
Analysis in Theory and Applications 19.3,  2003, 220--233 

ON THE BOX DIMENSION FOR A CLASS OF 

NONAFFINE FRACTAL INTERPOLATION FUNCTIONS 

L. Dalla V. Drakopoulos M. Prodromou 

(University of  Athens, Grace) 

Received Mar. 4, 2003  Revised Jun. 29, 2003 

Abstract 
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I Introduction 

There has been great interest in the calculation of the box dimension of fractal inter- 

polation functions because of their potential utility in approximation theory and in comput- 

er graphics. 

In the case of equally spaced interpolation points, Hardin and Massopust rT3 computed 

the box dimension of certain self-affine functions in one dimension. Later, Barnsley et. al. 

in [-3] showed how the class of one-dimensional interpolation functions can be usefully 

widened by considering the projections of the graphs of higher-dimensional self-affine 

functions, which he named hiddenvariable fractal interpolation functions. The construc- 

tion of space-filling curves using these hidden-variable fractal interpolation functions is 

considered in I-6~. The determination of the conditions that a vertical scaling factor must 

obey to effectively model an arbitrary function and the introducton of the polar fractal in- 

terpolation functions as a fractal interpolation method of a nonaffine character are consid- 
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ered in [4] .  

Here our aim is to est imate the box dimension of the graphs of certain nonaffine func- 

tions in one dimension so as to generalize the results in [3 ]  to the nonaffine case. Final ly ,  

some examples of how one can use the proposed bounds to est imate and ,  in some cases,  to 

compute the box dimension of the fractal functions mentioned earlier are given. 

2 Iterated Function Systems 

Within Fractal  Geomet ry ,  the method of iterated function systems introduced by 

Hutchinson Egl and popularised by Barnsley et. al. ~z~ and Demko et. al. Es~, provide a frame- 

work for encoding and generating a large class of fractal images. 

Let X , Y C R  '~. A function f .X- -~Y is called a Lipschitz function if 

[ f ( x ) - - f ( y ) l  ~ c [ x - - y [  

for all x , y E X  and for some constant c ~ 0 .  A Lipschitz function is a contraction with con- 

tractivity factor c, if c ( 1 .  The  function f is called a bi-Lipschitz function if 

c l [ x - -  y[ ~ I f ( x ) - - f ( y ) [  ~ c 2 ] x - - y [  

for all x , y E X  and some constants  O(cl~cz.<oo. An iterated function sys tem,  or IFS for 

shor t ,  may be considered as a pair consisting of a closed subset X of R a and a finite collec- 

tion of continuous mappings w,  : X'-~X, n = 1,2,  "'", N. It is often convenient to write an 

IFS formally as { X ; w l , w z , " ' , w N }  or ,  somewhat more briefly,  as {X;wl_u}.  

We introduce the associated map of subsets W.,~'(X)---,',~e~'(X), given by 

N 

W ( E )  = O w . ( E )  for E E ~ f f ' ( X ) ,  
n =  1 

where ~ " ( X )  is the metric space of all nonempty compact subsets of X endowed with the 

Hausdorff  metric. The  map W is called the collage map to alert us to the fact that W ( E )  is 

formed as a union or collage of sets. Sometimes , ~ ( X )  is referred to as the "space of frac- 

tals in X"  (but note that not all members of X are fractals) .  

If w, are contractions with corresponding contractivity factors s.,  n = 1 , 2 ,  " " ,  N ,  the 

IFS is termed hyperbolic and the map W is itself a contraction with contractivity factor s =  

max {sa,s2,'",s~} (ref. El-I, Theorem 7 .1 ,  p. 81). In what follows we abbreviate by f* 

the k-fold composition f *  f . . . . .  f .  

The  at t ractor  of a hyperbolic IFS is the unique set A for which l i m W * ( E ) = A  for ev- 

ery s tar t ing set E. The  term at t ractor  is chosen to suggest the movement  of E towards A 

under repeated applications of W. Note that  A is also the unique set in ~/ '~(X) which is 
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not changed by W,  i .e.  , W ( A ) = A ,  and from this important  perspective it is often called 

the invariant set of the IFS. 

A t ransformation w is affine in R ~ if it may be represented by a matr ix  B and a trans- 

lation t as w ( X ) = B x - b t ,  or , in the case of R z, 

3[;]+ [3 
The  code of w is the 6-tuple ( a , b , c , s , d , e ) ,  and the code of an IFS is a table whose rows 

are the codes of w l , w 2 , " "  ,wu. We refer the interested reader to [-1] or [-8]. 

