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This paper approaches the Hermite interpolation problem using fractal interpolation procedures. We generalise some
theorems provided by Barnsley and others regarding the differentiability of fractal interpolation functions, when recur-
rent iterated function systems are used. In addition, we generalise the construction given by Navascués and Sebastián
in [11] and we provide a construction of smooth (C1) fractal surfaces using C1 Hermite Fractal Interpolation Func-
tions.
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1. Introduction

The most commonly used technique for the construction of fractal sets, defined in a complete metric space X , is the use
of Iterated Function Systems (IFS). IFS are sets of contractive mappings that take effect onH(X), the space containing
all the non-empty compact subsets of X equipped with the Hausdorff metric h. This method was introduced by
Barnsley and Demko in [3] and generalised by Barnsley, Elton and Hardin in [4] to include Recurrent Iterated Function
Systems (RIFS), using stochastic matrices with probabilities. IFS and RIFS are able to produce very complicated sets
using only a handful of mappings.

A special construction of IFS, presented in [5] and [4], produces continuous functions whose fractal dimension is
greater than 1. These are called Fractal Interpolation Functions (FIF) and were used especially in signal processing.
Recently it was shown that FIF generalise Hermite interpolation polynomials (see [11]). In spite of the fact that
this construction was extensively studied (see for example [1], [2], [9]) it has remained restricted in the case of 1-
dimensional data points. Several attempts were made to generalise the notion on R2, but only in very specific cases
(see [10]). The most general construction involving Fractal Interpolation Surfaces was published recently (see [7]),
but still it involves interpolation points that are confined in some manner.

In [8] FIF were used to construct Fractal Interpolation Surfaces on arbitrary points defined on grids. In this paper,
our intention is to provide a similar construction that gives rise to smooth (i.e. C1) surfaces.

2. Iterated Function Systems

An Iterated Function System {X;w1−N} is defined as a pair of a complete metric space (X, ρ) together with a finite
set of continuous contractive mappings wi : X → X , with respective contraction factors si for i = 1, 2, . . . , N
(N ≥ 2). The attractor of an IFS is the unique set E for which E = limk→∞W k(A0) for every starting compact set
A0, where

W (A) =
N⋃

i=1

wi(A) for all A ∈ H(X),

and H(X) is the complete metric space of all nonempty compact subsets of X with respect to the Hausdorff metric h
(for the definition of the Hausdorff metric and properties of 〈H(X), h〉 see [6]). A simple example of an IFS defined
on R2 is the one that produces the well-known Sierpinski’s Triangle (see figure 1(b)), which consists of the three
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mappings:

w1

(
x
y

)
=

(
0.5 0
0 0.5

)(
x
y

)
, w2

(
x
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)
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(
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)(
x
y

)
, +

(
0
50

)

w3

(
x
y

)
=

(
0.5 0
0 0.5

)(
x
y

)
+

(
50
0

)
.

The attractor of the following IFS looks like a natural fern (see 1(a)).
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Figure 1: Two known attractors that arise from IFS. (a) a fern, (b) Sierpinski’s Triangle.

As we mentioned earlier, a more general concept, that allows the construction of even more complicated sets, is
that of the Recurrent Iterated Function System, or RIFS for short, which consists of the IFS {X;w1−N} together with
an irreducible row-stochastic matrix P = (pν,µ)N (pν,µ ∈ [0, 1] : ν, µ = 1, . . . , N), such that

N∑
µ=1

pν,µ = 1, ν = 1, . . . , N. (1)

The recurrent structure is given by the (irreducible) connection matrix C = (cν,µ)N which is defined by

cν,µ =
{

1, if pµ,ν > 0
0, if pµ,ν = 0 ,

where ν, µ = 1, 2, . . . , N . The transition probability for a certain discrete time Markov process is pν,µ, which gives
the probability of transfer into state µ given that the process is in state ν. Condition (1) says that whichever state the
system is in (say ν), a set of probabilities is available that sum to one and describe the possible states to which the
system transits at the next step.

