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A new method for constructing recurrent bivariate fractal interpolation surfaces through points
sampled on rectangular lattices is proposed. This offers the advantage of a more flexible fractal
modeling compared to previous fractal techniques that used affine transformations. The com-
pression ratio for the above mentioned fractal scheme as applied to real images is higher than
other fractal methods or JPEG, though not as high as JPEG2000. Theory, implementation and
analytical study are also presented.
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1. Introduction

The theory of image coding using an iterated func-
tion system, or IFS for short, was first proposed by
Barnsley [1993]. Barnsley modeled real-life images
by means of fractal objects, i.e. by the attractors, or
by the invariant measure supported by the attrac-
tors, evolved through iterations of a set of contrac-
tive affine transformations. With the help of IFS’s
along with a collage theorem, he laid the founda-
tion of the fractal-based image compression. A set of
contractive affine transformations can approximate
a real image and so, instead of storing the whole
image, it is enough to store the relevant parameters

of the transformations reducing memory require-
ments and achieving high compression ratios.

The effectiveness of fractal image compres-
sion, or FIC for short, has been demonstrated by
Jacquin [1992], Barnsley and Hurd [1993] and Fisher
et al. [1995]. They have shown that a well-designed
fractal compressor yields comparable compression
ratios and image quality to the JPEG algorithm.
Moreover, FIC has the unique property of resolution-
independence, that is, the same fractal represen-
tation can be decoded to various output devices
in the best resolution for each of them. How-
ever, fractal compression is a heavily unbalanced

2063

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
00

6.
16

:2
06

3-
20

71
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 &
 K

A
PO

D
IS

T
R

IA
N

 U
N

IV
E

R
SI

T
Y

 O
F 

A
T

H
E

N
S 

L
IB

R
A

R
IE

S 
C

O
M

PU
T

E
R

 C
E

N
T

R
E

 o
n 

02
/2

7/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2064 P. Bouboulis et al.

technique; the computational requirements of the
compression algorithm are orders of magnitude
greater than those of the decompressor. An overview
of the variety of schemes that have been investigated
can be found in [Wohlberg, 1999]. The book by Lu
[1997] combines introductory material with an in-
depth discussion of many aspects of fractal coding.

Our intention is to extend the two-dimensional
fractal interpolation models in order to construct
(continuous) fractal interpolation surfaces (or FIS
for short) of a nonaffine character and to explore
their potential use in the context of image inter-
polation. In this respect, we consider points of an
image to be samples (on a uniform rectangular
grid) of a continuous surface. The use of bivari-
ate FIS’s following the recurrent IFS formalism
permits the representation of static images with a
fractal model that is more general, flexible and com-
putationally efficient compared with other fractal
techniques which use FIS like in [Price, 1998] and
[Drakopoulos et al., 2004].

2. The 2D Recurrent Bivariate Model

An hyperbolic IFS is defined as a pair consisting
of a complete metric space (X, ρ) and a finite set
of contractive transformations wi:X → X, i =
1, 2, . . . ,M . It is often convenient to write an IFS
formally as {X;w1, w2, . . . , wM} or, somewhat more
briefly, as {X;w1−M}. The attractor of an hyper-
bolic IFS is the unique set A∞ = limk→∞ W k(A0)
for every starting set A0, where

W (A) =
M⋃
i=1

wi(A) for A ∈ H(X),

and H(X) is the metric space of all nonempty com-
pact subsets of X with respect to the Hausdorff
metric.

The Collage Theorem (see [Fisher, 1995]) pro-
vides a measure of the goodness of fit of an attractor
associated with an IFS and a given nonempty com-
pact set. An attractor that is close to a given set
is one with an associated IFS such that the union
of all the maps applied to the given set is close to
the given set. The closer the union is to the given
set, the closer the attractor of the IFS will be to the
given set. Therefore, in order to test the closeness
of an attractor to a given set, one need not com-
pute the attractor itself. The collage theorem, how-
ever, is not constructive, it does not indicate how
to find a set of proper maps, but rather, it provides
a way to test an IFS without need for computation

of the attractor. In this work we use IFS on R3 to
model images for data compression. Given an image
z = f(x, y) that gives the gray level at each point
(x, y), we can use the attractor of such an IFS to
approximate it.