3 Fractal Interpolation Functions 

Let f be a continuous real function defined on the real closed interval I - - [ 0 , 1 - ] .  Fur-  

ther ,  let 0 = x 0 < x l  < " "  <xN_~'<x~r = 1 be a partit ion of I ,  where x0, x~, ".., xN are N-k- 1 

distinct points. It is not assumed that these points are equidistant. The  funciton f is called 

an interpolation function corresponding to the set of data { (x~,y~) E I • R �9 i = 0 , 1 , ' " ,  N }, 

if f ( x i )  =y~ for all i = 0 , 1  , . . .  ,N.  We shall write for brevity f ( x l )  = f i , i = 0 , 1  ,.." ,N .  The 

points (x~,f i )  are called the interpolation points. We say that the function f interpolates 

the data and that  ( the graph of) f passes through the interpolation points. Let us denote 

by G i = { ( x , f ( x ) ) : x E I }  the graph of a function f o n  f.  Throughout  this section we will 

work in the complete metric space K = I X R  with respect to the Euclidean or to some other  

equivalent metric. 

Let N be a positive integer greater  than 1. Set I . =  [-x.-~ ,x.-] and define L. :1--~I. by 

L . ( x )  = a.x + d. ,  

for n = l , 2 , ' " , N ,  are chosen to ensure that L . ( I ) = I . .  where the real numbers a . , d . ,  

T h u s ,  for n - - - - 1 , 2 , " ' , N ,  

.T. -- , T . _  1 
a .  ~ ~ x .  -- X . _  1 ~ O, 

X N  - -  XO 

d n  I N X n -  1 - -  XOXn 
~ X n _  1. 

X N  - -  Xo 

Since N ~ 2 , 0 < a . < I , L .  are contractive homeomorphisms for n = 1 , 2 , " "  , N  with contrac- 

tivity factor A = m a x { a ,  : n =  1 , 2 , " "  ,N} .  

Now define M . : K - ~ R ,  by 

M . ( x , y )  = c .g . (x )  + s .h.(y)  + e., 

where g.:I-- .-R and h . :R---R are continuous functions such that  
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with g. (x~)~:g . (xo)  and 

l . [ y - -  y' [ ~ [ h . ( y ) - - h . ( ' ) [  ~ r . [ y - -  y ' ] ,  

where x , x '  E I ,  y , y '  E R and l . , r . ~ O  are constants for n ~- 1 , 2 , ' " ,  N. 

The real constants  c. and e. depend on the adjustable real parameters s. and chosen so 

that  

T h u s ,  

M.(xo, fo)  = .f._,, M.(x^ , , fN)  = f . .  

f .  - f . _ ,  h . ( f , , )  - -  h . ( f o )  
c. g.(xN) -- g.(xo) s . g . ( x u )  -- g.(xo) 

g.(xN)f._~ -- g . ( xo ) f ,  g . (xN)h . ( fo)  -- g . (xo)h . ( f~ )  
e .  = g . . ( x u )  - -  g . ( x 0 )  - -  s. g . ( x N )  - -  g . ( x o )  

for n = 1 , 2 ,  " " ,  N. The  mapping M. ,  n----- 1 ,2 ,  " " ,  N are Lipschitz with respect to the first 

variable,  with Lipshitz constant  I c. [ and bi-Lipschitz with respect to the second variable,  

with constants Is. ]l . ,  Is,, I r.. 

Now define the functions w.:K--'*'K by 

w. F L " ( x )  1 [;?= L M . ( x , y )  J 

for all ( x , y ) E K  and n - - l , 2 , - ' - , N .  Then  the I F S i s  of the form {K~w~_N}, where the 

maps are of the special s t ructure  

c.g . (x)  + s .h.(y)  

and a . , c . , s . , d .  ,e. are real numbers  for n = 1 , 2 , ' " , N .  We refer to s. as the vertical scaling 

factor of the t ransformat ion w . ,  which must obey 

w.  = and w. = for n = 1 , 2 , " ' , N .  
0 n - I  N 

To assure that the IFS { K . w l - u }  constructed above is hyperbolic ,  we need the fol- 

lowing 

Theorem 1. Let s. be such that 0 ~ [ s . [ r . ~ l  f o r n = l , 2 , " ' , N .  Then there isa metric 

# on K ,  eqivalent to the Euclidean metric, such that the IFS {K; wl_ u} is hyperbolic with 

respect to p. 