In this case the construction of the contractive map W needs a little more effort. First, we define the mappings

Wi,j : H(X) → H(X), with Wi,j(A) =
{

wi(A), pj,i > 0
∅, pj,i = 0 , (2)

for all A ∈ H(X) and the metric space

H̃(X) = H(X)N = H(X)×H(X)× · · · × H(X)
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equipped with the metric

h̃







A1

A2

...
AN


 ,




B1

B2
...

BN





 = max{h(Ai, Bi); i = 1, 2, . . . , N}.

Then 〈H̃(X), h̃〉 is a complete metric space. The map W is now defined by

W : H̃(X) → H̃(X) : W




A1

A2

...
AN


 =




W11 W12 . . . W1N

W21 W22 . . . W2N

...
...

...
WN1 WN2 . . . WNN


 ·




A1

A2

...
AN


 =




⋃

j∈I(1)

w1(Aj)

⋃

j∈I(2)

w2(Aj)

...⋃

j∈I(N)

wN (Aj)




,

where I(i) = {j : pj,i > 0}, for i = 1, 2, . . . , N . If wi are contractions, then W is a contraction and there is
E = (E1, E2, . . . , EN )t ∈ H̃(X) such that W (E) = E and Ei =

⋃
j∈I(i) wi(Ej), for i = 1, 2, . . . , N .

Let A ∈ H(X). We define the sequences {An}n∈N in H̃(X) and {An}n∈N in H(X) as follows: A0 =
(A,A, . . . , A)t, An = W (An−1) and An =

⋃N
i=1(An)i, for n ∈ N, where An = ((An)1, (An)2, . . . , (An)N ).

Then, the set G =
⋃N

i=1 Ei is called the attractor of the RIFS {X; w1—N , P}. Evidently

G = lim
n→∞

An.

We emphasize that the attractor of a RIFS depends not only from the corresponding IFS, but also from the stochastic
matrix. For example, the following IFS equipped with different stochastic matrices produces different attractors (see
figure 2).
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y
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, (3)
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P = 1
21




1 4 4 12
1 4 4 12
1 4 4 12
1 4 4 12


 P = 1

10




5 3 2 0
1 2 3 4
2 1 4 3
3 4 1 2


 P = 1

15




0 2 4 9
1 2 4 8
4 2 1 8
4 2 1 8




Figure 2: The attractors of the IFS defined by equations 3-4, equipped with various stochastic matrices.
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(pnm) =

0
B@

1/2 0 0 1/2
1/2 0 0 1/2
0 1/2 1/2 0
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1
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1
CA , V=(1, 2, 2, 1)

Figure 3: In the above figure, the set ∆ consists of five interpolation points, while the set ∆̂ consists of three points.
The stochastic matrix, the connection matrix and the connection vector are shown below the figure.

3. Fractal Interpolation Functions

In this section we briefly describe the construction of fractal interpolation functions based on RIFSs as we will use it in
our method. Let X = [0, 1]× R and ∆ = {(xi, yi) : i = 0, 1, . . . , N} be an interpolation set with N+1 interpolation
points such that 0 = x0 < x1 < · · · < xN = 1. The interpolation points divide [0, 1] into N intervals Ii = [xi−1, xi],
i = 1, . . . , N , which we call domains. In addition, let ∆̂ = {(x̂j , ŷj) : j = 0, 1, . . . , M} be a subset of ∆, such that
0 = x̂0 < x̂1 < · · · < x̂M = 1. We also assume that for every j = 0, 1, . . . , M − 1 there is at least one i such
that x̂j < xi < x̂j+1. Thus, the points of ∆̂ divide [0, 1] into M intervals Jj = [x̂j−1, x̂j ], j = 1, . . . , M , which
we call regions. Finally, let J be a labelling map such that J : {1, 2, . . . , N} → {1, 2, . . . , M} with J(i) = j. Let
xi − xi−1 = δi, i = 1, 2, . . . , N , and x̂j − x̂j−1 = ψj , j = 1, 2, . . . , M . It is evident that each region contains an
integer number of domains. In the special case where the interpolation points are equidistant (that is xi − xi−1 = δ,
i = 1, 2, . . . , N , and x̂j − x̂j−1 = ψ, j = 1, 2, . . . , M ), each region contains exactly α = ψ/δ ∈ N domains.