Let X = [0, 1]×[0, p]×R. Let S = {(xi, yj, zij) :
i = 0, 1, . . . ,M ; j = 0, 1, . . . , N}, where zij =
z(xi, yj), be an interpolating set with (M+1)(N+1)
interpolation points such that 0 = x0 < x1 < · · · <
xM = 1 and 0 = y0 < y1 < · · · < yN = p. Using the
interpolation points, we partition [0, 1] × [0, p] into
MN rectangles Rmn = [xm−1, xm]×[yn−1, yn], m =
1, 2, . . . ,M and n = 1, 2, . . . , N which we call sec-
tions or regions. Furthermore, let Q = {(x̂k, ŷl, ẑkl) :
k = 0, 1, . . . ,K; l = 0, 1, . . . , L} be a set with
(K + 1)(L + 1) points with Q ⊂ S (Q �= S),
such that 0 = x̂0 < x̂1 < · · · < x̂K = 1 and
0 = ŷ0 < ŷ1 < · · · < ŷL = p. Using the points
of Q we partition [0, 1] × [0, p] into KL rectangles
Dkl = [x̂k−1, x̂k] × [ŷl−1, ŷl], k = 1, 2, . . . ,K and
l = 1, 2, . . . , L which we simply call intervals or
domains. We make the additional assumption that
for every domain there are some regions lying inside.

Define a labeling map J: {1, 2, . . . ,M} ×
{1, 2, . . . , N} → {1, 2, . . . ,K} × {1, 2, . . . , L} with
J(m,n) = (k, l) and mappings wmn:X → R3 by

wmn




x

y

z




=




amnx + kmn

dmny + lmn

emnx + gmny + hmnxy + smnz + omn


 (1)

satisfying

wmn




x̂k−1

ŷl−1

ẑk−1,l−1


 =




xm−1

yn−1

zm−1,n−1


,

wmn




x̂k

ŷl−1

ẑk,l−1


 =




xm

yn−1

zm,n−1


,

wmn




x̂k−1

ŷl

ẑk−1,l


 =




xm−1

yn

zm−1,n


 and

wmn




x̂l

ŷl

ẑkl


 =




xm

yn

zm,n




(2)
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Image Compression Using Recurrent BFIS 2065

for all m = 1, 2, . . . ,M , n = 1, 2, . . . , N , k = 1,
2, . . . ,K and l = 1, 2, . . . , L. We refer to smn as
the contactivity or vertical scaling factors. The wmn

map the vertices of the domain Dkl = DJ(m,n) to
the vertices of the region Rmn (see Fig. 1). Define
the function umn by

umn

(
x

y

)
=

(
amn 0
0 dmn

)(
x

y

)
+

(
kmn

lmn

)

=
(

φmn(x)
ψmn(y)

)
,

so that wmn = (umn, Fmn). Then umn(DJ(i,j)) =
Rmn for all m = 1, 2, . . . ,M and n = 1, 2, . . . , N .
Bivariate maps of this form have the property that
vertical lines are mapped to vertical lines contracted
by the factor smn. From the above constraints a
system of eight linear equations arises; thus, it can
always be solved for the parameters amn, kmn, dmn,
lmn, emn, gmn, hmn, omn in terms of the coor-
dinates of the interpolation points and the verti-
cal scaling factors (see [Dalla, 2002; Xie, 1997]).
Finally, let Φ: {1, 2, . . . ,M} × {1, 2, . . . , N} →
{1, 2, . . . ,MN} be a 1-1 function, i.e. an enumer-
ation of the set {(m,n) : m = 1, 2, . . . ,M ;n = 1,
2, . . . , N}.