Theorem 2. The hyperbolic IFS {K~ wl_tr defined above has a unique attractor GE 

~9~(K). Furthermore, G is the graph of  a continuous function f ;I-'~R which obeys 

f ( x D  = f , ,  i = 0 , 1 , . . . , N .  

The proofs of Theorems  1 and 2 follow closely those of Theorems 2.1 and 2.2 in [-1] 
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or Lemma 2. 1 and Theorem 1 in [3] ,  repsectively, and are therefore omitted. 

D e f i n i t i o n  1. The function f whose graph is the attractor o f  an I F S  as described in 

Theorem 2, is called a fractal  interpolation function or F I F  for  short. 

4 M a i n  R e s u l t  

The main idea behind all the dimension calculations is to define the right covers for 

the graph G of the fractal function. Let us now define a class of covers that will allow to 

relate covers of different sizes (see also [-3]). 

D e f i n i t i o n  2. For 0 ~ E ' < l ,  {rj}~0 is called an e-partition i f  

1. r j E ( - - e / 2 ,  1), f o r j = O , 1 , . . . , m .  

2. e/2<rj+l--rj-..<e, for  j = 0 , 1 , ' " , m - - 1 .  

A cover C ( e )  o f  G wi l l  be called an e-column cover o f  G wi th  associated e-partition 

{ r~ }~'-o i f  there are positive integers no, n a , " ' ,  nM and real numbers 8o, 81 , ' " ,  ~., such that 

C(e) = {[-r~,rb + e] X [ ~  + ( j  -- 1)e,t:~ + je ] :  j = 1 , 2 , ' . ' , n , ;  k = 0 , 1 , . " , m } .  

The class of all such covers of G is denoted by qr Note that a cover C(e)EqC(e)  con- 

sists of 2 n b  closed eXe squares arranged in m + l  columns. Let IC(e) I denote the cardi- 
k--0 

nality of C(E) and define ..41"" ( r  IC(e) I :C (e )EC(e )} .  

D e f i n i t i o n  3. Let F be a nonempty bounded subset o f  R ~ and let . / f ' (e)  be the smallest 

number o f  (closed) squares o f  side e which can cover F. The lower and upper box-counting 

dimensions o f  F are def ined respectively as 

dim~F = liminf log. /r(e)  
, >0  - -  l o g e  ' 

~-maF = limsup log..-f'(e) 
, >o  - -  l o g e  " 

I f  these are equal we refer to the common value as the box-counting or box dimension o f  F 

dim~F = lim log.~(E) 
, _ 0 +  - -  l o g e  " 

The next result shows that for the calculation of the box dimension of G it suffices to 

consider e-column covers. 

Lemma 1. .A~'(e)~4/'" ( e )~2 .A ' (e )  for  all 0 ~ e ~ l .  

Proof .  See Lemma 4.1,  p. 1236 of [3]  or Proposition 6. 1, p. 206 of [10]. 

Lemma 2. Let y ,  yl , y z E  R be such that Yl = (1--2)y-k,~yz-b~ for  some gE (0 ,1)  and 

~=fi O. Let  9" R-'~R be a function which satisfies [ q~(x~ ) --  q~(x2) [ ~ l  [ xl  - -  xz [ for  aci, at2 E R 
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and some l ~ O .  T h e n ,  

i) i f  9 i s  increasing, concave and 6 ~ 0 ,  we have 9( y,  - -  ( 1 - -  A)9( y ) --  ,ig( y2) ~.~16 ; 

ii) i f  9 is increasing, concave and 6 > 0 ,  we  have 9 ( Y l ) - - ( 1 - - , i ) 9 ( y ) - - , i q ~ ( y z ) ~ 1 6 ;  

iii ) i f  9 is l inear,  we  have ] 9(yl  ) --  ( 1 --  ,i) 9 (Y)  --  ,ig(yz ) ] ~ l  [3 [. 