We define N mappings of the form:

wi

(
x
y

)
=

(
Li(x)

Fi(x, y)

)
, for i = 1, 2, . . . , N, (5)

where Li(x) = aix + bi, Fi(x, y) = siy + qi(x) and qi(x) is a polynomial. Each map wi is constrained to map the
endpoints of the region JJ(i) to the endpoints of the domain Ii (see figure 3). That is,

wi

(
x̂j−1

ŷj−1

)
=

(
xi−1

yi−1

)
, wi

(
x̂j

ŷj

)
=

(
xi

yi

)
, for i = 1, 2, . . . , N. (6)

Vertical segments are mapped to vertical segments scaled by the factor si. The parameter si is called the vertical
scaling factor or the contraction factor of the map wi.

It is easy to show that if |si| < 1, then there is a metric d equivalent to the Euclidean metric, such that wi is a
contraction (i.e., there is ŝi : 0 ≤ ŝi < 1 such that d (wi(~x), wi(~y)) ≤ ŝid (~x, ~y), −→x , −→y ∈ R2, see [6]).

The N ×N stochastic matrix (pnm)N is defined by the labelling function J as follows:

pnm =
{ 1

γn
, if In ⊆ JJ(m)

0, otherwise.
,
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where γn is the number of positive entries of the line n, n = 1, 2, . . . , N .
This means that pnm is positive, if the transformation Lm, maps the region containing the nth domain (i.e. In) to the
mth domain (i.e. Im). If we take a point in In × R, n = 1, . . . , N , we say that we are in state n. The number pnm

shows the probability of applying the map wm to that point, so that the system transits to state m. Sometimes, it is
more efficient to describe the matrix P through the connection matrix C or the connection vector V , which are defined
as follows:

cnm =
{

1, pmn > 0
0, otherwise ,

V = (J(1), J(2), . . . , J(N)).
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Figure 4: The two FIFs shown above interpolate the points of the same set ∆ (consisting of six points). The difference
is due to the selection of two distinct stochastic matrices.

Next, we consider 〈C([x0, xN ]), ‖ · ‖∞〉, where ‖φ‖∞ = max{|φ(x)|, x ∈ [x0, xN ]} and the complete metric
subspace F∆ = {g ∈ C([x0, xN ]) : g(xi) = yi, for i = 0, 1, . . . , N}. The Read-Bajraktarevic operator T∆,∆̂ :
F∆ → F∆ is defined as follows

(T∆,∆̂g)(x) = Fi

(
L−1

i (x), g
(
L−1

i (x)
))

, for x ∈ Ii, i = 1, 2, . . . , N.

It is easy to verify that T∆,∆̂g is well defined and that T∆,∆̂ is a contraction with respect to the ‖ · ‖∞ metric.
According to the Banach fixed-point theorem, there exists a unique f ∈ F∆ such that T∆,∆̂f = f . If f0 is any
interpolation function and fn = Tn

∆,∆̂
f0, where Tn

∆,∆̂
= T∆,∆̂ ◦T∆,∆̂ ◦ · · · ◦T∆,∆̂, then (fn)n∈N converges uniformly

to f. The graph of the function f is the attractor of the RIFS {X,w1−N , (pij)N} associated with the interpolation
points (see [6]). Note that f interpolates the points of ∆ for any selection of the parameters of the polynomials pi that
satisfies (6). We will refer to a function of this nature as Recurrent Fractal Interpolation Function (RFIF). In the case
where all the elements of the stochastic matrix are equal to 1 (i.e. we have an IFS instead of a RIFS), the function will
be simply referred to as Fractal Interpolation Function (FIF). We emphasize that a RFIF satisfies

f(Li(x)) = sif(x) + qi(x) (7)

for all x ∈ Ii, i = 1, 2, . . . , N .
The most extensively studied case is that, where qi(x) = cix + fi, x ∈ Ii, which means that wi are affine:

wi

(
x
y

)
=

(
Li(x)