A recurrent IFS (or RIFS for short) associ-
ated with the set of data S consists of the IFS
{X; w1−M,1−N} and a row-stochastic matrix P =
(pij ∈ [0, 1]: i, j ∈ {Φ(m,n), m = 1, 2, . . . ,M ;

Fig. 1. Mapping domains to regions of an image.

n = 1, 2, . . . , N}), such that

MN∑
i=1

pji = 1, j = 1, 2, . . . ,MN. (3)

The recurrent structure is given by the connection
matrix C = (Cij) which is defined by

Cij =
{

1, if pji > 0
0, if pji = 0,

where i, j = 1, 2, . . . ,MN . The transition probabil-
ity for a certain discrete time Markov process is pij,
which gives the probability of transfer into state j
given that the process is in state i. Condition (3)
says that whichever state the system is in (say i),
a set of probabilities is available that sum up to 1,
and they describe the possible states to which the
system transits at the next step.

We assume that pM, pK ∈ N, the regions
(defined by the interpolation points) are squares of
side δ = 1/M , while the domains are squares of side
∆ = 1/K (thus N = pM and L = pK) and the
number a = ∆/δ = M/K is an integer greater than
one. The number a2 expresses the number of regions
contained in any domain. If we define the enumera-
tion Φ(m,n) = (m − 1)N + n, m = 1, . . . ,M and
n = 1, . . . , N , then Φ−1(i) = ((i− 1) div N + 1, (i−
1) mod N + 1), i = 1, . . . ,MN and the MN × MN
stochastic matrix P is defined by

pij =




1
a2

, if R(i−1) div N+1,(i−1)mod N+1

⊆ DJ((j−1) div N+1,(j−1)mod N+1)

0, otherwise

The basic concept behind fractal image com-
pression using FIS’s is simple. Suppose we are given
a digitized image f that we wish to encode. Peak
some image pixels and construct the interpolating
set. Usually these pixels have a constant distance δ
along the horizontal and vertical directions. Using
the interpolation points we form a rectangular grid
on R2 and call the emerging rectangles regions.
Then, select some of the interpolation points and
construct the set Q. Usually these pixels have a
constant distance ∆ along the horizontal and ver-
tical directions, where ∆ is a multiple of δ. Using
the points of Q form another rectangular grid and
call the emerging rectangles domains. The goal is
to find, for each region Rmn, a map wmn that maps
the pixels of a domain Dkl (where (k, l) = J(i, j)) to
the pixels of the region Rmn as close to the original
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2066 P. Bouboulis et al.

pixels as possible. Storing the interpolation points
and the parameters which describe each wmn we
can generate the attractor of the formed RIFS via
the Deterministic Iteration Algorithm (see [Barns-
ley, 1993a]).

If the vertical scaling factors obey 0 ≤ |smn| <
1, then there is a metric d on X, equivalent
to the Euclidean metric, such that the RIFS
{X;w1−M,1−N , P} is hyperbolic with respect to d
and has A∞ as its attractor.

Consider the domain Dkl, k = 1, 2, . . . ,K, l = 1,
2, . . . , L and suppose that

LEFTkl[ν], ν = 1, . . . , a − 1, denote the vertical
distance of each interpolation point
{(x(k−1)a, y(l−1)a+ν , z(k−1)a, (l−1)a+ν),
ν = 1, . . . , a − 1} from the line
defined by the points (x(k−1)a, y(l−1)a,
z(k−1)a, (l−1)a) and (x(k−1)a, yla,
z(k−1)a,la),

RIGHTkl[ν], ν = 1, . . . , a − 1, denote the vertical
distance of each interpolation point
{(xka, y(l−1)a+ν , zka, (l−1)a+ν), ν =
1, . . . , a − 1} from the line defined by
the points (xka, y(l−1)a, zka, (l−1)a) and
(xka, yla, zka, la),

DOWNkl[ν], ν = 1, . . . , a − 1, denote the vertical
distance of each interpolation point
{(x(k−1)a+ν , y(l−1)a, z(k−1)a+ν, (l−1)a),
ν = 1, . . . , a − 1} from the line
defined by the points (x(k−1)a, y(l−1)a,
z(k−1)a, (l−1)a) and (xka, y(l−1)a,
zka, (l−1)a),

UPkl[ν], ν = 1, . . . , a − 1, denote the vertical
distance of each interpolation point
{(x(k−1)a+ν , yla, z(k−1)a+ν, la), ν =
1, . . . , a − 1} from the line defined by
the points (x(k−1)a, yla, z(k−1)a, la) and
(xka, yla, zka, la).