Proof .  Let  

/ " =  9(Y~) - -  (1 - -  ~ ) 9 ( y )  - -  ,i9(Y2) 

----- Eq~((1 - -  ~)Y + ,iYz + 6) - -  9 ( (1  - -  ~l)y + ~Yz)] 

+ [-9((1 - -  2 ) y  + 2yz) - -  (1 - -  J ) 9 ( y )  - -  '~9(Y2)-] ~--- A + B. 

i) Since 9 i s  i nc reas ing ,  concave ,  and 6 ~ 0 ,  we have  A , B ~ O  and F ~ A =  IA ] />16; 

ii) Since 9 is i nc reas ing ,  c o n v e x ,  and 3 ~ 0 ,  we have  A , B ~ . O  and 

r<~A=-- IA I ~ - - 1 1 3 ]  =16; 

iii) Since 7,is l inea r ,  we have  I F I =  1 9 ( 6 ) I ~ l l 3 1 .  

T o  s h o w  tha t  the  t e r m  1/r becomes  negl igible  we need the  fo l lowing  

L e m m a  3. Let { ( x ~ , f ~ ) : i = O , 1 , . . . , N }  be given p o i n t s a n d V k = ( f , - - f k _ l ) - - ( f , + l - -  

f k_ l ) (Xh - - x ,_ l ) / ( xk+ l - - x , _x )~ t=O for  some k E  { 1 , 2 ,  "'" , N - - 1  }. Choose g . ( x ) = x  fo r  all n 

= l , 2 , ' " , N  and 

i) i f  there exists a k E  {1 ,2 ,  "'" , N - - 1  } such that V , > O ,  choose s.h. for  n = 1 , 2 ,  "'" , N  to 

be increasing and concave; 

ii ) i f  there exists a l E { 1 , 2 , " ' ,  N - -  1 } such that V ~ ( O ,  choose s.h. for  n = 1 ,2 ,  "" ,  N to 

be increasing and convex; 

iii) i f  there exist  k , I E  { 1 , 2 , ' - -  , N - - 1  } such that V , V t ~ O ,  choose s.h. for  n = 1 , 2 , " "  , N  

to be (al l )  increasing and concave or (al l)  increasing and convex. 

N 

Then ,  i f T ,  = "~,l. ls.I > 1, 
n = l  

l im e . /~"  ( e )  = oo. 
r  + 

Proof.  We shal l  p rove  only the f irst  case ;  the o t h e r  two  can be p roved  us ing  s imi lar  

a r g u m e n t s .  Let  x ~ = ( 1 - - 9 . ) x ~ _ l + A x , +  1 for some  , iE ( 0 , 1 ) .  T h e n ,  f , = ( 1 - - ~ ) f , - l + 2 f b + ~  

+ V , ( s e e  Fig.  l ( a ) ) .  

Le t  a = min  { 2a. :n = 1 , 2 , ' " , N  }. T h e n  0 < a ~  1, because  N ~ 2 .  Since f is con t inuous  

and  the po in t s  (x ,_  l , f , - l ) ,  ( x , , f , ) ,  (x ,+l  , f , + l  ) E G we ob ta in  

~ r .  (e)  ~ V_2 {or all 0 < e < a .  
E 

F r o m  the p rev ious  l e m m a  and since g . ( x ) = x  for  all n - - - - 1 , 2 , " ' , N  we have t ha t  M . ( x k ,  

f , )  - -  (1 - - Z ) M .  (x ,_ ,  , f , - t  ) - -AM.  (x~+t ,  f , + ,  ) = s . h .  ( ( l - -  ),) f , _ ,  + , i f ,+,  + V ~  ) - -  (1 - -  A)s.h. 
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( f , - z ) - - ~ . h . ( f , + z ) ~ l .  Is. IV, for n = l , 2 , ' " , N .  Since w . ( G ) C G  for n = l , 2 , - - - , N ,  the 

points w . ( x , - i  , f , - l )  = ( L . ( x , - l )  , M . ( x , - i  , f , - a ) ) ,  w . ( x , , f k )  = (L . ( x , )  , M . ( x , , f , )  ) ,w .  

(x,+, ,f,+~) = (L.(x,+,) ,M.(x,+, ,f,+,) ) E G, so M.(x , , f , )  = ( 1 - - a ) M . ( x , _ ,  , f ,_ , )  +ZM. 