Fi(x, y)

)
=

(
ai 0
ci si

)
·
(

x
y

)
+

(
ei

fi

)
, for i = 1, 2, . . . , N. (8)

The FIF that corresponds to the above RIFS is called affine FIF.
From eq. (6) four linear equations arise, which can always be solved for ai, ci, ei, fi in terms of the coordinates

of the interpolation points and the vertical scaling factor si. Thus, once the vertical scaling factor si for each map has
been chosen, the remaining parameters may be easily computed (see [6]).
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3.1. The integral of a RFIF

In [2] it is shown that the integral of a FIF defined from an IFS is also a FIF defined from a different IFS. Here we will
show that the same is true in the case of the RFIF. The following theorems are extensions of the ones presented in [2].

Proposition 3.1 Let f be a RFIF constructed from the RIFS {R2; w1−N , P}, where

wi

(
x
y

)
=

(
Li(x)

siy + qi(x)

)
,

with |si| < ai, i = 1, 2, . . . , N , and associated with the interpolation points ∆ = {(xi, yi) : i = 0, 1, . . . , N} the
points ∆̂ = {(x̂j , ŷj) : j = 0, 1, . . . , M} and the labelling map J as given above. If

f̃(x) = ỹ0 +
∫ x

x0

f(t)dt,

then the function f̃ is the RFIF constructed from the RIFS {R2; w̃1−N , P}, with

w̃i

(
x
y

)
=

(
Li(x)

s̃iy + q̃i(x)

)
,

where s̃i = ai · si,

q̃i(x) = ỹi−1 − aisi
ˆ̃yj−1 + ai

∫ x

x̂j−1

qi(t)dt

and P is defined by the function J as mentioned above. for i = 1, 2, . . . , N , j = J(i) and ˆ̃yj = ỹI(j), where I(j) = i

iff xi = x̂j . The function f̃ is associated with the interpolation points ∆̃ = {(xi, ỹi) : i = 0, 1, . . . , N} the points
ˆ̃∆ = {(x̂j , ˆ̃yj) : j = 0, 1, . . . , M} and the labelling map J. The value ỹ0 is arbitrary, while the values ỹ1, . . . , ỹN are
computed as solutions of the linear system

ỹi = ỹi−1 + aisi(ˆ̃yj − ˆ̃yj−1) + ai

∫ x̂j

x̂j−1

qi(t),

i = 1, 2, . . . , N , j = J(i).

Proof.

f̃(Li(x)) = ỹ0 +
∫ Li(x)

x0

f(t)dt = ỹ0 +
∫ xi−1

x0

f(t)dt +
∫ Li(x)

xi−1

f(t)dt = ỹi−1 +
∫ Li(x)

xi−1

f(t)dt.

Substituting with t = Li(u), dt = aidu we have that

f̃(Li(x)) = ỹi−1 + ai

∫ x

x̂j−1

f(Li(u))du, with j = J(i).

In addition, if we use the relation (7), we have that

f̃(Li(x)) = ỹi−1 + aisi

∫ x

x̂j−1

f(t)dt + ai

∫ x

x̂j−1

qi(t)dt

= ỹi−1 + aisi

∫ x

x0

f(t)dt− aisi

∫ x̂j−1

x0

f(t)dt + ai

∫ x

x̂j−1

qi(t)dt

= ỹi−1 + aisi(f̃(x)− ỹ0)− aisi(ˆ̃yj−1 − ỹ0) + ai

∫ x

x̂j−1

qi(t)dt

f̃(Li(x)) = aisif̃(x) + ỹi−1 − aisi
ˆ̃yj−1 + ai

∫ x

x̂j−1

qi(t)dt, (9)

for all x ∈ Ii. Thus f̃ is a RFIF as stated by the theorem. Substituting x = x̂j in (9) we obtain the linear system