Each one of these vertical distances is taken
positive, if the corresponding interpolation point is
above the corresponding line; otherwise is taken neg-
ative (see Fig. 2). Let the vertical scaling factors obey

|sm,n · RIGHTJ(m,n)[ν] − sm+1,n · LEFTJ(m+1,n)[ν]|
< ε

|sm,n · UPJ(m,n)[ν] − sm,n+1 · DOWNJ(m,n+1)[ν]|
< ε

LEFT[1]

RIGHT[1]

DOWN[1]

UP[1]

(a)

RIGHT[1]

DOWN[1]

UP[1]

DOWN[2]

LEFT[2]

UP[2]

RIGHT[2]

LEFT[1]

(b)

Fig. 2. The condition of continuity. (a) a = 2, (b) a = 3.

for all m = 1, . . . ,M − 1, n = 1, . . . , N − 1,
γ = 1, . . . , a − 1 and small enough ε > 0. Then A∞
approximates the graph of a continuous function
f : [0, 1] × [0, p] → R that interpolates the interpo-
lating set S. For details see [Bouboulis et al., 2006].

Definition 1. The graph A∞ which is the attrac-
tor of the RIFS described above, is called the frac-
tal interpolation surface corresponding to the data
{(xi, yj , zij) : i = 0, 1, . . . ,M ; j = 0, 1, . . . , N}.

3. The Proposed Algorithms

Let Rmn = [xm−1, xm] × [yn−1, yn] be one of the
regions. Let, also, Dkl = [x̂k−1, x̂k] × [ŷl−1, ŷl] be
one of the corresponding domains. It is obvious,
that if the contractivity factors were known for the
region Rmn, the other parameters could be easily
determined.

3.1. Geometric calculation of the
contractivity factors

From what was mentioned previously, we see
that the vertices (x̂k−1, ŷl−1), (x̂k−1, ŷl), (x̂k, ŷl−1),
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Image Compression Using Recurrent BFIS 2067

(x̂k, ŷl) of the domain are mapped to the vertices
of the region (xm−1, yn−1), (xm−1, yn), (xm, yn−1),
(xm, yn) and the part of the function (image) that
is “contained” in the domain Dkl is contracted ver-
tically by the unknown contractivity factor smn.
Choose y = ŷl−1. Let |µy

0| be the mean absolute ver-
tical distance between any value of f(x, y) (with x =
x̂k−1, x̂k−1 + 1, . . . , x̂k−1 + δ = x̂k) and the straight
line between the vertices (x̂k−1, y) and (x̂k, y); see
also Fig. 3(a). The sign of the vertical distance is
taken as positive, if f(x, y) is above the straight line
and negative otherwise. Now choose y = ŷl−1+1 and
compute |µy

1| similarly. In general, choose y = ŷl−1+
r (for r = 0, 1, . . . , δ) and let |µy

r | be the mean abso-
lute vertical distance between any value of f(x, y)
(with x = x̂k−1, x̂k−1 + 1, . . . , x̂k−1 + δ = x̂k) and
the straight line between the vertices (x̂k−1, y) and
(x̂k, y). Similarly choose x = x̂k−1 + r (for r =
0, 1, . . . , δ) and let |µx

r | be the mean absolute ver-
tical distance between any function (image) value
f(x, y) (with y = ŷl−1, ŷl−1 + 1, . . . , ŷl−1 + δ = ŷl)
and the straight line between the vertices (x, ŷl−1)
and (x, ŷl). The sign of µx

r is taken as described
above. Now, let µ = mean{µx

r , µ
y
r , r = 0, 1, . . . , δ}.

We compute ν similarly by using the values of the
function lying inside Rmn. Then the contractivity
factor is given by the ratio ν/µ.

