line
from (0, 0.25) to (0.25,0.25) and the straight line from (0.75,0.25) to {(0.75,0). These
were introduced to guarantee the connectedness of the attractor. The initiator in
this case is again the set E; of Figure 1.
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Figure 2: A sequence of sets ‘converging to’ a space—filling curve.
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W 4(ED) W"S(ED) W B(ED) W I(ED)

Figure 3: A sequence of sets ‘converging to’ a space—filling curve.
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