ỹi = ỹi−1 + aisi(ˆ̃yj − ˆ̃yj−1) + ai

∫ x̂j

x̂j−1

qi(t),

for i = 1, 2, . . . , N , j = J(i). ¤
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Corollary 3.1 Let f , f̃ be two RFIF produced by the RIFS {R2; w1−N , P} and {R2; w̃1−N , P} respectively, where

wi

(
x
y

)
=

(
Li(x)

siy + qi(x)

)
, w̃i

(
x
y

)
=

(
Li(x)

s̃iy + q̃i(x)

)
,

with |si| < 1, |s̃i| < ai for i = 1, 2, . . . , N , and associated with the points of the sets ∆, ∆̂ and ∆̃, ˆ̃∆ and the labelling
map J as described above. Then f̃ ′ = f , if and only if

s̃i = aisi and q̃′i(x) = aiqi(x), for all x ∈ Ii, i = 1, 2, . . . , N. (10)

Proof. The if part is immediate from the proposition 3.1. For the converse we have:

f̃(xi)− f̃(xi−1) = ỹi − ỹi−1

= F̃i(x̂j , ˆ̃yj)− Fi(x̂j−1, ˆ̃yj−1)

= aisi
ˆ̃yj + q̃i(x̂j)− aisi

ˆ̃yj−1 − q̃i(x̂j−1)

= aisi(ˆ̃yj − ˆ̃yj−1) + ai

∫ x̂j

x̂j−1

qi(t)dt.

Thus ỹi, ỹi−1, i = 1, 2, . . . , N , satisfy the relations of proposition 3.1. Therefore f̃ ′ is the RFIF constructed from the
RFIS {R2, w̃1−N , P}. Due to (10), f̃ ′ = f . ¤

For a function g we symbolize g(0) = g and g(k) as its k-th order derivative. In addition, we consider Cn([0, 1]) as the
space of the functions that have continuous n-th order derivative, equipped with the norm ‖f‖ = ‖f‖∞ + ‖f ′‖∞ +
· · ·+ ‖f (n)‖∞. The following theorem may be easily deduced from proposition 3.1.

Theorem 3.1 Consider the RIFS {R2, w1−N , P}, whose attractor is the graph of a RFIF associated with the data
points ∆, ∆̂ and the labelling map J, where

wi

(
x
y

)
=

(
Li(x)

siy + qi(x)

)
,

|si| < an
i , qi ∈ Cn([0, 1]), for i = 1, 2, . . . , N . We define

Fk,i(x, y) =
siy + q

(k)
i (x)

ak
i

.

If for any k = 0, 1, . . . , n, each one of the 2N × 2N linear systems

yk,i−1 = Fk,i(x̂j−1, ŷk,j−1) =
aiŷk,j−1 + q

(k)
i (x̂j−1)

ak
i

,

yk,i = Fk,i(x̂j , ŷk,j) =
aiŷk,j + q

(k)
i (x̂j)

ak
i

,

with ŷk,j = yk,I(j), I(j) = i iff x̂j = xi, j = J(i) i = 1, 2, . . . , N , has a unique solution for yk,i, then the RFIF
f ∈ Cn([0, 1]) and f (k) is the RFIF defined by the RIFS {R2; wk,1−N , P}, where

wk,i

(
x
y

)
=

(
Li(x)

Fk,i(x, y)

)
,

for k = 1, . . . , n.

3.2. Hermite Fractal Interpolation Functions

Consider an interval [a, b]. The Hermite interpolation problem is the search for a polynomial q of degree 2p+1 which
satisfy

q(k)(a) = ak, q(k)(b) = bk,
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where ak, bk are given real numbers for k = 0, 1, . . . , p. It has been proven that this problem has always a unique
solution. The corresponding polynomial q is called Hermite interpolation polynomial. A more general definition is
that of the Hermite interpolation function. Let D = {x0 < x1 < · · · < xN} be a given partition of an interval
[x0, xN ], where as usual Ii = [xi−1, xi]. Then the space of the Hermite interpolation functions of order p, denoted as
Hp+1

D (p ∈ N), is defined as follows

Hp+1
D = {φ : [x0, xN ] → R; φ ∈ Cp([x0, xN ]), φ|Ii ∈ P2p+1, i = 1, 2, . . . , N},

where the space P2p+1 is composed from the polynomials of degree at most 2p + 1. In order to approximate a given
function y ∈ Cp([x0, xN ]) with a function φ ∈ Hp+1

D , it is sufficient to choose the polynomials qi = φ|Ii such that

q
(k)
i (xi−1) = y(k)(xi−1), p

(k)
i (xi) = y(k)(xi).