3.2. The inverse algorithm

We now present an iterative algorithm for find-
ing the model parameters, i.e. the interpolation

points (xi, yi, zij), the contractivity factors and the
addresses (i.e. the best-matched domains) associ-
ated with each region of the function. Suppose we
are dealing with a N1×N2 pixel image in which each
pixel can be one of 256 levels of gray. We choose δ
and ∆ a priori and form the set of interpolation
points S and the set of address points Q. The num-
ber of interpolation regions, MN , is greater than
the number of distinct address domains, say M1.
According to the existing theory, we need to store
the model parameters. For each emerging region we
seek for the “best-mapped” domain with respect to
a metric h. If a “good” match is found we store the
respective contractivity factor and its address (i.e.
the number of the “best-mapped” domain), other-
wise we partition the region into a2 subregions of
side-length δ/a, store the new interpolation points
(the vertices of the smaller regions) and repeat the
procedure for each new region. The following algo-
rithm describes the procedure in detail.

1. Choose values for δ and ∆, such that ∆ = aδ.
Choose, also, an error tolerance ε and a maxi-
mum depth dmax.

2. Create two queues, one named squeue and place
all the regions inside, as well as a queue named
iqueue and place all the initial interpolation
points inside. In addition create two empty
queues named cqueue and aqueue (we store
the contractivity factors in the first and the
addresses in the latter). Set the depth d = 1 and
create an empty queue named squeue2.

−20

−10

0

10

20

−20
10

0
10

20
−400

−300

−200

−100

0

100

200

300

vertical distance

straight line between endpoints 

(a) (b)

Fig. 3. (a) Geometric calculation of the contractivity factors. (b) The grid of the pixels (interpolation points), and not their
colors, is shown. The vertices of the domains are painted black.
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3. While squeue is not empty do

(a) Get one region, say Ri, from squeue.
(b) For domain j = 1 : M1 do

(i) Compute the contractivity factor s for
the map associated with Dj and the
region.

(ii) If |s| ≥ 1, then go to (v). Otherwise
check the condition of continuity. If it
does not hold, goto (v).

(iii) Compute the other parameters and map
the vertices of Dj through w according
to the mapping algorithm. Say w(Dj)
the emerging set.

(iv) Compute (with a proper distance mea-
sure) the distance hij between w(Dj)
and the points of Ri.

(v) Next j

(c) Find the j for which hij is a minimum.
(d) If hij > ε and d < dmax then create four

subregions, add them in squeue2, add the
vertices of each new region in iqueue (as
additional interpolation points) and add 0 in
aqueue.
Else store j with the minimum distance in
aqueue and s in cqueue.

4. If squeue2 is not empty, then set squeue =
squeue2, d = d + 1 and go to (3).

5. Store dmax, δ, ∆, cqueue, iqueue and aqueue.
6. End.

The mapping algorithm: We map the domain
Dj to the region R.

1. Put the vertices of R to the new set w(Dj).
2. Compute the other parameters. Let a = δ/∆.
3. Map the points of the first and last rows as fol-

lows. The first and the last points of these rows of
Dj are interpolation points and they have been
already mapped. Map the (a + 1)th point of the
domain to the second point of the w(Dj). Con-
tinue by mapping the (2a+1), (3a+1), . . . point
of the domain to the third, fourth, . . . , point of
the w(Dj).

4. For all other rows: Map the (a + 1), (2a + 1), . . .
point of the domain to the first, second, . . . point
of the w(Dj).

3.3. A decompression algorithm

To reconstruct the original image, we may use
the Deterministic Iteration Algorithm (DIA) as in
[Barnsley, 1993]. The DIA, though, has a minor

drawback. When mapping the vertices of a domain
to the corresponding region, it is possible that some
points will not mapped to a specific point of the
region. For example, the pixel (100, 150) may be
mapped to the point (34.33, 12.46), which is not
a specific pixel. It is possible that most of the
pixels will be mapped in this way. So, in order
to reconstruct the original pixels, we must use
those points occurring from the mapping of each
region that are close to the corresponding pixel.
In the previous example, the point (34.33, 12.46)
(among others) must be used for the reconstruction
of the pixels (34, 12), (35, 12), (34, 13) and (35, 13).
Of course, this will increase the amount of calcula-
tions and it is likely that if the number of iterations
is not adequate, points near a specific pixel will not
be produced, leading to more and more iterations.