(x,+t , f~+~)+m Is. (I.V, E f ( L . ( [ O , 1 ] ) )  for some/.,.>11 and L. (xD = (1--,DL. (x,_~) +,LL. 
N 

(x,+~). Hence, to cover U L . ( [ 0 , 1 ] )  X f ( L . ( [ 0 , 1 ] ) )  we need 

Vk ~ V, for all 0 < r  2 ..~-" (E) >I ~--2m.t. Is. 1 T >-- )-2,t. Is. I T 

T l(xk, f k ) /  

~ ~ . . / /  (X~+x, fk+t) 

(Xk-1, A - l )  

1 | 

1 0 

(a) 

w.(~k, A) 

w.(x~_1 Iv~ 

" d l ; n  (Xk+ 1, 

Ln(xk-t)  Ln(xk+t)l 

(b) 

A+I) 

(see Fig. l ( b ) ) .  By induction 
N 

(El.Is.I) 
m - - |  

/q 

- Vh 

Figure 1 

for 0 < e < a  "+xandm E N. 

Since ~-~1. ms. I ~ i and V , ~ 0  the lemma is proved. 
. g l  

The next theorem serves as a generalization of Theorem 4, p. 1236 of [3] to the case 

of nonaffine fractal functions, which are more flexible, since they can deal with a wider 

(than in the affine case) range of applieations. 

Theorem 3. Let f be the function with the graph G generated by the hyperbolic IFS 

{K;w,_~}.  

N 
(a) I f  ~,r.  ls.[ > 1 and ( x l , f i )  E K for  i = O,1 , . . . ,N  are not all collinear, then 

N 
dimsG ~ D,  where D E (1,2) is the unique real solution o f  E r .  ls. la~ -1 = 1. 

m--I 

(b) I f  the hyperbolic IFS  satisfies in addition the conditions o f  Lemma 3, then d ~  
N 

dim~G, where d E  (1,2)  is the unique real solution o f  E l .  Is. ]aa. -~ = 1. 
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Proof .  Let O < e < a  be given and C(e) a minimal e-column cover of G with associat- 

ed e-partition {rj}7_0. For nE  {1,2,""  ,N} ,  let [-rb,rl-be-] be the Smallest interval that cov- 

ers I .--[-x._~,x.] .  Denote by 

C.(r ---- {fro,r, + e~ X E~, -+- ( j  - 1)e,gj + je-l:j  -- 1 , 2 , - " , n , ,  

E,-,,~-, + e-I c En, ~, + e-I/ 

the "restriction" of C ( e )  to I.  and by . / ~ . ( e ) =  [C.(E) [ its cardinality. Note that ./V'.(e) 

denotes the number of squares of side length e that intersect w. (G) for n----1,2, " ' ,  N. 

Since there are at most two columns in C.(~)rlc .+1(r  and that f is uniformly bounded on 

I ,  there is some constant Aa~0  such that 
N 

~- ] ,~ . ( e )  <~ ..41"- (e) + A~  -~. 

Now suppose that n E  { 1 , 2 , ' " , N }  is such that s.:~0. Then w. is invertible. Consider a 

typical column --~ in C.(e) that consists of n0eXe squares. Obviosuly .~ has the width e 

and height hoe. Since w . ( G ) C  U -.~, we have G C  U w~ - l ( .~) .  If ( x , y ) , ( x ' , y ' ) E  

-~,  then,  since [x--zr' [ ~ e ,  [ y - - y '  [~-'~noe and 

Ih x_ ~ d___~. ]]  a 

' ~ l j~  1 ~ .  , 

y 21 y --  c .g . (  x a" d")  --  e. 

$,, 

w~ -1 ( ~ )  has the maximum height 

h2 ~ y -- c .g . (  a. ) -- e,, _ h21 y' --  c .g . (  --~. e. 

Sn 5,1 

1 y, [ x--d.)a. --  x '  a.--d")l 
~ ( y - -  ) - - c .  g . (  g . (  

1 Ic.l 
.--~-Tnoe + - - m , , e .  
l. Is. I l,,[s, a. 

Thus ,  the inverse image, w z l ( . ~ ) ,  of ~ is a set that is inside a rectangle of the width e/ 

1 Ic.I 
a. and height/.--[s-~. [ n~ '---T----r--rn"e't. I s. I a. which can be covered by 

E ~ ' c " ]  
n 0 ~  + - - m .  + 1 

/.Is.I 

squares o[ the side e/a .  as in Fig. 2, where [" ~ "] denotes the integer part of a number. 