The following theorem generalizes the concept of Hermite interpolation using RFIF. We note that in [11] Navascués
and Sebastián gave a similar theorem using FIFs. Their work may be considered as a special case of theorem 3.2.

Theorem 3.2 Consider x0 < x1 < · · · < xN a partition of the interval [x0, xN ], (N ∈ N, N ≥ 2), and x̂0 < x̂1 <
· · · < x̂M , (M ∈ N) a subset of it, such that x̂0 = x0, x̂M = x̂N . Consider, also, a mapping J : {0, 1, . . . , N} →
{0, 1, . . . ,M}, a set of numbers Dy = {yk,i : k = 0, 1, . . . , p, i = 0, 1, . . . , N} and ai = (xi − xi−1)/(x̂j − x̂j−1),
|ai| < 1. If the real numbers s1, s2, . . . , sN satisfy |si| < ap

i , i = 1, 2, . . . , N , then there is a unique RFIF f ∈ Cp

such that
f (k)(xi) = yk,i

for all k = 0, 1, . . . , p, i = 0, 1, . . . , N . The function f is constructed as the attractor of a RIFS {R2; w1−N , P} with

wi

(
x
y

)
=

(
Li(x)

siy + qi(x)

)
,

where qi are polynomials of degree at most 2p + 1.

Proof. Again, we define the mapping I : {0, 1, . . . , M} → {0, 1, . . . , N} as follows: I(j) = i, iff x̂j = xi. Using
this mapping we construct the set D̂y = {ŷk,j ; k = 0, 1, . . . , p, j = 0, 1, . . . , M}, such that ŷk,j = yk,I(j). The
coefficients of the polynomial qi are computed as solutions of the linear system

Fk,i(x̂j−1, ŷk,j−1) =
siŷk,j−1 + q

(k)
i (x̂j−1)

ak
i

= yk,i−1,

Fk,i(x̂j , ŷk,j) =
siŷk,j + q

(k)
i (x̂j)

ak
i

= yk,i,

for k = 0, 1, . . . , p, i = 1, 2, . . . , N . We may rewrite this linear system as

(qi ◦ L−1
i )(k)(xi−1) = yk,i−1 − siŷk,j−1

ak
i

,

(qi ◦ L−1
i )(k)(xi) = yk,i − siŷk,j

ak
i

,

k = 0, 1, . . . , p, i = 1, 2, . . . , N . Thus (qi ◦ L−1
i ) is an Hermite polynomial of degree p, for all i = 1, 2, . . . , N .

This fact ensures that the linear system has a unique solution. In addition, the conditions of theorem 3.1 are satisfied,
therefore f ∈ Cp([x0, xN ]n). ¤
We note that in the special case where si = 0, i = 1, 2, . . . , N , the RFIF f , is identical to the classical Hermite
interpolation function (the proof is straightforward).

4. Fractal Interpolation Surfaces derived from RFIF

The construction of fractal surfaces has drawn the attention of many researchers. Massopust was the first who gave a
valid construction in [10], using data points placed on a triangular domain. A lot of other attempts followed, however
most of them need strongly restricted data (for example the interpolation points that are placed on the boundary of
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Figure 5: Two Hermite RFIF that interpolate the same set of data using (a) non zero contraction factors, (b) zero
contractions factors.