In order to confront these problems we intro-
duce a variation of the DIA for the case at which
δ = ar and ∆ = ar+1. In this case, the algo-
rithm needs exactly r + 1 iterations to reconstruct
the original image without computing unnecessary
points. This means that the algorithm computes
the points with integer coordinates (that are actual
pixels), thus not facing the same problems. Fig-
ure 3(b) shows how one image (with dimensions
433×433) is divided into 16 regions and 4 domains,
by choosing δ = 8 and ∆ = 16. Figure 4 shows the
decompression (reconstruction) of an image that
has dimensions 9 × 9, δ = 4 and ∆ = 8 result-
ing in one domain and four regions. The number in
each pixel states the iteration in which every pixel is
computed.

The decompression algorithm

1. Create the queues AD[i],CON [i], IP [i], i = 1,
2, . . . , dmax, which contain the addresses, con-
tractivity factors and interpolation points of the
regions of side δ/a(m−1). All these numbers were
stored in aqueue, cqueue and iqueue, respectively.

2. Put the interpolation points in the picture.
3. Compute steps = trunc(log(δ)/log(a))
4. for t = 1 : steps do

for i = 1 : min{steps, dmax}
(a) For every region of side δ/a(m−1) do

(i) Find the corresponding Dj (from
AD [i]).

(ii) If j �= 0 then

A. Find the corresponding contrac-
tivity factor (from CON[i]) and
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0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

(a)

0 1 0 1 0

1 1 1 1 1

0 1 0 1 0

1 1 1 1 1

0 1 0 1 0

0 1 0 1 0

1 1 1 1 1

0 1 0 1 0

1 1 1 1 1

0 1 0 1 0

(b)

0 2 1 2 0 2 1 2 0

2 2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1

2 2 2 2 2 2 2 2 2

0 2 1 2 0 2 1 2 0

2 2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1

2 2 2 2 2 2 2 2 2

0 2 1 2 0 2 1 2 0

0 2 1 2 0 2 1 2 0

2 2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1

2 2 2 2 2 2 2 2 2

0 2 1 2 0 2 1 2 0

2 2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1

2 2 2 2 2 2 2 2 2

0 2 1 2 0 2 1 2 0

(c)

Fig. 4. (a) Initially we put the interpolation points. (b) At the first iteration we map the interpolation points of the domain to
each region. Thus, each region has five new points. (c) At the second iteration we map the existing points (i.e. the interpolation
points and the points that emerged from iteration 1) of the domain to each region.

compute the rest of the map
parameters.

B. Do the following until the last row
of the domain is reached (a(t−1)

times). Remember that the domain
(as a part of the picture) is ini-
tially empty and gradually fills iter-
ation after iteration. At this stage
only pixels of distance (horizontal
or vertical) δ/a(t−1) are already
mapped and, therefore, capable of
been mapped again. So, to go from
one line to the “next ” you must skip
δ/a(t−1) lines.

• For the first row do: Skip the
first point (it has been mapped
already). Map the “next” a − 1
points of the domain, skip the
“next” point map the “next” a−1
points etc. Do this until the right
domain vertex is reached (a(t−1)

times). Remember that these a−1
points are not consecutive! To go
from one point to the “next ” you
must skip δ/a(t−1) points.

• Map the next a−1 lines as follows:
At each line map at + 1 points.
Remember that these points are
not consecutive! To go from one
point to the “next ” you must skip
δ/a(t−1) points.

(iii) For the last line do: Skip the first point
(interpolation point). Map the “next”

a − 1 points of the domain, skip the
“next” point map the “next” a − 1
points etc. Do this until the right
domain vertex is reached (a(t−1) times).
Remember that these a − 1 points are
not consecutive! To go from one point
to the “next ” you must skip δ/a(t−1)

points.

4. Comparative Results and
Conclusions

As mentioned above, after the application of the
algorithm on an image we need to store some
interpolation points (integers), some addresses (also
integers) and some contractivity factors (floating
points). In order to store the latter we must first
quantize them. We use the uniform quantizer.
In addition, we may apply some sort of lossless
compression to the interpolation points and the
addresses to increase the compression ratio even
further. In the examples given we used the entropy
coding compression and six bits for the quantization
of the contractivity factors (smaller values decrease
signficantly the quality of the reconstructed
image).