Since there are at most 2 a . / e + 2  columns in C . ( e ) ,  U w 2 1 ( ~ )  can be covered by 
..~C2C ( , )  

a. c. .2a. a. A. 
Z.ls.I j / ' ( e )  + l. ls. 1'---~m"t--f- + 2) =/--~-s-~T. l..~.(e) + T 
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e/a. X E/an squares for some constant  A.>O.  Therefore 

a .  An 
~ "  (~)a. ~< t.-T~. I ~r"(e) + T '  

or equivalently,  

a .  an e 

Summing over n yields 

I-4"" - ~< ~-]~"A~) - <~ ~ "  (el 
n - - I  a R  a n E - ~ 1  

for some positive constant ill. 

(1) 

I 
I 

nl 

I 

i 

t l 

Xn--1 ~ n  i 

w~- 

F 

e/am 
i D 

Figure 2 The rectangle .~  and its image under the map w: -~ 

Next an upper bound for .A/'" (e) is obtained. Fix an n E  { 1 , ' " , N } .  Let D. be a mini- 

mal e/an-column cover of G and :~  a typical column of D. that  consists of noe/a. X e/a. 

squares. Note that  w . ( . ~ )  is a set that is inside a parallelogram of width e and height Is. I 

r.no Ic. I - - re . ,  which 
a .  a .  

can be covered by 

[.o '::'re.I+ 
e •  squares as in Fig. 3. This way a cover C.(r of wz(G) consisting of E•  squares is 

generated. Since there are at most 2a . /E+2  columns of D. ,  U w . ( ~ )  can be covered by 
~ c D  

rn Iss [ (2a. r . l~. l  B. [D.[ + {C"[m. + 2) = ~ [ D . [  + - -  
a .  a .  E a .  
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squares ofthe side e for some constant  B . > 0 .  Therefore  

IC.(e) I <~ r"ls"l~w" (~ )  +B,, - - .  

a n a n E 

e l an"~ 

W n 

F " -  

i ' 

;? 
I S n ] l " n n  0 

i 

. . . . .  

X n - 1  X n  1 

Figure 3 The rectangle .-~ and its image under the map w. 

N 

The  union UC. (~)  is a cover of G,  but in general may not be an e-column cover of G 
n ~ l  

because the columns of C.(e)  may not join up properly with those of C.+~(e)~ however ,  an 

N 

e-column cover C ( e )  can be constructed from U C. (e) by replacing at most two columns 

from C.(e )  UC.+l (e )  with at most  two properly spaced columns.  T h u s ,  there exists a pos- 

itive constant  flz such that 

n = l  a n  a n E 

From (1) and (2) we have established that .A r"  (e) satisfies the functional inequality 

g. l s . t w . ( •  _ B~ ~< jv"(e)  ~< ~ r. l s . l /~ . . (~)  + B_~ 
n ~ l  a n  an  ~ n = l  an  an  ~" 

for all 0 < ~ < a  and some/3~ , P z > 0 .  

N 

(a)  Note that if ?'z = " ~ r .  Is. I then Y z ~ Y l > I .  Select e o > 0 , k z > 0  so that  
n = l  

1 -- 7e + kze (3) 

for e o ~ e ~ e o / a ,  where a = m i n { a . : n = l , ' " , N } .  If Aeo~.r162 where A = m a x { a . . n - = l ,  



230 Analysis in Theory and Applications 19: 3, 2003 

�9 " , N } ,  then eo<~r and thus 

j r  (Z)  ~< _ _  
a~ 

Therefore, using also ( 2 ) a n d  (3) ,  

~2 an .~ 
1 - - 7 ~  e + k 2 (  )n. 

r. ls.l( /~2 a. /~ - ]~ . l s .  laf+p~e_, 
Z - - L -  " 

for Aeo~E(Eo. 

~<r k 6 N 

k~ ~--]~r. Is. laY-' +/%~-' = r  r .  Is. I + ~._1 

B ~2 -27-------L-2 e-: + kzt -n + fl2r = ~z(z------~ + 1)r + kzr -n 
1 --  72 

- -  1 f lzTzr + k2r 

The preceding argument serves as an induction step: Suppose that for AJr 

j tr ' (E) ~< #~ E-' 1 - -  72 + k2~-n' 

F...4r" (r > / 2  ~ for 0 < ~ ~< 8o/a. 
71 -- 1 

Then 

,% + ,8, >I + d - '  t"Ar" (r I> 7,-~-11 7,~--I  1 - - '  

8 ,  
for 8o~<E~< -~ and 0<kl<~'--~-v~, ~ -1. Working in an analogous way, we finally have a I i - - . t  

kl~-~ ~< 71 -- I - 

for all cE (0,(?o]. Therefore, dimaG~d. 