the domain need to be colinear). The most general case was given in [7]. Here, we describe a method that uses
Hermite Fractal Interpolation Functions of order 3 to construct C1 Fractal Interpolation Surfaces on a rectangular grid
of arbitrary interpolation points.
Consider the interpolation points ∆ = {(xi, yj , zij) : i = 0, 1, . . . N ; j = 0, 1, . . . ,M} ⊆ [0, 1] × [0, 1] × R with
0 = x0 < x1 < · · · < xN = 1, 0 = y0 < y1 < · · · < yM = 1 and xi − xi−1 = δi, i = 0, 1, . . . , N − 1,
yj − yj−1 = δ̃j , j = 0, 1, . . . , M − 1. Let S = {s1, s2, . . . , sN}, S̃ = {s̃1, s̃2, . . . , s̃M} be two sets of contraction
factors and let P = (pnm)N , P̃ = (p̃nm)M be two stochastic matrices with dimensions N × N and M × M ,
respectively. Also, let ∆̂ = {(x̂k, ŷl, ẑkl) : k = 0, 1, . . . K; l = 0, 1, . . . , L} be a subset of ∆ such that x̂0 = 0,
x̂K = 1, ŷ0 = 0, ŷL = 1 and x̂k − x̂k−1 = ψk, ŷl − ŷl−1 = ψ̃l, k = 0, 1, . . . , K, l = 0, 1, . . . , L. Let J and J̃
be defined as in section 3 associated with the matrices P and P̃ , respectively, with J(i) = k, J̃(j) = l. The points
{x0, x1, . . . , xN} divide [0, 1] into N domains I1, I2, . . . , IN , while the points {y0, y1, . . . , yM} divide [0, 1] into M
domains Ĩ1, Ĩ2, . . . , ĨM . Consequently, the points {x̂0, x̂1, . . . , x̂K} divide [0, 1] into K regions J1, J2, . . . , JK , while
the points {ŷ0, ŷ1, . . . , ŷL} divide [0, 1] into L regions J̃1, J̃2, . . . , J̃L. In addition, we define the mappings

I : {0, 1, . . . , K} → {0, 1, . . . , N}
Ĩ : {0, 1, . . . , L} → {0, 1, . . . ,M}

such that x̂k = xI(k) and ŷl = yĨ(l).
We consider arbitrary continuous functions ui, that interpolate the sets ∆̃xi

= {(xi, yj , zij) : j = 0, 1, . . . , M},
for i = 0, 1, . . . , N . Then, for y ∈ [0, 1], we construct an affine RIFS associated with the interpolation points
∆y = {(xi, y, ui(y)) : i = 0, 1, . . . , N}, ∆̂y = {x̂k, y, uI(k)(y)), k = 0, 1, . . . , K}, the set of contraction factors S
together with the matrix P , which produce an affine RFIF fy : [0, 1] → R (see figure 6). We define the function

F : [0, 1]× [0, 1] → R such that F (x, y) = fy(x).

Similarly, we consider arbitrary continuous functions vj , that interpolate the sets ∆yj
= {(xi, yj , zij) : i = 0, 1, . . . , N}

for j = 0, 1, . . . , M . As before, for x ∈ [0, 1] we construct an affine RIFS associated with the interpolation points

∆̃x = {(x, yj , vj(x)) : j = 0, 1, . . . , M}, ˜̂∆x = {(x, ŷl, vĨ(l)(x)), l = 0, 1, . . . , L}, the set of contraction factors S̃

together with the matrix P̃ , which produce an affine FIF f̃x : [0, 1] → R. Thus, we define the function

F̃ : [0, 1]× [0, p] → R such that F̃ (x, y) = f̃x(y).

The functions F , F̃ are continuous functions that interpolate the data set ∆ (see [8]).
Using a similar method we may proceed in a construction of fractal interpolation surfaces of class C1. In this case,
we consider arbitrary C1 functions ui, that interpolate the sets ∆̃xi = {(xi, yj , zij) : j = 0, 1, . . . , M}, for i =
0, 1, . . . , N . We, also, consider some other arbitrary continuous functions u∗i defined on [0, 1] that satisfy the Lipschitz
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Figure 6: An example of the construction of the function F is shown. (a) The points of ∆, where N = M = 8, p = 1.
(b) The nine interpolation functions u0, u1, . . . , u8, (c) One of the FIFs fy (green line), (d) The graph of the function
F .