In order to compute the distances described
in the algorithms, we used the ρ2 (Euclidean)
distance measure. The original image used as
our reference point in the experiments presented
here is the 2049 × 2049 × 8 bpp image of Lena
shown in Fig. 5(a). Finally, for the calculation of
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(a) (b)

Fig. 5. (a) The original image of Lena. (b) The test image after compression with the bivariate model for δ = 64, ∆ = 128,
ε = 4, dmax = 4.

the contractivity factors we used the geometric
approach described in Sec. 3.1.

The method we introduced previously parti-
tions one image into regions and domains; so it is
necessary that the dimensions of the image must
be multiples of ∆. Thus, one must realize that
we can only model images that fulfill the previ-
ous criteria. For the rest, we must make some
minor modifications to the algorithms (i.e. add some
“dummy pixels”). Figure 7 shows PSNR versus

Table 1. Comparison of the application of the
Bivariate model on the image of Lena (2049×
2049) using various parameters.

Parameters Enc. Time PSNR Comp.
(δ, ∆, dmax, ε) (sec) (dB) Ratio

32, 64, 3, 0.7 ≈ 2min 43.22 25:1
64, 128, 4, 0.6 ≈ 2min 42.52 30.23:1
64, 128, 4, 1.6 ≈ 1min 41.03 48.85:1
32, 64, 3, 2.4 ≈ 1min 40.37 56.6:1
64, 128, 4, 2.2 ≈ 25 secs 40.01 62:1
64, 128, 4, 2.6 ≈ 25 secs 39.44 69.72:1
32, 64, 3, 3.2 ≈ 20 secs 38.38 81.91:1
64, 128, 4, 4 ≈ 20 secs 37.46 95.08:1
64, 128, 3, 2.6 ≈ 18 secs 35.74 141.1:1
64, 128, 3, 4 ≈ 15 secs 35.01 171.76:1
64, 128, 2, 1.7 ≈ 18 secs 33.39 210.31:1
64, 128, 2, 3.4 ≈ 18 secs 33.18 238.61:1
32, 64, 1, 4 ≈ 25 secs 28.53 426:1
64, 128, 1, 4 ≈ 25 secs 24.37 1776:1

compression results for 2049×2049 Lena using (a)
some fractal-based and (b) some fractal-based and
some nonfractal-based methods. “PSA2D” is the
2D piecewise self-affine model, “Bivariate” is the
2D piecewise bivariate model we introduce, while
“Barnsley” stands for the method devoloped by
Iterated Systems and described in length by Ning
Lu in [Lu, 1997]. To measure the time each method
needed to compress this image we used a Pentium
4 PC with a 2.66 GHz CPU clock running Windows
XP. The method was implemented by using C++
and we created an executable that can compress
any image. The results are shown in Table 1 and
Figs. 5–7.

The two-dimensional fractal interpolation
method described here achieves compression ratios
comparable to that of Barnsley’s and to JPEG. Its
major drawback is that it is less effective at the
edges of the image as one can observe by closely
looking at Figs. 5(b) and 6. Choosing a smaller
value for δ eliminates this drawback, the PSNR
value approaches the PSNR value of the JPEG
format, but the compression ratio is decreased sig-
nificantly. In general the bivariate model acts bet-
ter than JPEG, but not as good as JPEG2000 or
SPIHT (another wavelet-based approach in image
compression). It is interesting, though, to see that
the model we propose outperforms the “best” previ-
ous fractal method developed by Iterated Systems
Inc. This happens because the latter uses affine
maps instead of bivariate ones.
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(a) (b)

Fig. 6. The test image compressed by a factor of (a) 56.60 with 40.37 dB PSNR and δ = 32, ∆ = 64, ε = 2.4, dmax = 3,
(b) 141 with 45.74 dB PSNR and δ = 64, ∆ = 128, ε = 2.6, dmax = 3 using the bivariate model.
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Fig. 7. Comparison of results for 2049× 2049 image of Lena.
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