The proof of the theorem is complete. 

The following corollary is, in turn, a generalisation of Theorem 5, p. 1240 of [ 3 ] ,  

because it does not confine the functions g, only to the case g . ( x ) = x ,  but permits freedom 

(b) By Lemma 3 there exists (~o>0 so that 

which implies that d imsG~D.  

log.A/'" (E) logkz 
- - l o g t  ~ D + _ l o g r  

for all r (0, to].  Therefore, 

then it must also hold for A*+lr162 Since A*--,'0 as k--~oo, 

..4/'"(,) ~< /9~ _~ i - -  7z + k2e-~ < k2e-n 
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of selection according, of course, to the restrictions set. 

Corollary 1. With the same notation as above, but with h . ( y ) = y ,  

N 

(a) i f  ~ Is. I ~ 1 and the interpolation points do not all lie on a single straight line, 
n x l  

the upper box-counting diemnsion o f  G is the unique real solution D o f  

N 

 ls.I la.I 

(b) i f  in addition the conditions o f  Lemma 3 are satisfied, the box-counting dimension 

o f  G is the unique real solution D o f  

N 

Els.  lla. l~ 

Example 1. Let I= [ -0 ,1 ] ,  Y = R a n d l e t  { ( 0 , 0 ) , ( 1 / 2 , 1 ) , ( 1 , 0 ) }  be a given set of 

data. Define the functions L . . I - ~ I  by 

1 
L . ( x )  = y ( - -  1)"- 'x + (n -- 1),  n = 1,2. 

Let g, , g z E C ( I ) .  Define mappings M . : I X Y - - ~ Y  by M.(x , y )=g . (x )=s .y ,n - - - - -1 ,2 .  Fig. 4 

shows the graph of a nonaffine fractal interpolation function for g ~ ( x ) = x ,  g 2 ( x ) = x  z and 

s~=s,-~3/4,  which has an upper box dimension bounded by 

l og ( [ s t [  + Iszl) 1og__33 ,.., 
log2 = log2 = 1. 585. dim~(G) ~< 1 + 

252 

2 

15- 

1 

05 

I 
I 

025 OS 0.?~ 1 

Figure 4 The graph of a nonaffine FIF 

Example 2. Let I= [ -0 ,1" ] ,Y=[1 ,6 ]  and let { ( 0 , 2 ) , ( 1 / 3 , 4 ) , ( 2 / 3 , 5 / 2 ) , ( 1 , 2 ) }  be 

a given set o f  data. Define the functions L, :I'-~I by 

1 
L . ( x )  = -~[x + (n - -  1)] ,  n ----- 1,2,3. 

Let g l ,gz ,g3EC( t ) .  Define mappings M . : I X Y " ~ Y  by Mn(x,y)=c~g~(x)-[-s~h,(y)+e~,n 
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= 1 , 2 , 3 .  Fig. 5(a) shows the graph of such a fractal interpolation function for 

g x ( x )  = g z ( x )  = g 3 ( x )  = x ,  h i ( y )  = yZ, h 2 ( y  ) = h s ( y )  ~- y 

and 

st = 1/16, s2 = 1/2 and s3 = 3/4,  

the upper box-counting dimension of which satisfy 

1.29-~ 1 + l o g ( i l / 8 )  ~< dimn(G) ~< i ~ n ( G )  
log3 

~< 1 +  1o_~.-- 
log3 - -  i. 63. 

6, 

5.5. 

5- 

4.5, 

4,  

15,  

3- 

25 ,  

2q 

15.  

05-  

'!I' 
45. 

4. 

3.5. 

3. 

25- 

2q 

| 5 -  

I .  

05 .  

& 6 ok t 

(a) (b) 

Figure 5 The graphs of (a) a nonaffine FIF and (b) an affine FIF 

Figure 5 (b)  shows the graph of an affine fractal interpolation function using almost 

the same parameters as before except that hi (y)----y, which has a box-counting dimension 

of 

l og (  Is11 + Is21 + Is21 ) _ 1 .248 .  
dim~(G) = 1 + log3 
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