condition. These functions will be used as the x-partial derivative of the constructed surface. Then, for y ∈ [0, 1],
we construct a Hermite RFIF of order 1 associated with the interpolation points ∆y = {(xi, y, ui(y), u∗i (y)) : i =
0, 1, . . . , N}, ∆̂y = {(x̂k, y, uI(k)(y), u∗I(k)(y)) : k = 0, 1, . . . ,K}, the set of contraction factors S together with the
matrix P . The corresponding RIFS is {R2; wy,1−N , P}, where wy,j are of the form

wy,j

(
x
z

)
=

(
aix + bi

siz + qy,i(x)

)
,

for i = 1, 2, . . . , N , as defined in section 3.2. We define the function

F : [0, 1]× [0, 1] → R such that F (x, y) = fy(x).

We can easily show that F is a C1 function. To this end we construct a RIFS whose attractor is identical to F .
We begin with the set ∆ = {(xi, yj , zij) : i = 0, 1, . . . N ; j = 0, 1, . . . , M} ⊆ [0, 1] × [0, 1] × R with 0 = x0 <

x1 < · · · < xN = 1, 0 = y0 < y1 < · · · < yM = 1. We define a subset ∆̂′ of ∆ as follows, ∆̂′ = {(x̂k, yj , zI(k),j) :
k = 0, 1, . . . K; j = 0, 1, . . . M}. The corresponding domains are Di = [xi−1, xi] × [y0, yM ], i = 1, 2, . . . , N and
the regions are Rk = [x̂k−1, x̂k]× [y0, yM ]. The mappings w′i are constructed as follows

w′i




x
y
z


 =




aix + bi

y
siz + Qi(x, y)


 =




Li(x)
y

siz + Qi(x, y)


 ,
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Figure 7: An example of the construction of the smooth function F is shown. (a) The nine interpolation functions
u0, u1, . . . , u8, (b) One of the FIFs fy (green line), (c) The graph of the C1 surface, (d) Another example of a C1,
surface using a different set of data.

for i = 1, 2, . . . , N , (x, y) ∈ Di such that Qi(x, y) = qy,i(x), where qy,i are the polynomials that are used in the
RIFS whose attractor is the Hermite RFIF fy . The fact that qy,i are Hermite type polynomials of order 3 such that

qy,i(xi−1) = ui−1(y)− siuk−1(y),
qy,i(xi) = ui(y)− siuk(y),

q′y,i(xi−1) = u∗i−1(y)− siu
∗
k−1(y)
ai

,

q′y,i(xi) = u∗i (y)− siu
∗
k(y)
ai

,

where k = J(i), for all y ∈ [0, 1], ensures that Qi is a C1 function for all i = 1, 2, . . . , N . We define the set
F = {f ∈ C1([0, 1]2) : f |xi×[0,1] = ui,

∂f
∂x |xi×[0,1] = u∗i , i = 0, 1, . . . , N} and the operator T : F → F such that

T f(x, y) = sif(L−1
i (x), y) + Qi(L−1

i (x), y), for all (x, y) ∈ Di, i = 1, 2, . . . , N . We may easily show that T is
well defined (based on the construction of fy and the fact that Qi are C1 ) and that it is a contraction. Therefore, it has
a unique fixed point which is identical to F . Hence F is a C1 function.
In figure 7 we used sets of the form ∆ = {(xi, yj , zi,j , z

∗
i,j , z

∗∗
i,j) : i = 0, 1, . . . N ; j = 0, 1, . . . , M}, where the

values z∗i,j , z
∗∗
i,j are the values of the x and y partial derivatives. We constructed the functions ui as Hermite RFIF

that are associated with the data sets {(xi, yj , zi,j , z
∗∗
i,j) : j = 0, 1, . . . , M}, for i = 0, 1, . . . N . The functions u∗i

were constructed as the linear interpolation functions passing through the points {(xi, yj , z
∗
i,j) : j = 0, 1, . . . ,M}, for

i = 0, 1, . . . N .
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